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a b s t r a c t

The problem of detection and recognition of contact calls produced by North Atlantic right whales, 
Eubalaena glacialis, is considered. A proposed solution is based on a multiple-stage hypothesis-testing 
technique involving a spectrogram-based detector, spectrogram testing, and feature vector testing 
algorithms. Results show that the proposed technique is able to detect over 80% of the contact calls 
detected by a human operator and to produce about 26 false alarms per 24 h of observation.

s o m m a i r e

Un problème de détection et reconnaissance des baleines noires, Eubaleana glacialis, en présence de bruit 
ambiant est étudié. Une solution proposée est basée sur une technique de test d’hypothèses en plusieurs 
étapes, impliquant le détecteur, des tests de spectrogramme et des algorithmes testant des vecteurs de traits. 
Les résultats des tests montrent que la technique proposée est capable de détecter plus de 80% des appels 
de contact détectés par les opérateurs humains et de produire environ 26 fausses alarmes par 24 h 
d’observation.

1. i n t r o d u c t i o n

Continuous monitoring of North Atlantic right whales 
(NARW) presence in large areas can be accomplished by 
passive acoustical methods using data recordings obtained 
from distributed autonomous hydrophone systems [1-4]. 
Such systems yield enormous data sets totaling many years 
of potential listening time, presenting an analytical 
challenge. Using human operators to visually and aurally 
evaluate data spectrograms is impractical in projects that 
collect huge amounts of data. Apart from this, the human 
operators often provide subjective and inaccurate estimates 
[5] so the design of effective, automated detection 
techniques is of critical importance.

To reduce subjectivity and to decrease the labor costs, 
various NARW detection methods known from the literature 
can be used (see e.g., [6-11]). These methods can potentially 
improve the detection efficiency by rejecting a huge portion 
of the data that contains no signal. However, as test results 
demonstrate, known methods do not provide the required 
trade-off between the probabilities of detection and false 
alarm. In particular, for the detection probability of 0.8, the 
lowest level of false alarm probability provided by the 
spectrogram-based detector is from 10-2 to 10-3, depending 
on the impulsive noise rate [11]. For the NARW contact 
calls with the typical duration of 1 s, the range of probability 
of false alarm corresponds to 100-1000 false detections per 
24 h of observation. Since all the detection events should be

evaluated by a human operator, the labor costs are 
significant.

The goal of the research presented in this paper is to reduce 
the probability of false alarm in spectrogram-based detectors 
without negatively affecting the detection probability. The 
proposed technique is reduced to a multiple-stage 
hypotheses-testing process. In the initial stage, the 
spectrogram-based detector [11] is applied. The data 
segments accepted as signals in the initial stage are 
recognized using the proposed recognition technique. The 
hypothesis that the detected segment belongs to the known 
types of impulsive noise is tested in the second stage. If this 
hypothesis is rejected, a feature vector (FV) is extracted and 
tested in the final stage. Test results obtained using real data 
recordings are presented.

2. d a t a  m o d e l  a n d  p r o b l e m  
f o r m u l a t i o n

We use the data model similar to that considered in [11]. 
The NARW contact calls are modeled as polynomial-phase 
signals (PPS). Ambient noise is represented as a Gaussian 
process contaminated by unknown impulsive processes. A 
typical spectrogram of the input data containing a NARW 
contact call, background noise, impulsive noise and self
noise is shown in Fig. 1 (top frame).

We assume that the spectrogram-based detector is applied to 
the input data in the initial stage. For each 1 s data segment
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x(t), the detector tests the hypotheses H0 (“ambient noise is 
present”) and H  (“signal and ambient noise are present”). 
The decision-making process is reduced to computing the 
statistic z(t) = z (x(f )) as a function of the tested data 

segment x(t). The statistic z(t) is compared with a threshold 

CD and the hypothesis H  is accepted if z(t) > CD . The 

detector consists of a bank of P linear 2-dimensional (2D) 
FIR filters with frequency responses specified by the 
frequency modulation of NARW contact calls [11]. The 
frequency responses of the FIR filters maximizing the 
statistics z(t) are shown in Fig 1 (top frame) by the red
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Fig. 2. A  Block diagram o f the proposed technique.

Fig. 1. A  spectrogram of the input data (top frame) and the 
values o f the statistic calculated by the spectrogram-based 

detector (bottom frame).

lines. The values z(t) calculated from the detector output

are represented in Fig. 1 (bottom frame) by green lines.

The threshold is determined by applying an optimality 
criterion, which is introduced based on the management 
goals of the detector as well as on apriori information. We 
use the Neyman-Pearson criterion, which makes it possible 
to minimize a false alarm probability for a given probability 
of detection. In practice, the threshold is set up to 
automatically detect 80% or more of the NARW contact 
calls visually detected by the human operators. The problem 
of choosing the threshold is beyond the scope of this paper. 
Instead, we focus our attention on the problem of optimizing 
the structure of the recognizer used in the following stages.

The data segments for which the hypothesis H 0 is accepted 
do not require any actions. If for a given x(t) the hypothesis 

H  is accepted, this segment is recognized in the next stages. 
Only these data segments are considered hereafter (For the 
sake of simplicity, the time index associated with those 
segments is omitted). Due to the presence of impulsive 
noise, many segments detected in the first stage may contain 
no signals except noise transients. As a result, the following 
hypothesis can be introduced:

H S : X  = S  + W , H l : X  = Q + W (1)

where X , S , Q and W  are the matrixes representing the 
spectrograms of the data segment x (t), signal, impulsive 
noise, and background noise, correspondingly.

The problem can be formulated as follows: using X , accept 
or reject the hypothesis H S . We propose a solution based 

on a two-stage recognition technique. In the first stage, the 
hypothesis H l is divided into the M  sub-hypothesis 

H lm,m = 1,...,M. For each H lm, a parametric model of 

noise is used. The models are based on the spectral 
properties of typical kinds of impulsive noise observed in 
the empirical data. Based on that model, a spectrogram- 
based algorithm that tests the hypothesis H S against H lm 

is designed. If the hypothesis H S is accepted, the 

corresponding data segment is tested in the final stage. In 
this stage, a feature vector testing algorithm is applied. A 
block diagram of the proposed technique is shown in Fig. 2. 
The signal recognition algorithms are designed in Section 3.

3. SIG NAL R E C O G N IT IO N

Since typical noise conditions can differ for different 
locations, we restrict our investigations to the data
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recordings collected at Cape Cod Bay, a primary habitat 
area for NARW. Data analysis shows that many noise 
transients have spectrogram-based images that are similar to 
the locally narrowband down-sweep and harmonic impulses 
as well as to wideband transients; see Fig. 3. Based on these 
observations, we introduce the following classes of 
impulsive processes: Gt - upsweep transient, G2 - 

downsweep transient, G3 - constant frequency tone 

transient and G4 - wideband transient. The class Gt

represents the signals and the classes G2 

impulsive noise.

G4 represent

To design a spectrogram-testing algorithm, we use a 
strategy similar to the generalized likelihood ratio test. For 
each class Gm, the statistic w{m,X) , m = t,...,4  is 

computed. If w(t,X)<  w {k,X ) , k  = 2,3,4, then the 

hypothesis H  is accepted and the testing procedure is 

terminated for a given data segment. Otherwise the data 
segment is tested in the final stage.

The spectrogram testing scheme is shown in Fig. 3. It is 
similar to the spectrogram-based detector in the sense that it 
consists of a bank of 4 linear 2D FIR filters. The impulsive 
responses of the filters are specified by the phase structure 
of the typical impulsive processes, Fig. 3.

A FV is tested in the final stage. Features being used should 
contribute most to discrimination between signals and noise 
and should be easy to extract. Because of the lack of a priori

information regarding variability of NARW contact calls, 
feature selection is a difficult problem. In this paper, we use 
features similar to those used by human operators when 
visually analyzing the spectrogram. Let the symbol

v = (vt ,...,vKY denote the K-dimensional feature vector. 

We introduce the feature space with the dimension of K = 
t t  and with the features represented in Table I. The 
spectrogram of a NARW contact call and some features 
extracted from the spectrogram are also displayed in Fig. 5.

To design the FV recognition algorithm, the following 
approach has been used. For most of the NARW contact

Fig. 5. Features extracted from the NARW  contact call.
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calls, the FV belongs to some subspace of the K- 
dimensional feature space. For example, it is known that for 
the typical NARW contact calls, the minimum frequency is 
50 < v4 < 150 Hz and the maximum bandwidth is 

20 < v3 < 170 Hz . Based on the empirical observations, 

similar one-dimensional sets can be introduced for each 
element of the feature vector so that the signal subspace can 
be defined as:

V v  =  iv v  <  v  <  v  iS y \  imin — i — imax’ = 1,2 , . . . ,K  }c - .E K (2)

imin, v imax are the scalars defining the bounds of thewhere v

ith feature. As a measure of discrimination between any 
particular FV v = v (X ) and VS , we introduce the following 

discriminant function:

where

h (v i )  =

h ( v  ) = £  h ( v i ) 
i=1

0 if v < v < vi min i imax

A  ■ (v  — v  )2if v  < viminy i imin; i im

A (v  — v  )2if v  > vi max\ i i max/ i i t

(3)

(4)

A imin and A imax are the scalars. The value h ( v ) is 

compared with a threshold C R and the hypothesis H S  is 

accepted if h ( v ) < C R . Otherwise the hypothesis H S is 

rejected. The FV testing scheme is displayed in Fig. 6. The

i min i max n and A i max specifying the FV
testing algorithm are shown in Table I.

i max’ A i min a n dIn practice, the unknown parameters v imin, v  

A imax can be determined using the training data set. It is 

worth noting that although the proposed FV testing 
algorithm is heuristic, it uses the statistical properties of 
signals and noise. As a result, the algorithm can provide 
high recognition performance.

4. TEST RESULTS

Since the signal recognition technique considered here 
involves a two-stage decision-making process, it is difficult 
to estimate the recognition performance in terms of 
conventional receiver operating characteristics. Therefore, 
the performance has been evaluated using the empirical 
probabilities of signal recognition and false alarm.

The empirical probability of recognition has been evaluated 
using NARW contact calls detected by the human operators 
from different testing data sets. (The testing data sets were 
different from the training data set.) The detector and 
recognizer thresholds were selected as C D = 0.35 and C R = 
1, respectively. Under these values of the threshold, the 
probability of signals recognition is close to 0.8. The actual 
probabilities of recognition obtained for different data sets 
are shown in Table II.

The empirical probability of false alarm has been estimated 
using a data set CCB04 collected in Cape Cod Bay from 
December 18, 2002, to January 18, 2003. Since the ambient 
noise conditions may change dramatically with time, the 
false alarm probability was computed for chunks of data 24
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Table I  Parameters of the feature space

Feature Parameters

v i min vi max A ■ ■i min A .i max

Signal duration, vj 0.5 s 1.5 s 2.5 1

M ean  value o f  the 

in term ediate bandw idth , V2

0 15 Hz 0 0.03

Start-end bandw idth , v 3 20 Hz 170 Hz 0.025 0.015

M in im um  frequency, V4 65 Hz 170 Hz 0.055 0.025

M ax im um  bandw idth , v 5 20 Hz 170 Hz 0.05 0.015

D uration  o f  upsw eep  pa rt o f  

the  signal, v6

0.3 s 1.5 s 4 2

Segm entation  threshold , v 7 4 10 0.3 0

Local noise level, v8 0 0.02 0 4

Percentage o f  holes in  the 

object, v 9

0 0 0 3

Percentage o f  dow nsw eeps in

the IF, vjo

0 0 0 4

Percentage o f  harm onicas in

the IF, vjj

0 0.3 0 3

h in length each. The results of this test are depicted in Fig. 
7. The total number of false alarms produced by the 
proposed technique was 826.

Test results demonstrate that the use of the proposed 
recognition technique essentially reduces the false alarm 
probability from the spectrogram-based detector [11]. In 
particular, the CCB04 data set contains 1,331 NARW 
contact calls detected by human operators (see Table II). 
The spectrogram-based detector was able to detect 1,289 
signals so that the detection probability on the detector 
output was PD = 0.97 . The total number of false positives 

provided by the spectrogram-based detector was 113,341. 
The proposed recognizer was able to recognize 1,092 out of 
1,289 signals so that the total decrease in probability of 
detection was rd = 1289/1092 = 1.18. The corresponding 

decrease in probability of false alarm was 
rfa = 113341/826 = 137.2.

5. DISCUSSION

For the threshold values applied, the probability of 
recognition of NARW contact calls ranged from 0.79 to

Table II  Probability of recognition

Data set Observation
time

Number of 
tested 
signals

Probability
of

recognition

C CB 00 08/03/2001 -  

10/04/2001

14394 0.88

C CB 02 28/03/2002 -  

31/05/2002

1475 0.81

C CB 03 21/11/2002 -  

18/12/2002

67 0.79

C C B 04 18/12/2002 -  

18/01/2003

1331 0.83

C CB 05 18/01/2003 -  

04/03/2003

1792 0.85

C CB 06 04/03/2003 -  

21/04/2003

313 0.8

C CB 09 28/02 /2004  -  

17/04/2004

2220 0.86

Total 21592 0.87

0.88 (see Table II). The decrease in the probability of 
recognition can be explained by the influence of the 
following factors. First, a certain number of selected calls 
were hardly visible on the spectrogram and hence had 
relatively low SNR. Although investigation of the influence 
of the SNR on the recognition probability was not within the 
scope of this work, test results demonstrate that the 
recognition probability decreases as the SNR goes down. 
Moreover, as the results reported in [5] show, when 
detecting the signals with low SNR, the human operators 
may select up to 85 data segments with no signals on them 
per 24 h of observed data. The operators can also make false 
selections because of the similarity between contact calls 
and some kinds of impulsive noise. In our testing data, a 
certain number of selections made by the operator are 
questionable and are not approved by other operators. The a 
priori uncertainty regarding a signal parameter is a 
fundamental problem in passive bioacoustics. The actual 
range of signal variability is unknown to the observers. As a 
result, there is a nonzero probability that the selection made 
by the human operator is actually noise. Hence, the actual 
probability of recognition can be higher than that 
represented in Table II.
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Fig. 7. The number of false alarms provided by the proposed technique. Data collected at Cape Cod Bay from December 18, 2002,
to January 18, 2003.

Another factor decreasing the recognition probability is that 
a certain percentage of the selected NARW contact calls 
overlapped with transients or other calls. The proposed 
technique was not designed to operate under such 
conditions. Therefore, the problem of distinguishing partly 
overlapped signals should be a topic of future research.

Using the proposed technique for analyzing a long data 
recording, the human operator only has to inspect the 
automatically detected clips, thereby reducing the amount of 
time necessary. As test results show, an average of 26 false 
alarms per 24 h of observation is generated by the proposed 
technique. (For the duration of the false data segment equal 
to 1.024 s, the 26 false alarms per 24 h of observation 
corresponds to the false alarm probability of 3.08x10-4.) 
Testing 26 data segments requires about 1 min per operator 
whereas a complete browsing of one day’s worth of data by 
visual analysis of the spectrogram and by listening to the 
data requires 2-8 h per operator. Different data sets will 
likely have higher or lower numbers of false alarms on the 
recognizer output. However, practical use of the proposed 
technique in the Bioacoustics Research Program at the 
Cornell Laboratory of Ornithology shows that, on average, 
the human effort needed to detect more then 80% of NARW 
contact calls can be reduced by more than 20 times as 
compared with the data analysis performed by a human 
operator alone

6. CONCLUSION

In the presence of a high impulsive noise rate, the 
probability of false alarm provided by the spectrogram- 
based detector can increase dramatically. To decrease false 
alarm probability without negatively affecting the 
probability of detection, a new technique proposed in this 
paper can be used. This technique is based on a multiple- 
stage decision-making process involving the spectrogram 
and feature vector testing algorithms.

Test results demonstrate that applying the proposed signal 
recognition technique to the spectrogram-based detector 
makes it possible to reduce the false alarm probability by 
more than 100 times when decreasing the probability of 
detection by 1.2 times as compared with the spectrogram- 
based detector. Correspondingly, the hours that humans 
need to detect 80% and more of NARW contact calls can be 
reduced by more than 20 times as compared with the data 
analysis performed by a human operator alone.
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