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Abstract

Since the emergence of next-generation sequencing (NGS) technologies, great effort has been put into the development of
tools for analysis of the short reads. In parallel, knowledge is increasing regarding biases inherent in these technologies.
Here we discuss four different biases we encountered while analyzing various Illumina datasets. These biases are due to
both biological and statistical effects that in particular affect comparisons between different genomic regions. Specifically,
we encountered biases pertaining to the distributions of nucleotides across sequencing cycles, to mappability, to
contamination of pre-mRNA with mRNA, and to non-uniform hydrolysis of RNA. Most of these biases are not specific to one
analyzed dataset, but are present across a variety of datasets and within a variety of genomic contexts. Importantly, some of
these biases correlated in a highly significant manner with biological features, including transcript length, gene expression
levels, conservation levels, and exon-intron architecture, misleadingly increasing the credibility of results due to them. We
also demonstrate the relevance of these biases in the context of analyzing an NGS dataset mapping transcriptionally
engaged RNA polymerase II (RNAPII) in the context of exon-intron architecture, and show that elimination of these biases is
crucial for avoiding erroneous interpretation of the data. Collectively, our results highlight several important pitfalls,
challenges and approaches in the analysis of NGS reads.
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Introduction

The emergence of next-generation sequencing technologies has

given an immense boost in the field of DNA sequencing. The

major advance offered by NGS is the ability to produce an

enormous volume of data relatively cheaply. Several NGS systems

are currently on the market, the most widely used one being

Illumina. Collectively, they rely on various strategies for template

preparation, sequencing, and imaging, followed by genome

alignment methods and downstream analysis of the data (reviewed

in [1]). The applications of this technology are limited by

imagination only: Common applications of the NGS technology

are genome assembly [2], identification of structure variants or

single nucleotide polymorphisms (SNP)[3,4], cataloging of the

transcriptome (RNA-seq) [5,6], mapping transcription factor

binding sites (ChIP-seq) [6] or sites bound by RNA-binding

proteins (CLIP-seq) [7,8], and genome-wide profiling of epigenetic

marks and chromatin structure (e.g., ChIP-seq, methyl-seq, and

DNase-seq) [9–13].

Since the launching of deep-sequencing technology, enormous

efforts have been put into the development of platforms for

mapping short reads and for downstream analysis of mapped reads

(reviewed in [1,2,6]). In parallel, efforts have been made to

understand and overcome the biases inherent in the NGS

technology [14–18]. In this study, we begin by presenting two

biases which we encountered in the analysis of NGS reads

generated via the Illumina Genome Analyzer. We show the

general relevance of these biases across different datasets, when

applicable, and demonstrate how failing to normalize for these

biases can potentially lead to spurious conclusions. We then

demonstrate how both these biases are manifested, and can

partially be normalized, in analyzing an NGS dataset mapping

transcriptionally engaged RNA polymerases in the context of

exon-intron architecture. In the latter dataset we also discovered

two additional biases that were present in it, and that are

presumably more specific to this particular dataset. Collectively,

our results demonstrate that in analyzing a specific NGS dataset, it

is necessary to both take into account general biases that are

prevalent, or even inherent, in such data, but also to carefully

assess the presence of experiment-specific biases in the dataset, and

to tailor specific approaches to address such biases and avoid

misinterpretation of the data.
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Results

We were first interested in evaluating the general impact of two

biases we encountered in the context of analyzing next-generation

sequencing datasets: nucleotide per cycle bias and mappability

bias.

Nucleotide per cycle bias
While analyzing different NGS datasets, we observed that

distributions of the sequenced nucleotides changed across the

positions of the reads. To explore the prevalence of this bias across

different deep-sequencing datasets, we analyzed the nucleotide

distribution among reads from 25 different lanes of deep-

sequencing data in which either genomic DNA or cDNA was

sequenced. Specifically, we analyzed RNA-seq reads from 15

diverse human tissues and cell lines [19], one lane of RNA-seq

reads in human lymphoblastoid tissue [18] and another RNA-seq

lane from CD4 cells [20]. In terms of genomic DNA based

experiments, we analyzed five lanes sequencing the PhiX genome

using varying platforms, reagents, and read lengths [21], one

ChIP-seq lane mapping PAF binding sites in human CD4 cells

[22], one ChIP-seq lane mapping CTCF binding sites in human

embryonic cells [23], and one lane that served as a control in a

ChIP-seq experiment in Jurkat cells [24]. For each dataset, we

used only uniquely mapped reads, and further discarded reads

with a mismatch at the first position of the read (see Materials and

Methods). The latter criterion was set to ensure that the bias

observed at the first position did not reflect sequencing errors.

For most of the analyzed data, biases in nucleotide composition

were observed at the beginning of reads (Fig. 1 and Supporting

Information S1), albeit of variable magnitudes. These biases were

particularly strong at the first position of reads, but in some cases

also extended into the subsequent positions. The biases were mostly

present in RNA-seq, but were also present in one analyzed ChIP-

seq data of Wang et al. (Fig. 1E). To assess whether these biases

resulted from biased PCR amplification during the sequencing

reaction, we repeated these analyses using only unique sequence

tags, but the obtained results were practically indistinguishable,

demonstrating that the effect cannot be attributed to biased PCR

amplification (Supporting Information S1). To a limited extent,

these biases can be attributed to random hexamer priming during

reverse transcription (see Discussion). As demonstrated below, this

bias can have a profound effect on downstream analyses.

Mappability bias
In NGS data analysis, uniquely mapping reads are typically

summarized over genomic regions. However, since genomic

regions differ in terms of their sequence complexity, regions with

lower sequence complexity will a priori tend to end up with lower

sequence coverage than their more complex counterparts. Introns

and exons constitute a good model based on which to study the

effect of mappability, as they are both part of the same transcript,

but the general sequence complexity of introns is expected to be

reduced, compared to exons, since they are more dense in

repetitive elements [25,26].

To explore the impact of mappability in the context of exon-

intron architecture in human, we generated genome-wide

mappability maps of both strands, assuming reads lengths of 32

nucleotides. This was done by extracting the 32 nt sequence

beginning at each genomic position, and mapping this sequence

against the entire human genome. Sequences that could not be

uniquely mapped to the genome were considered unmappable,

and the genomic positions from which they originated were

considered unmappable positions. We then constructed a dataset

of 113,261 exon-intron quintets, each composed of an internal

exon along with two flanking introns and two flanking exons (see

Materials and Methods) and calculated mean mappability

densities within the central exons and within the introns and

exons flanking them (Fig. 2A). As expected, exons had significantly

higher mappability levels than introns: mean mappability densities

within exons were ,94%, whereas within introns the mean

densities were only ,88% (Student’s t-test, P,2.2e216). To

examine whether mappability levels were uniform within exonic

and intronic regions, we examined mean mappability values

within the genomic regions surrounding the two exon/intron

junctions (Fig. 2B). This analysis confirmed the higher levels within

exons and, surprisingly, also revealed a peak of mappability

located in the intronic region adjacent to the two junctions, rather

than within the exon itself (see Discussion).

Failure to eliminate the mappability bias will lead to increased

read densities within regions with higher mappability. This can

lead to spurious results, since subsequent analysis revealed that

mappability was correlated with certain biological features. We

began by examining mappability as a function of transcript length.

We divided all exons into five bins based on the length of the

transcripts comprising them and examined mappability across the

region surrounding the exon/intron junctions within each bin. We

found a positive correlation between transcript length and

mappability (Fig. 2C). This association was highly significant

(Kruskal-Wallis rank sum test, P,5.7e-227, see Materials and

Methods). We next divided all exons into five bins based on

evolutionary conservation levels of the exons among 18 placental

mammals (see Materials and Methods). We observed a positive

correlation between mappability and conservation with ,10%

differences in mappability between the most conserved and least

conserved exons (Kruskal-Wallis rank sum test, P,0) (Fig. 2D).

Finally, we divided all exons into five bins based on transcript

expression levels in lung fibroblasts obtained from [27] (this

particular tissue was chosen as it was relevant for subsequent

analyses). We again observed a clear, albeit more complex,

relationship between the expression level and mappability, with

the highest differential between exons and introns found in exons

from highly expressed genes (Kruskal-Wallis rank sum test,

P,5.8e-19) (Fig. 2E). Thus, without proper normalization of

mappability, even if reads are uniformly and randomly simulated

from the genome, exonic regions from long transcripts will have

the highest read densities, more conserved exons would have

greater densities, and exons from highly expressed genes would

have the greatest differential between exon and introns in terms of

read densities. These correlations with biological feature can be

highly misleading, as they will lead to skewed results suggestive of

representing biological phenomena. We highlight that these biases

are only dependent on read length, but not on sequencing

platform or type of experiment.

To further investigate the biases introduced by mappability, we

examined mappability within genomic regions other than exon-

intron boundaries. Specifically, we examined the regions sur-

rounding start and end sites of transcripts (Fig. 2F), various non-

coding RNA genes (Fig. 2G–H and Supporting Information S1),

and coding sequence start and end sites (Supporting Information

S1). In these cases, as well, mappability was far from being

uniform. Such variation can profoundly impact the results of

analysis of read stemming from these regions.

Manifestation and normalization of the biases in the
context of an NGS dataset

We originally encountered the two biases presented above, as

well as two additional biases, in the analysis of a dataset mapping

Biases in Next-Generation Sequencing Analysis
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transcriptionally engaged polymerase in the context of exon-intron

architecture. What initially appeared to be a striking biological

phenomenon turned out to be the results of these biases. Below we

detail this analysis, to exemplify how these biases are manifested,

and what steps and controls we used to recognize and eliminate

them.

Core et al devised and implemented a method termed global

run-on sequencing, or GRO-seq, to map and quantify transcrip-

tionally engaged RNA polymerases in a genome-wide fashion

[28]. In this method, nuclear run-on assays (NRO) are employed

to extend nascent RNAs that are associated with transcriptionally

engaged polymerases under conditions in which new initiation is

blocked. NRO-RNAs are subsequently isolated and subjected to

next-generation sequencing. Thus, regions enriched in GRO-seq

reads reflect regions enriched in transcriptionally engaged

polymerase. Notably, in analyzing this data, we aimed to also

Figure 1. Examination of nucleotide biases within reads across different datasets of deep-sequencing experiments. For each dataset,
we present sequence logos of the first twenty positions of all reads that could be aligned to the reference genome (left panel), and positional
nucleotide charts (right panel). In the sequence logos, the height of each letter is proportional to the frequency of the corresponding base at the
given position, and bases are listed in descending order of frequency from top to bottom. The positional nucleotide charts display the frequency of
each base-pair at each position. Data for additional datasets is presented in Supporting Information S1. (A) Data for RNA-seq reads from human
lymph node obtained from [19]. (B) Data for RNA-seq reads from human lymphoblastoid tissue obtained from [18]. (C) Data for RNA-seq reads from
CD4 cells were obtained from [20]. (D) Data for genomic reads from PhiX control lanes following 26 cycles were from [21]. (E) Data for ChIP-seq lane
mapping PAF binding sites in human CD4 cells were from [22].
doi:10.1371/journal.pone.0016685.g001

Biases in Next-Generation Sequencing Analysis
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Figure 2. Mappability within genomic regions. (A) Mean mappability density values within internal exons and within the exons and introns
flanking them. Error bars represent the standard error of the mean (SEM). (B) Mappability in the region surrounding exon/intron junction. The dashed
line represents the exon/intron junction. (C) Mappability in the region surrounding exon/intron junction as a function of total transcript length. Each
exon was distributed into one of five bins based on the length of the transcript containing it. (D) Mappability in the region surrounding exon/intron
junction as a function of exon conservation level, divided into five bins. (E) Mappability in the region surrounding exon/intron junction as a function

Biases in Next-Generation Sequencing Analysis
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address a specific research question, namely whether RNA

polymerase II (RNAPII) kinetics decrease near splice sites. In

light of the finding that exons are ‘marked’ by nucleosomes [29–

35], we speculated that as RNAPII approaches an exon/intron

junction, the presence of the nucleosome may reduce transcrip-

tional rates [29], allowing time for the precise assembly of

spliceosomal components over the exon/intron junction [36–39].

To detect whether exon-intron junctions were enriched in

transcriptionally-engaged polymerase, we aligned a dataset of .23

million GRO-seq reads from lung fibroblasts to the human

genome; we retained .11 million reads uniquely mapping the

genome, similar to the number obtained by Core et al. [28]. As in

[28], the 59 most coordinate of the read was considered to reflect

the position of transcriptionally engaged RNAPII. Each genomic

position was allocated a score equal to the number of reads

beginning at that position. We then used the above-constructed

dataset of exon-intron quintets, and plotted the mean read

densities in the regions surrounding the two ends of the exons, i.e.,

the 39 and 59 splice sites (39ss and 59ss respectively). Since the

number of reads obtained from a given transcript is highly

correlated with the expression level of the gene coding that

transcript, we divided the exons into five equally sized groups

based on the expression levels of the genes in which they are

located; gene expression levels in lung fibroblasts were obtained

from [27]. In our initial analysis we adopted a naı̈ve approach, and

did not take into account the nucleotide per cycle or the

mappability biases.

Our analysis, presented in Fig. 3, revealed several phenomena:

First, a prominent peak in GRO-seq reads was observed at each of

the splice sites. Second, increased read densities were observed

within exons, compared to introns. Third, decreased densities

were observed within the terminal ,30 exonic nucleotides with

respect to the remaining exonic regions. These phenomena were

present across all gene expression levels. The first phenomenon

was suggestive of pausing of RNAPII at splice sites, while the

second was suggestive of decreased transcriptional rates within

exons compared to introns; However, subsequent analysis revealed

that these results are due to the two above-described biases,

combined with two more specific biases present in this particular

dataset. We emphasize that in analyzing their data, Core et al.

[28] made no claims in their manuscript pertaining pausing of

RNAPII at splice sites or decreased rates within introns; Thus, the

results presented here do not disprove the conclusion made by

Core et al.

What initially suggested that the GRO-seq peak at the junctions

reflected bias was the fact that it was replicated in a negative

control. We made use of two such controls: The first was a dataset

of 36,905 exonic compositions regions (ECRs) from [32]. ECRs

were defined as exon-sized region within intronic or intergenic

regions with sequence content similar to that of exons, flanked by

regions with intronic sequence content. The second control was a

dataset of 49,276 pseudo-exons [30], defined as regions with a

length distribution similar to that of exons flanked by relative

strong splicing signals. Examining the densities of GRO-seq reads

in the regions flanking the two control sequence regions, we

observed uniform read densities around ECRs (Fig. 4A); However,

we found clear peaks around the pseudo-exons, similar to those

observed around exons (Fig. 4B). These results suggested that the

peaks at the exon/intron junctions were due to specific sequence

biases present at the 59 and 39 splice sites. A closer inspection of

of transcript expression level, divided into five bins. Transcript expression levels were obtained from [27]. (F) Mappability in the regions surrounding
transcription start and end sites. (G) Mappability in the regions surrounding CD box snoRNA start and end sites. (H) Mappability in the regions
surrounding tRNA start and end sites.
doi:10.1371/journal.pone.0016685.g002

Figure 3. GRO-seq reads localization along exons and introns. Exons were aligned by their 39ss (left panel) or by their 59ss (right panel). The
dashed line represents the exon/intron junction. Exons were divided into five bins based on microarray-based transcript expression levels in lung
fibroblasts obtained from [27]. Insets present blowups of the regions marked by black rectangles.
doi:10.1371/journal.pone.0016685.g003

Biases in Next-Generation Sequencing Analysis
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the peaks over the exon/intron boundaries revealed that the peaks

correspond to two single positions: position -2 of the 39ss and

position +3 of the 59ss (Figure 3A, left and right insets,

respectively). Since ‘A’ is the consensus nucleotide at both

positions (AG at the 39ss and GTA at the 59ss), we examined

the distribution of nucleotides along the read positions within all

aligned GRO-seq reads. We found that 42% of the reads began

with ‘A’, whereas roughly 22% began with ‘G’ or ‘T’ and 12%

with ‘C’ (Fig. 4C–D). Since we scored each genomic position based

on the number of reads beginning at that position, a position

beginning with ‘A’ will, a priori, have a two-fold increased score

with respect to ‘G’ or ‘T’ and almost 4-fold increased score with

respect to ‘C’, explaining the ,2-fold peak observed at the splice

sites. To further confirm the presence of this bias, we examined a

dataset of 21,121 protein-coding regions. Protein coding regions

invariably begin with an ATG start codon and terminate with a

TAG/TAA/TGA stop codon. Since both regions are highly

enriched in ‘A’s, we expected, and observed, an enrichment in

terms of GRO-seq reads at both termini of the coding region

(Fig. 4E).

Figure 4. Control analyses of GRO-seq reads. (A) Analysis of 36,905 exonic compositions regions (ECRs) obtained from [32]. ECRs were defined
as exon-sized region within intronic or intergenic regions with sequence content similar to that of exons, flanked by regions with intronic sequence
content. (B) Analysis of 49,276 pseudo-exons obtained from [30]. Pseudo-exons were defined as regions with a length distribution similar to that of
exons flanked by relative strong splicing signals. (C) Sequence logos of all aligned GRO-seq reads, aligned by their 59 end, as in Figure 1. (D) Positional
nucleotide charts for GRO-seq reads, as in Figure 1. (E) Alignment of GRO-seq reads in the 200 nt surrounding transcription start and end sites (left
and right panels, respectively). (F) Analysis as in Figure 1 following normalization of all read counts by the relative frequency of the nucleotide at the
first position of each read.
doi:10.1371/journal.pone.0016685.g004

Biases in Next-Generation Sequencing Analysis

PLoS ONE | www.plosone.org 6 January 2011 | Volume 6 | Issue 1 | e16685



We next statistically normalized for this nucleotide bias, by

weighting each read based on the relative frequency of reads

starting with the nucleotide at its first position (see Materials and

Methods). Following this normalization scheme, the bias at the

exon/intron junctions was substantially reduced (Fig. 4F, compare

with Fig. 3). Since the bias was not completely eliminated, we

explored the possibility of taking into account not only the first

nucleotide of each read, but the combination of the first k

nucleotides, where k.1 (see Materials and Methods). However,

such normalization did not substantially alter the results (data not

shown).

Following normalization for the nucleotide bias, the bias at the

exon/intron junction was reduced, but not eliminated (Fig. 4F).

We reasoned that the increased mappability within exons, with

respect to introns, might impart additional bias. To remove the

bias introduced by mappability, we identified all unmappable

regions in both strand, and removed these positions from our

calculations. Thus, density values were calculated as the sum of

reads mapping within a region, divided by the number of

mappable nucleotides within that region. We emphasize that this

normalization was performed by Core et al. [28], and is therefore

not expected to influence their results.

Contamination with mRNA bias
Once mappability was accounted for, we expected read levels

within exons to equal those within introns, as was reported by

Core et al. [28]. However, levels within exons remained

considerably higher than those within introns. This was particu-

larly evident when all exons were divided into bins based on

expression levels (Fig. 5A–B). Within the highest expression bin,

there was a 22–23% increase in levels within the central exon, with

respect to the two introns flanking it, and differences were highly

significant (Student’s t-test, p = 3.2e212 and 2.4e212 for upstream

and downstream introns, respectively). In addition, even following

normalization of both the nucleotide and the mapping biases,

there still remained a considerable ‘valley’ over the ,30 nt at the

39 end of exons. The combination of the general increase in reads

in exons relative to introns and of this valley led us to speculate

that the dataset of GRO-seq reads was contaminated with mRNA.

Such contamination would explain both phenomena. First, it

would lead to higher levels of reads within exons, since introns are

removed from the mRNA and are therefore not sequenced.

Second, reads originating from the 39 end of exons would not be

aligned to the genome, since the reads originate from ligations of

two exons and not from consecutive genomic regions.

Figure 5. Analysis of effect of contamination of run-on experiment with mature RNA. (A) Mean number of GRO-seq read densities within
exons and their flanking exons and introns as a function of expression levels obtained from [27], following normalization by mappability. (B) Analysis
as in panel A, showing mappability values at a single base pair level. The dotted rectangle marks the region harboring the ,30 terminal nt. (C)
Analysis as in B, but incorporating reads obtained from exon-exon junctions. (D) Exons were divided into 200 equally sized bins based on gene
expression levels derived from [27]. The percentage of exons with reads overlapping the junction between the central exon and the exon upstream
to it are plotted for each bin.
doi:10.1371/journal.pone.0016685.g005

Biases in Next-Generation Sequencing Analysis
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To assess whether contamination with mRNA was a source of

bias, we generated exon-exon libraries by concatenating adjacent

exons and mapped all .23 million GRO-seq reads to these

libraries. We retained only uniquely aligned reads that overlapped

by at least 4 nt to each side of the exon-exon junctions and that

either could not be aligned when we originally mapped them

against the human genome or that had higher alignment scores

when mapped to the junctions dataset than against the genome.

We found 9,222 junctions between the central exon and the

downstream one that were covered by at least one read. Following

incorporation of the junction reads with the genomic reads, the

valley at the 39 end was essentially eliminated (Fig. 5C), indicating

that indeed the valley originated from exon-exon concatenations.

Since highly-expressed exons have ,23% increased read densities

compared with introns, this suggests that up to 23% of the GRO-

seq signal within exons stems from contamination with mRNA (see

Discussion). Examining this from a different perspective, we

divided all exons into 200 bins of gradually increasing expression

and calculated the percentage of exons with junction reads in each

bin. Whereas the percentage of junctions in genes expressed at low

levels was negligible, for highly expressed genes up to 70% of the

exons were overlapped by junction reads (Fig. 5D). This, again,

indicates that there were considerable levels of contamination with

mRNA in the GRO-seq dataset.

As further evidence for contamination of the GRO-seq data

with RNA not originating from nuclear run-on experiments, we

examined read distributions along various non-coding RNA

families. In particular, we were interested in examining box C/

D and box H/ACA snoRNAs, both of which are responsible for

modification of RNA molecules [40–42], and small Cajal body

RNPs (scaRNPs), which direct modifications of snRNAs [43].

These RNA are encoded within introns of host genes and are

released via post-transcriptional exonucleolytic trimming from the

59 and 39 ends of the debranched intron lariats [42,44]. Thus,

GRO-seq read levels of these molecules are expected to equal the

background levels within the introns surrounding them, since their

biogenesis occurs as part of the transcription of their hosting gene.

However, we found that read densities within the bodies of the

various RNA genes was between 5- and 10-fold higher than were

read densities within the genes hosting them. This phenomenon is

evident upon examination at the genomic regions surrounding the

start and end sites of the RNA genes (Fig. 6). This phenomenon

indicates that GRO-reads contain non-coding RNA sequences

that did not originate from nuclear run-on sequencing.

Non-hydrolysis bias
An additional prominent observation in Fig. 6 is the peak at the

59 end of most analyzed RNA genes (Fig. 6). This peak is

reminiscent of the peaks reflecting promoter-proximal pausing that

occurs around transcription start sites of independently transcribed

genes [28,45–47]. One theoretical possibility is that this peak

reflects pausing of RNAPII at the 59 end of RNA genes of various

families. However, since this peak is highly localized within the

first nucleotides of snoRNA and scaRNAs, which are processed

from within longer transcripts, we consider it likely that this

finding results from bias as well. One of the first steps of the GRO-

seq experiment is isolating and hydrolyzing run-on RNA;

following reverse-transcription to cDNA, the 59 ends of these

RNAs are sequenced. Therefore, the first nucleotide at the 59

terminus of coding transcripts or of RNA genes is biased to

undergo sequencing, since no hydrolysis is required to obtain a

read beginning at this position. This bias is presumably augmented

by the fact that, as demonstrated above, the RNA pool is

contaminated with mRNA and other non-coding RNA transcripts,

leading to increased levels of 59 termini in the sequenced pool.

Discussion

In the years since deep-sequencing technology was launched,

enormous efforts have been put into the development of platforms

for mapping short reads and for downstream analysis of mapped

reads, including assembly, identification of structure variants or

SNPs, and detection of enriched regions (reviewed in [1,2,6]). In

this study, we report several biases present in next-generation

sequencing datasets. Notably, the two general biases we charac-

terize – nucleotide per cycle bias and mappability bias – will

mostly affect analyses in which two genomic regions are compared

to each other, such as when exons are compared to introns or

when gene bodies are compared to transcription start sites. They

will probably have only a minor effect when examining the same

region (e.g., gene/exon) under different experimental conditions,

since that region will be affected by the bias in a similar manner in

the different conditions.

Previous studies have found some links between nucleotide

composition and various aspects of next-generation sequencing.

Several studies have found that GC content correlates positively

with read coverage [14,15]. In addition, an association between

erroneous nucleotide calls and nucleotide composition was found,

with erroneous nucleotide calls considerably more likely to be

flanked by ‘G’ nucleotide [14]. These studies also reported that the

frequency of erroneous calls is increased at the first position, lowest

at the second position, and the highest error rate is observed at the

last positions of the read [14,15]. However, the nucleotide-per-

cycle bias reported here does not reflect sequencing error, since the

bias is obtained also when examining only reads with full identify

with the reference genome. Rather, this bias reflects sampling bias

at some step of the sequencing reaction. While this study was being

prepared, two different studies reported the prevalence of biases

across the first positions of reads [16,17], as reported here. Both

studies focused mainly or exclusively on RNA-seq experiments.

Hansen et al. concluded that the bias is mainly due to random

hexamer priming [16]; however, Hansen et al. also noticed small

biases in the first nucleotides of reads in ChIP-seq datasets [16],

hinting that there might be additional sources for the observed

bias. Indeed, in one of the ChIP-seq experiments analyzed by us,

we observed very high levels of bias across the first positions

(Fig. 1E), and we also observed a bias in the GRO-seq dataset, the

protocol of which does not include priming by random hexamers.

Therefore, the sources of these biases remain to be determined.

Although studies are increasingly incorporating mappability

into their analyses (e.g., [28,48–52]), this remains far from

common practice. Considering mappability is particularly crucial

in the comparison between regions such as exon and introns. Over

the past year, various groups have used NGS reads from different

experiments to compare exons to introns in different contexts.

Several studies, including one by us, found increased levels within

exons in terms of nucleosome occupancy and specific post-

translational histone modifications [29–33,35,53]. However, with

the exception of one study [32], data was not normalized by the

differential mappability between exons and introns. Other studies,

also based on NGS technology, have found differential levels of

DNA methylation within exons compared with introns [10–12];

none considered mappability in their analyses. As shown here,

mappability correlates with various biological features, such as

transcription length and expression levels. Therefore, changes

originating in mappability may falsely present themselves as

biological phenomena. This notwithstanding, in our analysis the
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difference in mappability of exons compared with introns was 8%;

Thus, fold-changes substantially larger than this cannot be

attributed to mappability alone.

Notably, mappability is not important only in the context of

exon-intron regions. First, as shown in Fig. 4, many genomic

regions of interest have distinct mappability profiles and

normalization must be used to omit this inherent bias. When

RNA-seq experiments are used to infer gene expression levels or

inclusion levels of exons, mappability corrections must be made to

avoid bias [48,52]. Similarly, in ChIP-seq analysis in which reads

from both strands are typically aggregated and compared to a

background or empirical model, assessments are bound to be

skewed due to failure to account for mappability. In this context,

many tools exist for ChIP-seq analysis, and some of them allow

incorporation of mappability as a global parameter [54–56].

However, these tools essentially assume that mappability is

uniform across the genome, which is far from being the case. To

our knowledge, the only tool for ChIP-seq analysis which takes

into account regional mappability is PeakSeq [54].

Considerably complicating incorporation of genome-wide base-

by-base mappability into analysis of NGS reads is the fact that

such maps must ideally be specifically tailored based on read

length, alignment algorithm and alignment parameters, since these

parameters will all influence whether a read will be considered

mappable. Pre-prepared maps exist for certain read lengths (e.g.,

the ‘Mappability’ tracks in the UCSC genome browser, http://

genome.ucsc.edu/). However, since each specific experiment will

generate reads of a specific length and use specific alignment

parameters, these pre-prepared maps will not give a precise picture

of the mappability for that specific experiment. To obtain such

Figure 6. Plots showing GRO-seq read distribution in the along start and end sites of various non-coding RNA genes. The name of the
RNA gene family and number of genes analyzed per family are indicated in red within the left and right panels, respectively.
doi:10.1371/journal.pone.0016685.g006
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maps one is currently forced to separately align ,3 billion reads

(each genomic position) against the entire human genome. This is

time intensive and requires extensive computational resources. As

this may be prohibitory for laboratories lacking the required

facilities, tools efficiently addressing this issue are desired.

The two biases discussed above are relevant for the vast majority

of NGS experiments, regardless of whether they are aimed at DNA

or RNA. In contrast, the bias of non-hydrolysis is mostly relevant for

analyses at the RNA level (e.g., RNA-seq, or GRO-seq), whereas

the mRNA contamination bias is specifically relevant for GRO-seq

experiments or other experiments at the pre-mRNA level. We

found that contamination of GRO-seq reads with reads due to

mRNA and non-coding RNAs was ,23%, based on the differences

between read levels in exons compared with introns. This is

considerably higher that the estimate by Core et al. [28], who

calculated that the purity of the nuclear run on RNA pool in their

experiment was ,98%. This discrepancy is to some extent resolved

once it is considered that introns are longer than exons by at least

one order of magnitude. Consider a theoretical model in which

introns are 10-fold longer than exons and 100,000 nuclear run-on

reads are generated uniformly. In this hypothetical experiment,

,9,000 reads will result from exonic regions and ,90,000 from

intronic regions. If 2,000 contaminating mRNA reads (2%),

originating exclusively from exonic sequence, are added to the

pool, the exonic reads increase to ,11,000, thereby increasing

densities within exons by ,20%, whereas coverage within intronic

regions will remain essentially unchanged. Thus, a 2% contamina-

tion can lead to a 20% difference in read densities within exons; this

difference can be higher depending on the exon to intron length

ratio within the sequenced regions, or lower, depending of the

fraction of contamination originating from mRNA, as opposed to

tRNA and rRNA.

Finally, it is important to note that although all datasets

analyzed in this study are based on Illumina technology, this is not

expected to affect most biases presented here. Mappability does

not change as a function of sequencing technology, but only as a

function of read length and the genome the reads are mapped

against; And non-hydrolysis and contamination with pre-mRNA

are independent of platform as well since they precede the step of

deep-sequencing. The only bias which may to some extent be

platform dependent, is the nucleotide-per-cycle bias, the source of

which partially remains to be determined; But at least for RNA-

seq experiments, this bias appears to be present in additional

platforms as well [16,17].

Materials and Methods

Illumina NGS datasets
Twenty-five Illumina sequencing lanes were obtained from the

studies detailed in the Results section. For all lanes excluding those

of Wang ET et al., we used novoalign version 2.5 to align the reads

against the relevant reference genome, using default parameters

and ‘-t 73’ to allow a maximum of two mismatches. Using Perl

scripts we then parsed the results to obtain reads that (1) aligned

uniquely against the genome and (2) lacked a mismatch in the first

position. For the lanes from Wang ET et al., we downloaded the

aligned reads from [19] and parsed them even more stringently,

not allowing a mismatch at any position. This was done to ensure

that the strong bias observed throughout the first positions of all

lanes in this dataset did not reflect sequencing errors.

Dataset of internal exons and introns
Coordinates of human (hg18) genes were downloaded from the

UCSC Genome Browser website knownGenes table. Based on this

annotation, a dataset of exonic coordinates was generated. Each

entry in this dataset consists of genomic coordinates of a central

exon, the two exons flanking it, and the two introns lying in

between. Redundant central exons sharing the same set of genomic

coordinates were removed. Due to RNAPII buildup at the

beginning and end of genes, we demanded that the exons upstream

and downstream of the central exon be internal exons as well. To

further ensure that reads along exons did not originate from

promoter regions or transcription end sites, we removed all entries

in which the central exon was within 1 kb of any annotated

transcription start or end site, based on annotations in the

knownGenes table. Moreover, we excluded any entry in which

any of the quintet’s exons or introns overlapped the coordinates of

an RNA gene (see below), as these were analyzed separately. Finally,

due to subsequent analyses of junctions, we also filtered out sets that

contained exons or introns shorter than 32 nt; this filtered out only a

negligent fraction of the original entries. Our final dataset contained

113,261 quintets. In analyses in which we compared read densities

across the three exons in the quintets, we applied an even more rigid

filter and demanded that the upstream exon not be within 1 kb of

any transcription start site; this left 102,681 exons.

Dataset of transcripts, coding sequences, and RNA genes
Datasets of 26,571 regions undergoing transcription and 21,121

protein-coding regions were obtained based on the knownGenes

table. To avoid redundant analyses due to different isoforms

mapping to similar genomic coordinates, for each set of

transcripts/coding regions sharing a common clusterID, which

was extracted from the knownIsoforms table, we retained only one

isoform that was selected randomly. Coordinates of 7,118 RNA

genes were obtained by merging two UCSC Genome Browser

tables: the sno/miRNA table, which provides data on C/D and

H/ACA box snoRNAs, scaRNAs, and microRNAs based on

snoRNABase and miRBase [57–59], and the RNA genes table

from which we extracted lower confidence RNAs, including

snoRNAs, transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), and

others. The latter table also contains predictions of different RNA

genes based on sequence similarity. Redundant entries were

detected based on identical genomic coordinates and only the

entry from sno/miRNA table was retained. In the sno/miRNA

table, snoRNA genes are divided into three families: C/D box

snoRNAs, H/ACA box snoRNAs, and scaRNAs. In the RNA

genes table, there are no divisions into families of snoRNA genes.

In our analyses, we separately analyzed RNAs originating from

each of the two tables, retaining the original annotations.

Normalization of nucleotide per cycle bias
To statistically enforce a uniform distribution of nucleotides at

the first position of reads, we weighted each read based on the

inversed frequency of reads beginning with the first nucleotide of

that read. Since in subsequent steps we were interested in looking

not only at the first nucleotide but at the regions of length k, or

kmer, we gave each genomic position (pos) a score, as follows:

score pos,kmerð Þ~ n mapped read

freq reads(kmer)|4k

where kmer is a sequence of length k beginning at position pos,

n_mapped_reads indicates the number of reads uniquely mapping to

position pos, and freq_reads is the frequency of reads beginning with

kmer within the total pool of reads. This scoring method artificially

increases the score of reads beginning with rare kmers, and

decreases the score of reads beginning with common ones.
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To quantitatively assess to what extent normalization decreased

the peak, we examined the fold change in the peak in GRO-seq

reads in positions 22 and +3 with respect to the intronic

background level of reads. As intronic background for position

22, we used the mean level of reads in position 2200 to 2100 of

the upstream intron. As intronic background levels for position

23, we used the mean level of reads in positions +100 to +200 of

the downstream intron. Calculations were performed separately

for each of the five expression level bins.

Mappability assessment
To determine genome-wide mappability, we exhaustively

enumerated the hg18 reference genome sequences to generate

genome-wide mappability data resources that profiled the extent

to which 32-nt DNA sequences could be uniquely aligned to the

genome using precisely the same parameters as above. Each 32-nt

sequence that could not be uniquely aligned to the genomic region

from which it originated was considered unmappable and its first

position was considered an unmappable position.

Analysis of mapped GRO-seq reads
We obtained .23 million short reads from two independent

GRO-seq experiments within lung fibroblasts (IMR90) performed

by Core et al. [28]. In light of the high correspondence between

the two experiments, we pooled together the reads from the two

experiments to yield greater statistical power in the subsequent

analyses. We first trimmed the reads to 32 nt. Next, using the

NovoCraft alignment software (http://www.novocraft.com/), we

uniquely mapped 11,878,891 of the reads to the genome. We used

the above-described parameters that did not allow more than two

mismatches between the read and the genome and allowed only

very minor tolerance to insertions/deletions. As in [28], the 59

most coordinate of the read was considered to reflect the position

of transcriptionally engaged RNAPII. To calculate the read

densities within genomic regions (genes/exons), we summarized

the number of reads occurring within a given genomic start and

end coordinates and divided this number by the length of the

interval between the two coordinates.

Alignment of GRO-seq reads to exon-exon and exon-
intron junctions

To align reads to exon-exon junctions, we created datasets of all

exon-exon junctions in our datasets, by concatenating the 31 nt

from the 39 of a given exon with 31 nt from the 59 of the exon

immediately downstream to it. We generated two such datasets:

One for the junctions between the upstream exon and the central

one and one for the junctions between the central exon and the

exon downstream to it. We next separately aligned each of the

.23 million short reads against each of the two junction datasets,

using the same parameters as in the alignment against the entire

genome. We retained only aligned reads that overlapped by at

least 4 nt to each side of the exon-exon junctions; this criteria was

set to ensure that the reads originated from the junctions. All reads

which uniquely mapped to the junctions were then compared with

their mapping to the genome. We retained all reads that uniquely

mapped to the junction dataset or that had a lower scoring

alignment when aligned against the entire genome than the

junction dataset.

Gene expression levels
Gene expression levels were obtained from two expression

arrays in lung fibroblasts [27]. The expression levels of the genes

were averaged across the two samples and subsequently log-

transformed to yield the expression level estimates of the genes.

Conservation
Conservation measures for specific positions within the

genome were assessed based on phastCons scores for 18 placen-

tal mammals, which were downloaded from the UCSC

Genome Browser (http://hgdownload.cse.ucsc.edu/goldenPath/

hg18/phastCons28way/placental/). This dataset includes a score

for each nucleotide, ranging from 0 to 1, that provides a measure of

conservation level of that nucleotide among placental mammals.

Values were averaged over the 50 terminal intronic nucleotides to

yield a mean conservation level of that region.

Statistical tests
To examine the significance of the correlations between

mappability and transcript length, expression levels, or evolution-

ary conservation (Figure 2C–E), we separately each of the

following genomic regions: the 200 intronic nt upstream of exons,

the first 100 nt of exons, the terminal 100 nt of exons, and the 200

intronic nt downstream of exons. For each of these regions, we

established a distribution of mean mappability values. These were

divided into five bins, as shown in the manuscript, and a kruskal-

wallis rank sum test, which is a non -parametric one way analysis

of variance, was calculated for each of the four regions. The P

value quoted in the manuscript is the highest, i.e. least significant

P value, of all regions.
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