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We developed and evaluated an algorithm for enumerating fluorescently labeled cells (e.g., stem and cancer cells) in mouse-sized,
microscopic-resolution, cryo-image volumes. Fluorescent cell clusters were detected, segmented, and then fit with a model which
incorporated a priori information about cell size, shape, and intensity. The robust algorithm performed well in phantom and tissue
imaging tests, including accurate (<2% error) counting of cells in mouse. Preliminary experiments demonstrate that cryo-imaging
and software can uniquely analyze delivery, homing to an organ and tissue distribution of stem cell therapeutics.

1. Introduction

Stem cell therapies are promising treatments for many
diseases, and preclinical trials in ischemic heart disease show
enhanced recovery of function [1, 2]. While mechanisms
for homing are being defined, exogenous stem cell therapies
are being implemented in clinical trials, despite a limited
understanding of mechanisms. Due to limitations of current
methods such as histology, QPCR, and in vivo imaging, one
cannot reliably determine efficiency and dose response of
exogenous stem cell therapy. In order to determine dose
response of stem cell treatments, imaging must be performed
with single cell sensitivity and resolution over large regions of
an entire specimen. The utility of imaging small numbers of
cells over a large specimen is not limited to stem cell research,
but is needed in immune response, cancer, and many other
fields of research [2].

Cryo-imaging, as defined below, provides single cell
resolution and sensitivity over an entire specimen, which is
not possible with in vivo, small animal imaging systems such
as CT, MRI, PET, SPECT, whole animal fluorescence, or bio-
luminescence. Optical imaging modalities such as intravital
imaging [3] do not offer the field of view (FOV) or depth
of field of cryo-imaging. By imaging with high resolution

and sensitivity, it is possible to identify fluorescently-labeled
single cells or cell clusters within a mouse. Once cells are
identified, cell locations can be mapped relative to the tissue
anatomy in the high contrast, 3D cryo-image color volumes.

Cryo-imaging consists of a modified, bright-field/fluo-
rescence microscope, a robotic imaging system positioner,
a customized, whole mouse motorized cryomicrotome,
control system, and analysis/visualization software [4].
By alternately sectioning and imaging the specimen, the
system acquires brightfield color and fluorescent image
volumes, providing micron-scale resolution, detailed views
of anatomy, and cells labeled with fluorescent reporter genes
or exogenous fluorophores [5–8].

Once images have been collected of an entire mouse at
sufficient resolution to detect individual fluorescently labeled
cells, methods must be developed to detect and segment
fluorescently labeled cell clusters and quantify the number
of cells per cluster. A cryo-image volume consists of tens of
thousands of images and over 80 GB, necessitating the need
for an automated approach. To put our task in perspective,
finding a one-voxel cell in a whole mouse cryo-image volume
is equivalent to finding one voxel in 23× 109 voxels, or about
one needle in 1900 haystacks. Typical cellular quantification
algorithms range in sophistication from simple manual
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dot counting, to automated deformable models [9] and
neural network-based segmentation [10]. The latter methods
require images of sufficient resolution, such that the cell
boundary is distinguishable. In order to limit the number
of images required to image an entire mouse, cryo-imaging
is performed with a 15.6 µm pixel size, as compared to the
smallest available pixel size of 1.2 µm. At this resolution, cells
are approximately the size of a single pixel, making it impos-
sible to resolve cell boundaries in large clusters of cells. For
this reason, it is necessary to utilize quantification algorithms
that do not rely on high resolution to perform quantification.

There are reports of model-based segmentation and
quantification algorithms when the size and shape of cells
varies greatly and the boundary between cells is indistin-
guishable due to low resolution or contrast [11]. The cell
model is used to incorporate prior information about cell
size, shape, and intensity, as well as the transfer function
of the imaging system [12]. A common model of cells
is a Gaussian [11–13]. Cells are approximately the size
of a pixel, which appears as a single bright point. This
point is then blurred during imaging due to pixilation, the
transfer function of the imaging system, and light scattering
by the tissue. By modeling a cell as a Gaussian, we are
accounting for the spherical shape of the cells, as well as
blurring due to the imaging process. Currently, model-based
algorithms have been used for segmentation of cells, cell
clusters, and subcellular structures [11–13]. Possible cells or
cell clusters are identified and fit to a range of Gaussians with
varying σ ’s [11, 13] or an optimal σ was estimated through
optimization [12]. Noordmans and Smeulders attempted to
isolate overlapping spots by subtracting a preliminary fit of
one of the spots from the image of the overlapping spots [13].
Two spots that overlapped to a large extent were erroneously
counted as single cells and estimates of the individual spot
sizes were inaccurate. To our knowledge, no attempt has been
reported in the literature to separate more than two cells
using model-based algorithms.

In this paper, we develop and evaluate a model-based
algorithm for enumerating 1000’s of fluorescently labeled
cells in a cryo-image volume. The algorithm includes detec-
tion, segmentation, and quantification steps. Knowledge-
based image processing is performed to remove false posi-
tives (FP’s), where rules are created based on known proper-
ties of cell clusters. In experiments, we image homogeneous
phantoms containing fluorescent microspheres or quantum
dot-labeled mouse mesenchymal stem cells MSC’s. Results
are validated against high-resolution imaging and against
human interpretation. In sections that follow, we develop the
algorithms, describe the software and parameter estimation,
validate our method, and process cryo-image volumes.

2. Algorithm

We divide cell processing into three major steps: preprocess-
ing, detection/segmentation of cell clusters, and estimation
of the number of cells per cluster. Algorithms are described
for the case of red quantum dot-labeled cells. Later, we
describe modifications required for cells labeled with fluo-
rescent proteins.

2.1. Preprocess Images. We tile and align cryo-images using
semiautomated gray-scale registration algorithms previously
described [14]. Subsurface fluorescence can contribute to
a given image, but we have developed a “next-image”
processing algorithm which isolates the fluorescence within
a given section [15]. Briefly, to account for attenuation
and scatter in tissue, we blur and attenuate the next image
in the stack and subtract it from the current image. For
optimal processing with high microscope resolution and
thin sections, we estimate parameters from images using
an optimization algorithm [15]. Careful fine tuning of
tissue-specific parameters is less critical at lower microscope
resolution and thicker sections. For example, in our applica-
tion experiment with 40 µm sections, quantum dot-labeled
stem cells appear as a single pixel and are visible over at
most 2-3 images at greatly diminished intensity. In such
experiments, the subsurface fluorescence intensity is much
lower, ≈15–20% of the intensity of fluorescent cells at the
surface, and any subsurface fluorescence not removed by
next-image processing will be too dim to be confused as
a fluorescently labeled cell. Next-image processing greatly
reduces any subsurface fluorescence from labeled cells as well
as general background autofluorescence.

We also process images to remove background autoflu-
orescence. This process is necessary to get reliable values of
cluster intensity for subsequent processing. Morphological
reconstruction [16] is performed to determine the autoflu-
orescent background. We found that morphological recon-
struction gave better results than morphological grayscale
opening, as it reduced artifacts, such as “blotching,” where
regions of pixels have unnaturally uniform intensity [17]
and corrected the background intensity under the clusters.
Morphological reconstruction takes as an input a marker
image and the original image, sometimes called a mask image
in the literature. In order to determine the autofluorescent
background, a marker image is chosen with fluorescent
clusters removed. This marker image is repeatedly dilated
until the contour of the marker image fits under the original
image. This results in a reconstructed image that contains
only the background autofluorescence. In our application,
we process each color channel separately, with the original
2D color fluorescent image as the original image. In order
to determine the autofluorescent background, all fluorescent
cell clusters should be removed from the marker image. We
determine the marker image by performing morphological
grayscale erosion on the original image, removing all possible
cell clusters. To make certain that all fluorescent clusters
are removed during erosion, the structuring element must
be larger than all fluorescent clusters present in the image.
Erosion was performed with a disk structuring element of
radius 10 pixels, which was experimentally determined to
remove all clusters. Following morphological reconstruction,
the reconstructed image contains only background; all areas
of local maxima (cell clusters and FP’s) are removed.
By subtracting this reconstructed background image from
the original image, we are left with an image containing
fluorescent clusters as well as some FP’s.

For cells containing red quantum dots, we compute
the ratio of the red to green fluorescence digital image
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intensities, IR/IG. Fluorescence images excited in the range of
390–465 nm contain predominately green autofluorescence,
giving IR/IG ≈ 0.4. Very few autofluorescent pixels are
more red than green. By comparison, cells labeled with
red (625 nm) quantum dots are much redder than green,
giving IR/IG ≈ 8.0. By thresholding the ratio image IR/IG
with a threshold value TR/G (1), we are able to remove
nearly all effects of autofluorescence. The threshold TR/G is
interactively determined by a user to conservatively include
all cells and possibly some FP’s, which will be later pruned
away. The thresholded ratio image is multiplied by IR (1),
the red channel intensity of the original image, creating a
grayscale image, as below, where binary is the creation of a
binary image using the enclosed operation.

IGray = IR ∗ binary

(

IR
IG

> TR/G

)

. (1)

2.2. Detect/Segment. To segment fluorescent clusters hys-
teresis thresholding was performed on IGray. Hysteresis
thresholding first segments IGray by a high threshold (TH),
leaving only the brightest pixels in each cluster of cells [18].
A low threshold (TL) is then applied, which includes all
pixels in the fluorescent clusters, as well as FP’s due to
autofluorescence. Pixels selected by the low threshold are
retained if they are connected to a pixel selected by the
high threshold. Low and high thresholds are interactively
determined. The user selects a high threshold, such that
all clusters contain at least one thresholded pixel. The high
threshold should be chosen to include all cells. For this
reason, the high threshold is typically determined from an
image of cells in culture. The high threshold is determined
based on the maximum intensity of each cell cluster in
culture, described below in (2)

TH = .6∗min[∀n : Cmax(n)], (2)

where Cmax(n) is the maximum intensity of a cell cluster n
in culture. The high threshold can be increased to reduce
the number of false positives. However, this is often avoided
to ensure that all cell clusters are segmented. The low
threshold is typically selected to exclude the autofluorescent
background. The low threshold is determined based on the
mean and standard deviation of the background as described
below in (3)

TL = µimg + c ∗ σimg, (3)

where µimg is the mean value of the digital image intensity
values, σimg is the standard deviation, and c is a constant.
From experimental analysis, a value of c = 1.4 or greater
was found to reduce the inclusion of autofluorescence, while
including the entirety of all cell clusters. A user may elect
to increase the low threshold to reduce the inclusion of dim
autofluorescent pixels.

Connected component analysis (CCA) is performed to
uniquely label each segmented fluorescent cluster [19]. From
each uniquely labeled cluster, cluster features consisting
of volume, integrated intensity, bounding box, integrated
intensity to volume ratio, and center of mass are determined.

These features are later used to reject FP clusters and to
initiate model-based analysis.

In general, the above thresholds are set to “over call”
fluorescent clusters, ensuring that all cells are identified. This
may include FP’s, which are removed through knowledge-
based processing. Since cells are well separated prior to
injection and since we are focusing on stem cell studies over
relatively short-time periods (1 hour to 6 days) with minimal
cell division, cell clusters are typically small with many one
and two cell clusters and very few with as many as 15 cells
in a cluster. The vast majority of FPs due to autofluorescence
can be removed by setting a maximum cluster size. Very large
clusters due to bright autofluorescent regions of the intestine,
bone, and stomach are easily removed in this way. Small
autofluorescent structures (e.g., remnants of the intestine
and small bones) may not be removed by the maximum
size rule. However, we have determined that by setting a
minimum and maximum intensity-to-volume ratio, we can
easily remove such regions. In this way, it is possible to
remove small structures that are too bright or too dim to
be labeled cells. Rules are (1) fluorescent clusters with a
volume (CV ) larger than a user defined threshold (TV ) are
classified as FP’s (CV > TV ); (2) fluorescent clusters with an
integrated intensity (

∫

Ci) to volume (CV ) ratio outside of
a specified range (TR,L: low-ratio threshold, TR,H : high-ratio
threshold) are classified as FP’s (

∫

Ci/CV < TR,L,
∫

Ci/CV >
TR,H). Conservative thresholds are used to guard against
the possibility of mistakenly removing cells. Additional FP
removal is performed following model-based quantification
to further reduce FP’s.

2.3. Estimate the Number of Cells/Cluster. The first step in
our model-based analysis is to determine average parameters
for a single cell. Histograms of cluster features (volumes and
integrated intensities) give qualitative information about the
number of cells per cluster. The largest peaks in the his-
tograms correspond to single cells. Because the average stem
cell diameter is 10–15 µm, 3-4 times smaller than the slice
thickness (40 µm), the vast majority of single cells should
be contained within a single slice. Only fluorescent clusters
contained within a single 2D cryo-image are assumed to be
single cells. Each single cell is fit to a Gaussian with free
parameters; σ , integrated intensity (It), and the center of
the Gaussian (xc and yc). Parameters are estimated using
a least squares error objective function and Levenberg-
Marquardt or Nelder-Mead nonlinear optimizer [20, 21].
Model parameters are averaged to obtain the model for a
single cell.

Model-based analysis is performed to estimate the num-
ber of cells per cluster for all detected clusters in the volume.
For any given cluster, we first estimate the number of cells in
a cluster (Ni) as shown in (4):

Ni =

∫

Ci

It
, (4)

where
∫

Ci is the integrated intensity of cluster i and It is the
total intensity of the model single cell. A range of integer
numbers of cells around this estimate is used to determine
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the range for fitting the cluster. The range of number of cells
tested is given by (5):

Ni ±max(2,Ni ∗ .30). (5)

For each integer number of cells tested, n, the optimal
placement of n model cells that most closely resembles the
3D image of the cluster is determined. For each model cell
there are free parameters xc, yc, and zc, where xc, yc, and
zc are real valued parameters setting the center of the cell
and xc and yc set the location of a 2D Gaussian. Recall that
we use thick sections (40 µm) as compared to the resolution
in the xy-plane (8.8–15.6 µm) and that there is a potential
of sectioning a single cell. Hence, zc is treated differently
from xc and yc. The model cell is set at a “height” zc. To
account for sectioned cells, zc specifies the percentage of a cell
contained in neighboring sections. The division of the cell
between adjoining slices is used to divide the total intensity
(It) between the slices. The center of two cells may not be
closer than Dmin, the approximate diameter of a single cell.
This prevents multiple cells from occupying the same 3D
space. Optimal placement of the n model cells is determined
through minimization of an objective function using the
nonlinear optimizer. The objective function, Fobj, is least
square error, as given below

Fobj =

√

√

√

√

m
∑

(

IGray−

n
∑

Igauss

)2

, (6)

where IGray is the grayscale fluorescent image; Igauss is a single
model cell with input parameters xc, yc, zc, It, and σ ; m is
the number of pixels in the cluster; n is the total number of
model cells. The number of cells n that best matches the 3D
cluster image, as determined through least square error, is
designated as the number of cells in the cluster. Please note
that (4) is simply used to obtain an initial guess and that (6) is
the working equation for determining the actual number of
cells in a cluster. The method assumes that cells have a fixed
size and intensity.

2.4. Interactive Determination of Processing Parameters. Opti-
mal algorithm parameters will depend at least upon spectral
characteristics of the fluorophore, cell size, and intensity.
At this time, parameters are interactively selected by a user.
We have found that similar experiments can be analyzed
using the same parameters. In our interface, a series of 2D
images from a selected cryo-image volume are displayed for
the user to interact with and determine the threshold values
by examining the affect of changing TR/G, TH , and TL on
the number of clusters and FP’s included, as well as which
pixels are included within a cluster. As described above, a
threshold TR/G is required to reduce the color fluorescent
image volume to the grayscale image volume IGray. Two
additional thresholds TH and TL are required to perform
hysteresis thresholding on IGray. Initial guesses for TR/G, TH ,
and TL are made by the user based on images of cells in
the dish as described above, prior experiments, or observed
cell intensities in the displayed images. Initial guesses are
made low to include all cells and FP’s. Using these original

Table 1: Pseudocode for the determination of model-based
parameters and estimation of cell number. Histogram analysis of
cluster volume and integrated intensity are used to estimate single
cell clusters. Model parameters are determined from the estimated
single cells. These parameters are used to estimate the number of
cells in a given cluster.

Preprocessing and determination of model cell parameters

Load aligned, next image processed cryo-image stack

Perform morphological reconstruction to remove background

User interactively determines TR/G, TH , and TL

Perform thresholding of ratio image

Perform hysteresis thresholding

Perform connected component analysis

Display histogram of cluster volume

User selects single cell volume range based on largest peak

Display histogram of integrated intensity

User selects single cell integrated intensity range based on largest
peak

For all clusters that are within the user defined integrated intensity
and volume range

Fit Gaussian with free parameters (xc, yc, zc), It , and σ to each
cluster

Perform an average of estimated model parameters to determine σ
and It

Estimate number of cells per cluster

For a given cluster

Estimate number of cells per cluster

Test integer numbers of cells within the range

Perform nonlinear optimization to place the model cells in the 3D
positions that best fits the input image

The number of cells that best fits the inputted image is chosen as
the estimated number of cells in the cluster

threshold values, the original image is processed to create the
hysteresis thresholded image IHyst. In separate windows, the
original image and IHyst are displayed. Zoomed in views of
possible cell locations of the original color cryo-image are
displayed along with statistical measurements of the object
and the necessary TR/G, TH , and TL to include or reject the
object. Due to the brightness of labeled cells, the repetitive
features of autofluorescence in different tissues, and the
known tissue location of the object, a user is able to confirm
or reject that a given object is a cell. User predictions can
be compared to multispectral images of the same location
to confirm that a given object is indeed a labeled cell. Once
parameters are set, we can process large tissue regions at will.
Pseudocode for this entire process is shown in Table 1.

3. Experimental Methods

3.1. Instrument. The Case whole mouse cryo-imaging test
bed system has been previously described [4, 15]. Briefly,
it consists of a modified large section cryo-microtome,
XYZ robotic positioner carrying an imaging system which
consists of a stereo microscope, low-light digital camera, and
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Is = 344

(b)

Is = 361

(c)

Figure 1: The appearance of single cells/microspheres is distorted by pixelation. The shape greatly depends upon the location of the
microsphere with respect to the sampling grid of the CCD camera. Three separate single microspheres in OCT are shown with their
corresponding integrated intensity. Although the images appear much different, the integrated intensity is nearly equal and within the
5% variation specified by the manufacturer.
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Figure 2: Histograms of the integrated intensity of clusters of fluorescently labeled cells and microspheres. Since cells/microspheres were
dispersed, the largest peaks correspond to single cells/microspheres. Note that the next large peak occurs at 2 times the integrated intensity of
the first peak, indicating two cells in a cluster. We use values in the “1 cell” peak to estimate parameters for subsequent processing of images.

brightfield and fluorescent light sources. The cryo-imaging
system is controlled by a control computer running Labview
(National Instruments, Austin, TX). The stereo microscope
uses multiple objectives (0.036 NA and 0.11 NA) and zoom
settings (7–90x), and the FOV can be varied to cover an
entire mouse or down to a small organ with a maximum
in-plane resolution of 1.2 µm. To enable very high-resolution
imaging over a large FOV, the XYZ robotic positioner moves

the imaging system over the entire specimen, creating a
micronscale-tiled image acquisition. Once collected, images
were automatically aligned to correct for small (micron-
scale) misalignments using registration software and cor-
rected by hand where necessary. Preprocessing and cell
quantification software were written in Matlab (Mathworks,
Natick, MA). Visualization was done within Amira using
specialized functions of our own design [14]. Processing was
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(b)

(c)
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(a) (b)
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(d)

Figure 3: High-resolution images of microspheres are used to validate results of model-based processing on working-resolution images.
High-resolution (63x) (a) and working-resolution (7x) images (b, c) of green fluorescent microspheres were obtained. There is a two-
microsphere cluster in (a), which is visually ambiguous at the working resolution. The algorithm’s result for a two-cell cluster in (d) visually
matches the image in (c). Other numbers of microspheres resulted in a much poorer fit to data. Note that ≈9 × 9 pixels in the high-
resolution image correspond to 1 pixel in the low-resolution image and that the “grid” is not exactly maintained; that is, the 2D region in
(a) only approximates regions in high-resolution images. The lower left microsphere in (a) is brighter than the other probably because it is
closer to the surface.

done on imaging workstations having with as much as 32 GB
RAM and Intel Xeon 8-core 3.00 GHz processor running
Windows XP 64 bit.

3.2. Phantom Experiments. To develop the quantification
algorithm and to test its accuracy, two phantoms were
created. First, we embedded 15 µm diameter green flu-
orescent microspheres (FluoSpheres, Invitrogen, Carlsbad,
CA) within optimal cutting temperature compound (OCT)
(Tissue Tek, Ted Pella, Inc., Redding, CA). The intensity and
size of fluorescent microspheres varies by less than 5% and
provides an ideal alternative to live cells. To further validate
our method, mouse mesenchymal stem cells (MSC’s) were
labeled with quantum dots (Qtracker 625 Cell Labeling Kit,
Invitrogen, Carlsbad, CA) and embedded within OCT.

Microspheres were snap frozen in liquid nitrogen and
cryo-imaged with a section thickness of 40 µm. Phantoms
were imaged at normal operating resolution (7x, 15.6 µm
pixels) and high resolution (63x, 1.6 µm pixels for micro-
spheres and 20x, 5.4 µm pixels for cells). At high resolution,
the number of microspheres/cells per cluster was visually
apparent, while the number of microspheres/cells per cluster
was not distinguishable at the lower resolution. Model

based processing was performed on the low-resolution
images. In experiments, the computer-estimated number
of microspheres/cells at the normal operating resolution
was compared to the number counted by an expert reader
using high-resolution images. The expert reader was not
the algorithm developer. To determine any variability in the
manual analysis, the research team spot-checked results of
the expert reader. In all cases, consensus determined that
the reader unequivocally determined counts per cluster using
the high-resolution images. Since intraobserver variability
in manual reading would be negligible, we deemed it
unnecessary to assess variability of our “gold standard” using
multiple readers.

3.3. Animal Preparation and LAD Ligation. All animal pro-
tocols were approved by the Animal Research Committee
and all animals were housed in the AAALAC animal facility
of the Cleveland Clinic. All mice used in this study were
C57BL/6J male mice obtained from the Jackson Laboratory
(Bar Harbor, ME) at 4–6 weeks of age. Anterior wall MI was
induced in mice as previously described [22]. Briefly, animals
were endotracheal intubated and ventilated with room air at
100 breaths per minute using a rodent ventilator (Harvard
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(a)

(b)

(c)

Figure 4: High-resolution images of fluorescently labeled MSCs are used to validate results of model-based processing on working-resolution
images. High-resolution (20x) images (a) clearly show three cells. The corresponding low-resolution (7x) image (b) is visually ambiguous.
The algorithm gives 3 cells, and the predicated image (c) well fits image data in (b). Note that ≈3 × 3 pixels in the high-resolution image
correspond to 1 pixel in the low-resolution image and that the “grid” is not exactly maintained. The 2D region in (a) only approximates the
region in (b).

Apparatus). Sternotomy was performed and the proximal
LAD was identified using a surgical microscope (M500, Leica
Microsystems, Bannockburn, IL, USA) after retraction of
the left atrium and ligated with 7–0 prolene. Blanching and
dysfunction of the anterior wall verified LAD ligation. LAD
ligation was performed by a surgeon blinded to the identity
of the mice. After LAD ligation, the animals received 100 µL
of suspension of 1 × 105 mouse MSCs through a tail vein
injection. 24 hours after stem cell injection the animal was
sacrificed for organ harvest.

3.4. Cell Preparation and Delivery. MSCs were prepared as
previously described [23]. Six-week-old C57BL/6J mice were
sacrificed and the hind limbs were removed. Their femurs
were carefully cleaned of adherent soft tissue and bone
marrow was flushed into a 50 mL falcon with flush medium
(Alpha Medium with 2 g/L NaHCO3, 10% horse serum, 10%
FBS, 1% L-Glutamine, 1% penicillin-streptomycin). The
cells were filtered through a 70 µm nylon mesh filter followed
by centrifugation for 5 min at 260 g and washed with PBS.
The washed cells were plated in flush medium and incubated
at 37◦C. Nonadherent cells were removed by replacing the
medium after 24 h. The cells were cultured in a monolayer
at 37◦C and 5% CO2 and medium was refed every 3-4
days. When cells reached 80% confluence, adherent cells
were detached after incubation with 0.05% trypsin and
2 mM EDTA (Invitrogen) for 5 min. Cells were depleted
of CD45+, CD34+ cells by negative selection using 10 µL
per 106 cells of each of the after primary PE-conjugated
antibodies: mouse anti-rat CD45 (BD Biosciences, San
Diego, CA, USA) and mouse anti-CD34 antibodies (Santa
Cruz Biotechnology, Inc., Santa Cruz, CA, USA). PE-positive
cells were negatively selected using the EasySep PE selection

kit according to the manufacturer’s instructions (Stem
Cell Technologies, Vancouver, B.C., Canada). Cells were
replaced in medium and were subsequently passaged until
passage 6. Cells were labeled with Qtracker Cell Labeling Kit
(Invitrogen) according to the manufacturer’s instructions.
100,000 labeled MSCs suspended in 100 mL of PBS or
100 mL of PBS alone were infused via tail vein injection 24 h
after myocardial infarction.

3.5. Specimen Preparation. Following sacrifice, the heart
and lungs were removed. The organs were then sepa-
rately embedded in optimal cutting temperature compound
(OCT) (Tissue Tek, Ted Pella, Inc., Redding, CA) inside
an aluminum foil mould. The entire mould is snap-frozen
in liquid nitrogen for five minutes to reduce ice crystal
formation. Following this, the mould assembly was removed
from the liquid nitrogen bath and placed inside the cryomi-
crotome chamber to equalize the specimen temperature to
that of the cryomicrotome. After three hours, the mould
was removed and the frozen specimen mounted on the
microtome stage and the slice thickness was set to 40 µm.
Heart specimens were prepared as described and imaged
at 12.5x magnification, with a pixel size of 8.8 µm. Lung
specimens were prepared as described and imaged at 10x
magnification, with a pixel size of 11 µm.

4. Results

Detection of quantum dot-labeled cell clusters was compared
to detection by a user in an infracted mouse heart. An
operator manually detected clusters blinded to the algorithm
results. It became quickly apparent that it was very difficult
to visually detect single cell clusters that were often 1-2



8 International Journal of Biomedical Imaging

(a) (b)

(c) (d)

Figure 5: Uniqueness of the cell quantification model. A low-resolution cluster image (a) is shown compared to the best fit (b) containing
four model cells. Results for three cells (c) and five cells (d) are clearly inferior. LSQ error equals 145, 231, and 386 gray values for images
(b), (c), and (d), respectively.

pixels on a video screen. This required zoom and pan
throughout the entire image. The operator detected ≈80
clusters in 50 images, whereas the algorithm detected many
more (≈250) clusters. The operator did not detect any
cells that the algorithm missed, which would have indicated
a false negative (FN). All cells detected by the algorithm
were displayed and verified as cells by the user, giving no
false positive (FP) detections. Hence, as best as we could
determine, the algorithm had no FNs or FPs in these 50
images of heart tissue. Tissues having more autofluorescence
(e.g., bone and gastrointestinal tract) could have detection
errors.

We characterized microspheres and cell images in
the OCT phantom. At the normal operating resolution,
visual appearances of microspheres can change dramatically,
depending upon the position of the microsphere with respect
to the pixel grid (Figure 1). We are confident that all

fluorescent clusters in Figure 1 are due to a single mic-
rosphere because the integrated intensity is very nearly
equal (within 5%). Histograms of the integrated intensity
of clusters showed a clear separation between single-mic-
rosphere/cell clusters and multiple-microsphere/cell clusters
for both cells (Figure 2(a)) and microspheres (Figure 2(b)).
Note that a clear, smaller peak corresponds to an intensity
expected for two cells/microspheres.

To test the ability of our software to correctly estimate
the number of cells/microspheres in a cluster at normal
operating resolution, we compared results to high-resolution
images (Figures 3 and 4). Individual microspheres and cells
were clearly visible in high-resolution (1.6 µm pixels for
microspheres and 5.4 µm pixels for cells) images (Figure 3(a)
and Figure 4(a), resp.). However, at normal operating
resolution, images of the same microspheres or cells are
joined into single connected clusters (Figures 3(b) and
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Figure 6: Contingency table analysis of algorithm accuracy on
microsphere images. Microspheres/cluster were estimated using the
algorithm on working-resolution images (7x). An expert visually
determined the number of microspheres/cluster on corresponding
high-resolution images (63x). Table entries are the number of
times a result was obtained; for example, the algorithm and expert
identified the same 2-cell clusters 38 times. In all cases but one,
the algorithm was within ±1 microspheres. The total number of
microspheres counted by the expert was 499 compared to 497 by
the algorithm.
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Figure 7: Contingency table analysis of algorithm accuracy on
MSCs. In all cases but two, the algorithm was within ±1 cells. The
total number of cells counted by the expert was 393 compared to
386 by the algorithm. See Figure 6 for details.

4(b), resp.). The algorithm correctly estimated the number
of cells/microspheres in the normal operating-resolution
images (Figures 3(d) and 4(c), resp.). This process was
repeated on many clusters as given below.

The algorithm converged and gave unambiguous results.
For example, in Figure 5, we modified the algorithm to
test ≈200 initial cell configurations to fit the detected
cluster. In each case, the nonlinear optimization algorithm
rapidly converged in 50–70 iterations, many fewer than
the maximum (10,000). All of these restarts gave negligible
differences in the final results. Results for 3, 4, and 5 cells are
shown in Figure 5. Clearly, 4 is the best result both visually
and quantitatively from the objective function. Essentially,
unique solutions were found in 1000’s of cells now tested.
Almost all cell/microsphere positions changed <0.1 pixels
with different initializations, and in the case of the best
number of cells, results typically changed <0.001 pixels.
We very rarely (≈0.1%) reached the maximum number of
iterations, due to oscillatory behavior of the algorithm. In

tests, we added a line in the code to determine the number of
times that the objective function differed by less than 20%,
a threshold giving similar visual results. In a run over 656
fluorescent clusters, we determined that only 1.2% of clusters
gave such an “ambiguous” result. In many cases, the answer
was correct, per the analysis below.

We tested the quantification algorithm at the operating
resolution against an expert using high-resolution images
over a large numbers of microsphere (229) and cell (218)
clusters. Model-based processing was first performed on a
fluorescent microsphere phantom to evaluate the algorithm
in the best case scenario with nearly identical fluorescent
sources. A small percentage of clusters (≈5%) were visu-
ally ambiguous even at this high resolution, and these
were excluded from our analysis. In Figure 6, we present
a contingency table comparing the algorithm versus an
expert reader. Perfect agreement consists of a diagonal in a
contingency table. In all cases but one, the algorithm was
within ±1 microspheres of the actual number present in
a cluster (Figure 6). Model-based processing estimated the
total number of microspheres present to be 497, compared to
499 counted by an expert, an error of only 0.4%. Fleiss’ kappa
score for the contingency table was 0.78± 0.04. When Fleiss’
Kappa is 1, there is perfect agreement between the expert
and the algorithm, with a value of zero corresponding to a
random guess at the number of cells per cluster. Specificity
in all cases was >0.95. Sensitivity varied depending on the
number of microspheres per cluster, reaching a maximum at
n = 1 of 0.85 and a minimum of 0.75 at n = 3. The mean was
0.80. Model-based processing was also performed on cells in
OCT. In all cases but two, the algorithm was within ±1 cells
of the actual number present in a cluster (Figure 7). The total
number of cells counted by the expert was 393 compared
to 386 by the algorithm, giving an error rate of only 1.7%.
Fleiss’ kappa was 0.68 ± 0.04. The specificity in all cases was
>0.90. The sensitivity varied depending on the number of
microspheres per cluster, reaching a maximum at n = 1 of
0.82 and a minimum of 0.625 at n = 5. The mean sensitivity
was 0.71.

As an example application of our quantitative stem cell
techniques, we show results from a study of cardiac stem cell
therapy with MSCs. Following surgery to induce myocardial
infarction in C57BL/6J male mice, we injected red quantum
dot-labeled MSCs via the tail vein. At 24 hours postadminis-
tration, we reliably imaged MSCs. Cells were ≈10x brighter
than the autofluorescent background. Autofluorescence was
minor, with a small amount of green autofluorescence in the
infarct zone and relatively no autofluorescence elsewhere in
the heart. Image results are shown in Figure 8. The reduction
of blood flow to the left ventricle caused by LDA ligation
resulted in increased concentration of MSCs on the right side
of the heart (Figure 8). The relative distribution of MSCs in
the heart is shown relative to the infarct location (Figure 8).
Cells detected by the algorithm were displayed, verified by a
user and found to contain only quantum dot-labeled cells.
In total, 554 clusters were detected and 748 MSCs were
estimated to be in the heart by model-based processing. We
determined that 74% of clusters contained single cells, with
no cluster containing more than 5 cells.
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(a) (b)

(c)

Figure 8: 3D volume renderings of MSC locations in the heart. Model-based processing was used to perform segmentation, quantification,
and localization of quantum dot-labeled MSC’s in an infarcted heart. A 3D volume rendering of brightfield images of the heart is shown
with a 3D volume rendering of MSC location 24 hours after a tail vein injection of 100,000 MSCs. MSCs were injected immediately following
ligation of the LDA. MSC location was found to correspond to local blood flow in the infarcted heart. A long-axis (a) and short-axis (b) view
of the heart shows cells located primarily on the right side of the heart. A corresponding long-axis 2D slice is shown along with a volume
rendering of MSC location (c). In all images, the suture locations are visible (arrows).

5. Discussion

We have developed a useful, well-validated method for
detecting fluorescent clusters and determining the number
of cells per cluster in cryo-image data. The numbers of cells
or microspheres in a given cluster was verified through visual
inspection, giving an excellent “gold standard” with which to
compare. In the case of microspheres, in only one instance
was the algorithm off by more than one microsphere. There
was no substantive bias towards high or low numbers of
microspheres within a cluster, and 497 and 499 microspheres
were counted by the algorithm and manual inspection,
respectively, giving a 99.6% accurate microsphere count.

With quantum dot-labeled cells, there were more errors, but
results were nevertheless quite impressive. Cell counts were
386 and 393, for algorithm and manual, respectively, giving
a 98.3% accurate cell count. Remarkably, the algorithm was
within ±1 cells of the actual number of cells in a cluster
all but two times. The small decrease in accuracy with cells
is most likely due to variability in the size and intensity
of the cells. Cells were found to have a measured standard
deviation of ≈15% from the mean cell integrated intensity,
corresponding to the 15% window used for FACS sorting.
To achieve accuracy in cell and microsphere counting, drift
and fluctuations in exciting light must be minimized, as
determined in quality assurance tests.
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Time savings with the algorithm are extraordinary. Our
nonoptimized algorithm takes about 10 hours to analyze an
entire mouse. We estimate that a similar manual analysis
would require over 6 months.

A major innovation is the use of model-based processing
to estimate the number of cells per cluster. Our approach
fits the spatial intensity pattern of a cluster with a collection
of cell models having known spatial extent and integrated
intensity. Pixelation error does not affect quantification
with such an approach. Pixelation of a cluster results in
surrounding pixels of varying intensity, dependent upon the
percentage of the fluorescent cluster in that pixel (Figure 1).
A pixel containing a small fragment of a cluster may not be
included by the low-threshold TL, resulting in a decrease in
the recorded integrated intensity and volume of the cluster.
This error in the recorded integrated intensity and volume
affects the corresponding cluster histograms, resulting in an
increased spread around the single-microsphere/cell cluster
peak (Figure 2). Because the initial estimate for the number
of cells/microspheres in a cluster is dependent upon the
cluster’s integrated intensity (4), this can lead to an error in
the initial estimate. However, this will be corrected with the
model-based estimate which uses a region two pixels larger
in x and y than the thresholded component of the cluster.
This includes pixels that may have been missed by the low
threshold. Alternative cell segmentation approaches based
on shape would necessarily require much higher resolution
images impractical for our application.

MSC localization corresponded to reduction of blood
flow caused by LDA ligation. Ligation of the LDA reduced
blood flow to the front and bottom of the left ventricle,
resulting in no fluorescently-labeled MSC’s detected in the
infarct zone (area surrounding the suture) in the heart
(Figure 8). MSCs were found preferentially located in the
myocardium surrounding the right ventricle (Figures 8(a)
and 8(c)). All cell clusters found in the heart passed through
the capillaries in the lung prior to entering the heart. For
this reason, we expected the vast majority of cell clusters to
contain single cells. While there were multiple-cell clusters
present, clusters contained predominately single cells (74%),
perhaps a result of filtering in the passage through the lung.
Despite relatively small numbers of cells getting through the
lung to the heart, there is evidence of cardiac recovery due to
MSC therapy, probably due to a paracrine effect [24]. Cryo-
imaging and quantitative stem cell analysis should greatly aid
interpretation of future studies.

In conclusion, the accuracy of the model-based quantifi-
cation software allows us to count cells over large regions
of cryo-image volumes. The algorithms can be reliably
applied on bright cells in homogeneous tissue. However,
in highly autofluorescent regions (e.g., gastrointestinal tract
and bones), very bright cells and/or improved autofluores-
cence rejection in image acquisition are required to ensure
automated detection of all cells. Cryo-imaging allows us to
capture high-resolution images with high sensitivity over
large areas, while simultaneously imaging the tissue with
color brightfield. Preliminary experiments demonstrate the
effectiveness of cryo-imaging and model-based processing to
detect, segment, and quantify stem cells in cell therapy. We

believe that this new methodology will be useful in a myriad
of studies on cell source (MSC, adipose stem cell, cord blood,
and many more), cell treatments, dosing regimens, delivery
method, and so forth, in a quantitative manner heretofore
unavailable.
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