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Abstract

We describe an efficient method of using a translating camera to detect
and track independently translating objects and assess the likelihood
of a collision. By analysing the underlying geometry it is shown that
the tracking is reduced to two independent linear searches for a single
feature in the image plane. Results are presented for both an off-line
implementation and work towards a real time implementation. The
method is completely automatic and shown to be accurate and robust.

1 Introduction

Any autonomous vehicle must be able to detect and avoid other moving objects.
Previous work on the detection of independent motion has tended to combine the
(computationally expensive) optical flow field with a ground plane assumption
(Enkelman [4], Carlsson and Eklundh [3]) or weak geometric constraints (Nel-
son [10]). With the exception of Irani et al. [8] this work has ignored the benefits
of tracking moving objects to improve the segmentation. In contrast to these
optical flow methods Torr and Murray [12] use the epipolar geometry to detect
independent motion; we adopt this use of the rigidity constraint, and extend their
work - in the case where all motions are pure translations - by incorporating
tracking of both the background and the independent objects. The task is easily
stated: given a sequence of images of a scene composed of rigid objects taken
by a translating camera (figure 1) detect and track any independently translating
objects. If any are found, determine whether or not a collision will ensue. This pa-
per shows how to do this accurately, automatically and robustly without requiring
camera calibration. Although the method presented uses only image corners the
theory can also be expressed as a special case of the trifocal constraint (Hartley [7],
Torr et al. [13]) thus allowing the possibility of incorporating line segments.

The three dimensional geometry, and image projection of features on the back-
ground and moving objects, are described in sections 2 and 3. Next, section 4
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Figure 1: The motion of the camera and the independent object is assumed to be

a translation, but their directions need not be perpendicular or even in the same

plane. Both are also free to vary their speed.

gives a simple and robust test for imminent collisions. Finally sections 5 and 6 de-
scribe a complete implementation and a highly efficient frame rate feature tracker
respectively. Some extensions of this work are suggested in the conclusion.

2 Model of the background motion

We are principally concerned with tracking points through a sequence of images.
The problem of using a point's position in one set of images to predict its where-
abouts in another is known as transfer; we shall show that for a pure translation
given correspondences in two views, only one match in a third view is required to
constrain the position of all the other features. Further, this single feature match
can be found by a one dimensional search in the third image.

2.1 Algebraic modelling of transfer

The mechanics of image projection can be used to capture the geometric con-
straints imposed by the assumption of straight line motion, and predict the po-
sition of features in future images after a search for a single parameter. Using
homogeneous coordinates the world position X/ of the / t h feature projects to its
image position x^ at time i as

X} = P% (1)

Here xi is a 3 vector, X/ a 4 vector, and P' a 3 x 4 matrix. Since homogeneous
entities are equivalent up to scale x^, X/, and P' have 2, 3, and 11 degrees of
freedom respectively. A pair of views of a rigid scene separated in time is equivalent
to stereo and so it is possible to find the values of X/ and P* given sufficiently
many feature correspondences (Faugeras [5], Armstrong [1]). It can be shown that
by combining an uncalibrated camera model and the fact that the camera motion
is a pure translation the projection matrix at the ith view may be taken to have
the form

Pi = [I|4e»] (2)
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Figure 2: The epipolar geometry of a translating camera. Upper figure: as the

camera's optical centre O translates along tc, points X and Y in the world appear

to take up new positions (X', X", ...). The feature's epipolar lines are shown in

the image, these are the intersections of the image plane with the planes defined

by tc and the lines OX and OY respectively. Because these epipolar planes always

include the line tc the epipole ej must lie on every epipolar line. The epipole is

the vanishing point for all lines parallel to tc, and remains fixed so long as the

direction oftc is constant. Lower figures: image sequences obtained as the camera

translated towards a set of objects; a number of features at different instants are

superimposed on their epipolar lines. In (a) the camera's optical axis is aligned

with the direction of translation. In (b) the camera has been rotated to the right

forcing the epipole to the left.

in which s\ is the magnitude of the translation, and ej is the background epipole
or image plane projection of the direction of motion (figure 2). In this case X/
will be recovered up to an affinity (Moons et al. [9]) allowing the measurement of
ratios of distances in parallel directions (in particular 4)- For a pure translation
the epipole ej has a fixed position on the image plane, and can be calculated from
the motion of two image features. Once the epipole and all the features' world
positions have been calculated only a single new parameter arises at the ith image -
the magnitude of translation s\. Clearly s\ is determined by a single corner match,
and the matching corner must lie on the epipolar line - see figure 2. Once s\ is
known the position of all other features may be found from equations 1 and 2.

To summarise: Grouping: two point matches determine ej which is common
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to all background features. Initialisation: two point matches determine e& and
affine structure, s° and s\ may be chosen arbitrarily. Tracking: a single point
match along a feature's epipolar line determines s\ and hence the positions of all
background features.

3 Model of the independently translating

object (s)

We shall show that given the background motion (i.e. e& and s\) independently
translating objects have the same complexity as the background - the image pro-
jection for all points on the object is determined by a single new parameter at
each frame and that parameter may be determined by a single feature match
found using a one dimensional search.

As in the case of the background we use an uncalibrated camera and it can be
shown that the projection matrix for points on the object may be chosen to have
the form

s%] (3)

in which to is the image plane projection of the object's direction of motion and s
l
0

is the magnitude of that translation at the ith frame. The epipole for the moving
object lies on the ray s\ei + s'oto which gives the direction of relative motion
between the camera and the object, but unlike the background epipole s\ei, + s*oto

varies according to the ratio s
l
b : s

l
o. Notice that the "ground-plane constraint"

was not invoked i.e. the independent object and the camera may move in different
planes.

To summarise: Grouping: two point matches determine s'̂ ej, + s*oto which is
common to all points on the object. Initialisation: three point matches determine
t0 and affine structure. Tracking: given s'beb and t0 the search is along the line
parameterised by s*0 for a single point match which then determines s

l
0 and hence

the position of all points on the object.

4 Collision prediction

In order to decide whether or not a collision will occur requires a knowledge of
the viewer's size, the potential obstacle's size, and the direction of relative motion.
In this section we consider the simpler problem of deciding whether or not the
camera's optical centre will collide with a moving object, thus obviating any need
for knowledge about the viewer's size.

As was shown in section 3 the direction of the combined motion is given by the
epipole defined by points on the moving object, and has already been calculated
as part of the tracking process. The test is simple: a collision will occur if the
epipole lies inside the rectangle considered to bound the moving object.
If the epipole lies inside then the camera's relative motion is toward the object
and a collision will eventually occur. If the epipole lies outside the rectangle then
no collision can occur.
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Figure 3: The sailor's test for a collision. Two ships A and B will collide if the

second makes a constant bearing 0 as seen from the first, so the condition for a

collision is that 0 = 9'. This is a special case of the epipole test for a collision.

(a) (b)

Figure 4: The test for a collision illustrated by frames from the film Speed. The

camera translates along its optical axis while the truck on the right moves into its

path. Each image shows the bounding rectangle and three epipolar lines intersecting

at the epipole for the moving object. In (a) the epipole lies ahead of the object and

so at this instant the camera is moving fast enough to pass in front of the object.

In (b) the epipole lies directly on the object showing that a collision will occur.

This test can be seen as a generalisation of the sailor's test for determining
whether two ships will collide. Figure 3 shows how in nautical terms a collision
will occur if the second vessel makes a constant bearing as seen from the first.
However, notice that the only point on the second vessel which will not appear to
diverge (hence changing bearing) is the epipole, and that the epipole will remain
fixed only if both the camera and moving object have constant velocities. Figure 4
illustrates the epipole test with images taken from the motion picture Speed.

5 Implementation I: Off-line

We have developed an off-line implementation of this method for detecting and
tracking moving objects by modifying an automated corner matching program
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developed by Beardsley et al. [2]. Image corners are found to sub-pixel accuracy
using the Plessey corner detector (Harris and Stephens [6]) and tracked through a
sequence of images by matching them to their corresponding corner in the following
frame using a two phase process incorporating both pixel value correlations as well
as epipolar and structural constraints.

5.1 Robust calculation of the epipole

The assumption of pure translational motion forces the epipolar geometry to have
only two degrees of freedom as figure 2 shows, consequently the epipole can be
found by intersecting any two feature's image plane trajectories. The small number
of parameters makes the R.ANSAC robust minimisation technique a highly efficient
way to estimate the epipole in the presence of (the inevitable) mismatched features
and moving objects. The RANSAC algorithm for finding the epipole proceeds by
repeatedly using a random sample of two pairs of point matches to determine
a putative epipole which is then evaluated for its support from all the feature
matches. A point match is deemed to support a potential epipole if the feature's
position in both images lies close to its putative epipolar line. The ultimately
selected epipole is the one consistent with the most data, the remaining corner
matches are ignored. A typical threshold of 1.5 pixels results in ~ 80% of the
corner matches having a common epipole if a moving object is not present.

A linear least squares method improves the estimate of the epipole by finding
the best estimate of the common intersection of the feature trajectories. The final
minimisation typically reduces the average distance of a corner from its epipolar
line from ~ 0.5 to ~ 0.4 pixels.

5.2 Tracking points on the background

The background is considered to be that part of the world which generates the
most features on the image plane consistent with a single epipole. Given the back-
ground epipole and affine structure, points are matched as in Beardsley et al. [2] to
provide estimates of s\. As tracking proceeds the background epipole is updated
as in section 5.1 and the background features' world structure is continuously re-
fined using a least squares method that minimises the image plane errors. Once
tracking is suitably advanced only features that have been tracked for more than
a minimum number of frames (typically 4) are used when calculating the epipole.
This continual re-estimation of the epipole implicitly tests the assumption of pure
translation because the cpipole's position should be constant.

5.3 The moving object(s)

Once the extent of the camera motion s\ is known there is only a single free
parameter in equations 1 and 3 to model the moving object.

Detection: Moving objects are found by attempting to fit an epipole to the
feature matches not consistent with the background epipole. If the techniques of
section 5.1 find a enough features (typically 5 - 10) consistent with a new epipole
then an independently moving object is deemed present. If desired the process
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Figure 5: Results from two tests of the off-line implementation. In each case the

camera and moving object translate along approximately perpendicular paths. In

both sequences image (a) shows the epipolar lines for background points, images (b)

and (c) show the bounding rectangle and epipolar lines for features on the object.

In images (lb) and (lc) the epipole is far from the object indicating safety, whereas

in (2b) and (2c) the epipole is on the object hence there will be a collision; both

reflect the ground truth.

may be repeated to search for other moving objects until too few point matches
remain, or no object is found.

Tracking a moving object: In addition to the background motion, track-
ing requires that the direction of the independent translation be known; these
extra parameters must be found by fitting the model (equation 3) to earlier point
matches; otherwise tracking an object is similar to tracking the background.

Segmentation of the moving object: The image plane extent of the moving
object is defined by the smallest rectangle enclosing all the features that have been
updated more than a fixed (typically 4) number of times. Other possibilities are
the convex hull and methods incorporating image edges e.g. Smith [11].

5.4 Experimental results

Figure 5 shows typical results of the method, which produces a good segmentation
and an accurate prediction of whether a collision will occur. In each test a small
toy (robot or radio controlled buggy) translates towards the path of a translating
camera mounted on an Adept industrial robot. The camera's optical axis is not
aligned with the translation - in the first sequence the camera points 20° down,
in the second 30° to the right. The algorithm requires 3 - 4 frames to initialise an
accurate segmentation. About 120 features on the background and up to ~ 50 on
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the moving object were tracked.

6 Implementation II: Frame rate

This section describes a real time tracker operating on a Sun IPX computer
equipped with an S2200 frame grabber and a video camera mounted on an Adept
industrial robot. The original off-line implementation takes over four seconds to
process a single 512x512 image on a Sun IPX, so running at frame rate requires
a speed up by a factor of at least 100. Almost all the processing time used by
the off-line version is devoted to the Plessey corner detection algorithm, and so
the problem is one of resource allocation; corner detection is slow and must only
be performed where it will do the most good. This section shows that real time
tracking can be performed on ordinary computers with no loss of performance.

The frame grabber alternately updates one of two 288 line interlaced fields
making up a 576 line image. The computer is able to process one field for 20mS
while the other is being refreshed. As we have already remarked the corner detec-
tion is extremely slow; 20mS is only long enough to detect corners in three 7 x 7
pixel regions, or one 19 x 19 pixel region.

6.1 Initialisation

The tracking is initialised by processing two images separated by a step along the
camera's direction of motion. The processing in this phase is identical to the off-
line version; the Plessey corner detector is run over both entire images to extract
around 300 corners, these are then matched based on pixel value correlations and
the epipole calculated as in section 5.1.

6.2 Tracking

The key idea is to update tracks only once the corner has moved a significant
distance (up to 50 pixels) in the image plane, since the feature's position may be
accurately predicted there is little to gain from more frequent updates.

Track initialisation: The full 20mS is used to apply the corner detector to a
randomly chosen 19 x 19 pixel window. The random distribution is slightly biased
towards the background epipole as this reflects where new corners will tend to
appear. If any corner(s) are found that do not match a currently tracked feature
then new track(s) are created. The feature's trajectory is estimated by searching
for the corner at the next frame using a 7 x 7 pixel window centered on the old
position. This limits the maximum speed of features that the initialisation can
cope with to 3 pixels x 25Hz = 75 pixels/second, as compared to the maximum
measured in our experiments of ~ 99 pixels/second.

Once a second view of the feature is available equations 1 and 2 are used to
predict the feature's image position, and the updates become less frequent.

A large number of tracks are also provided by the initialisation process used
to determine the first estimate of the background epipole.

Track confirmation: When a newly detected feature has moved more than
a fixed distance (typically 4 - 8 pixels) and the discrepancy between its measured
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and predicted positions remains less than a threshold (1.5 pixels) it is considered
a valid background feature. Approximately 76% of features tracked for up to 8
pixels pass this test.

Track maintenance: Each track is periodically updated by applying the
corner detector to a 7 x 7 pixel window centered on the feature's predicted position.
If a corner is found whose surrounding pixels correlate strongly enough with those
when the feature was last found and the corner is close enough (within 1.5 pixels) to
the feature's epipolar line then the track is updated. Tracks are serviced sufficiently
frequently that the localisation error should not exceed 1 pixel.

While tracking the background epipole is updated at intervals using RANSAC
and a linear least squares optimisation.

Track deletion: If the feature consistently fails to be detected at its predicted
position for more than a set number of attempts (typically 4) then the track is
abandoned. The track is also removed once the feature moves out of the field of
view.

6.3 Experimental results

Figure 6 shows the performance of the real time tracker. Typically only one third
of the processing time is devoted to maintaining existing tracks, the remainder is
available to the search for new corners. The performance is specially impressive
because it has been realised on very limited hardware.
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Figure 6: Performance of the real time tracker. Graph (a) shows both the total

number of valid tracks, and the number remaining from the original initialisation.

The position of the epipole is shown in (b), its position is seen to be very stable

over time.

7 Conclusion

By concentrating on the geometry of the simplest case of independent motion
we have shown how assumptions about the world geometry can have powerful
consequences in the image plane. We have shown that for a translating camera
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and each independent object there is only one parameter that must be determined
afresh at each stage, and that this may be found by only a one dimensional search
for a single feature in each new image. We have also demonstrated a highly efficient
corner tracker that is able to track up to two hundred background features at
frame rate while continuously searching for new image features. This work will
be extended to detect and track independently moving objects. Slightly longer
term tasks are to remove the assumption of translational motion (perhaps by
introducing the ground plane assumption), and to address the problem of camera
shake.
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