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Detection and Tracking of MIMO Propagation Path
Parameters Using State-Space Approach

Jussi Salmi, Student Member, IEEE, Andreas Richter, Senior Member, IEEE, and
Visa Koivunen, Senior Member, IEEE

Abstract—This paper describes a novel approach for detec-
tion, estimation and tracking of multiple-input multiple-output
(MIMO) radio propagation parameters from multidimensional
channel sounding measurements. A realistic state-space model is
developed for the purpose, and the extended Kalman filter (EKF)
is applied in a particular computationally efficient form to track
the geometrical double-directional propagation path parameters.
The observation model utilizes the dense multipath component
(DMC), describing the distributed scattering in the channel, as
part of the underlying noise process. The DMC model assumes
an exponential profile in delay, and allows for an arbitrary an-
gular distribution. In addition, a novel dynamic state dimension
estimator using statistical goodness-of-fit tests is introduced.
The employed methods are supported by illustrative estimation
examples from MIMO channel sounding measurements.

Index Terms—Channel modeling, extended Kalman filter,
MIMO channel sounding measurements, parameter estimation,
state-space modeling.

I. INTRODUCTION

I
N this paper, the problem of multidimensional high-reso-

lution propagation parameter estimation and tracking from

channel sounding measurements is addressed. In particular, the

focus is on MIMO systems and mobile radio channels. The

development of realistic radio channel models from multidi-

mensional channel measurements is essential for supporting

transceiver design and network planning for upcoming wireless

MIMO communication systems. Realistic dynamic models

for mobile wireless systems should also be based on dynamic

measurements. The observed data are processed to estimate the

parameters of geometrical double-directional channel models

[1]. The development and verification of realistic statistics for

parametric channel models depends heavily on such estimates.
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The extraction of the channel model parameters from mea-

surement data has typically been based on the maximum-like-

lihood (ML) criterion and advanced numerical solutions. Ex-

ample methods include the SAGE-based algorithms [2] (space

alternating expectation maximization) or RIMAX [3] (iterative

ML). ML approaches assume that data are i.i.d. However, it can

be observed from measurements that the specular component

of the radio channel contains typically propagation paths which

persist over a relatively large number of snapshots. Furthermore,

the parameters of these paths vary slowly in time. This observa-

tion suggests that the path parameters could be tracked over time

in order to capture the dynamic behavior of the radio channel.

Moreover, application of sequential estimation methods reduces

computational complexity.

An alternative approach for capturing the dynamics of the

MIMO radio channel was taken in [4]. In that contribution, the

estimates from a SAGE-based [2] estimator were clustered, and

the cluster positions were tracked over time. However, there are

several advantages in direct sequential estimation (tracking) of

propagation parameters, as follows.

• The parameters of individual paths are automatically

paired, i.e., a trace of parameter estimates describing one

path is obtained.

• Additional information about how parameters evolve over

time including the rate of change can be obtained.

• Due to filtering the estimation error is reduced.

• Propagation path parameters can be tracked across deep

fades.

• Sequential estimation reduces the computational com-

plexity since the previous estimate can be updated using

the new information captured by the current measurement.

Altogether, the estimation and tracking approach provides better

insight into properties of mobile MIMO radio channels with a

reduced computational burden.

Commonly, the radio wave propagation is modelled using

a superposition of specular-like highly concentrated paths. In

this work also so-called dense multipath (DMC) [3] is taken

into account. The DMC explains the parts of the channel,

which cannot be estimated individually as paths, due to limited

measurement apperture and the complexity of the underlying

physical process. It captures a significant part of the rich

scattering that is crucial for achieving all the MIMO system

gains. Moreover, the model complexity is reduced. Instead

of attempting to estimate a very large number of individually

weak scattering components with a high-dimensional determin-

istic model (a superposition of propagation paths), the diffuse

scattering is modeled stochastically with a reduced number
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of parameters. This type of stochastic model—along with the

superposition of propagation paths—captures the essential

properties of the radio channel.

In this paper, a state-space approach is used for tracking the

dynamic radio propagation path parameters over time. A state-

space model is derived and an extended Kalman filter (EKF)

is applied for the parameter estimation of the nonlinear data

model. Another approach for the tracking of the dynamic space,

time, and frequency dependent MIMO radio channel was re-

cently proposed in [5] based on Particle Filter concept. How-

ever, in [5] the number of tracked paths is very limited and the

number of particles (5) per path is unrealistically low, leading to

an increased need for particle resampling. As the dimensionality

of the problem grows, these issues can be expected to increase

the computational complexity accordingly. In addition, the dif-

fuse scattering (DMC) was not considered in [5].

In this paper, the EKF is formulated in a specific, computation-

ally attractive form, enabling scalability for large state and mea-

surement dimensions. Realistic models for state noise covariance

and propagation are developed in order to capture the underlying

physical phenomena, to keep the computational complexity rea-

sonable, and to obtain an estimator with good statistical perfor-

mance in terms of estimation error (studied in [6] and [7]). In

particular a new model for the polarimetric path weights is in-

troduced, enabling the joint estimation and tracking of structural

(time-delays and angles) as well as weight (polarimetric path co-

efficients) parameters. This paper also introduces a novel method

for the dynamic adjustment of the state dimension by applying

statistical hypothesis tests for the goodness-of-fit. In addition, the

observation noise model describing DMC is extended to cover

spatial as well as temporal properties of the scattering component

in radio channels. The design of the observation and state-space

model is supported by examples obtained from mobile MIMO

channel sounding measurements.

The paper is structured as follows. In Section II, the concept

of measurement based realistic channel modeling and param-

eter estimation in MIMO systems is discussed. Section III ad-

dresses the philosophy behind the parametrization for the dy-

namic state-space model. In Section IV, the state-space model

is derived. Section V describes the sequential estimation proce-

dure stemming from the EKF. Model order estimation and the

adjustment of state dimension are considered as well. Section VI

presents estimation results with real-world data, and Section VII

concludes the paper.

The notation used throughout the paper is as follows.

• Upper case letters denote constants, and lower case denote

scalars.

• Boldface upper case letters (Roman or Greek) denote ma-

trices.

• Boldface lower case letters denote vectors (column, if not

stated otherwise).

• Superscripts and denote matrix transpose and Hermi-

tian transpose, respectively.

• Subscripts , and refer to transmitter, receiver and fre-

quency domains, respectively.

• The operators , and denote Kronecker, Schur, and

Khatri–Rao products, respectively.

Fig. 1. Description of the multiantenna communication, i.e., MIMO principle.
Our focus is on the estimation of the parameters ��� describing the time varying
channel matrix �.

• Vector denotes an estimate of at discrete time in-

stant .

• denotes a matrix valued function of vector

and matrix .

• Matrix denotes a identity matrix, denotes a

vector of ones, and denotes a matrix of zeros with

appropriate dimensions.

II. MIMO CHANNEL MODELING

A. Fading Radio Channels

It is well known that in mobile communications multipath

propagation severely affects the quality of the received signal in

any radio link. The base station receives the transmitted signal

from the mobile station via a line-of-sight (LOS) path, if present,

and multiple delayed copies from reflected, scattered, or dif-

fracted paths. In general, these paths impinge at the base sta-

tion antenna from different directions of arrival (DOA) corre-

sponding to specific directions of departure (DOD) at the mo-

bile station.

The superposition of the received signals causes frequency-

and space-selective fading. Due to user mobility and possible

movement of scatterers in the propagation environment, the

fading is also time-varying. Slow fading arises from path

shadowing (the LOS may be temporarily obscured by buildings

etc.), whereas fast fading is caused by self-interference under

multipath propagation. In general, the propagation path param-

eters of interest, including time delays of arrival (TDoA),

the directions of arrival (DoA) (azimuth), (eleva-

tion), the directions of departure (DoD) (azimuth),

(elevation), as well as the total number of relevant paths ,

are changing over time. This results in a random time-variant

channel impulse response (CIR).

Traditionally, fading is considered as a serious degradation

of the radio link. Recently, it has been discovered that using

multiple antennas at both transmitter and receiver combined

with appropriate space-time signal processing, the system

performance of mobile radio systems can be significantly

enhanced. Multiple-Input Multiple-Output (MIMO) commu-

nication systems [8], as depicted in Fig. 1, can benefit from

dispersive fading channels. The expected benefits include

increased capacity, range, and radio link quality as a result of

diversity, array and multiplexing gains, as well as interference

reduction using advanced signal processing. The goal of MIMO
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Fig. 2. Double directional radio channel model parameters for a single propa-
gation path. Tx denotes transmitter and Rx receiver.

space-time signal processing is to optimally exploit the spatial

diversity of multipath channels to obtain the above gains.

B. Double Directional MIMO Channel Model

To extract the spatial and temporal information of the MIMO

radio channel from measurements, the double directional

channel model [1] is employed. A part of the channel response

can be expressed as a superposition of propagation paths

(1)

where and are the nonlinear mappings of the angles of

arrival and departure to the antenna array

responses. The parameters denote the radio wave polariza-

tion coefficients (horizontal-to-horizontal , horizontal-to-

vertical , etc.). The meaning of the propagation path pa-

rameters is illustrated in Fig. 2.

In Section IV-C, the model for the DMC, describing the part

of the channel which is not approximated using concentrated

paths, is described.

C. MIMO Channel Sounding

MIMO radio channel measurements are obtained using

channel sounders [9]. A channel sounder measures the channel

at a certain bandwidth for each pair of transmit (Tx) and

receive (Rx) antennas. In practical channel sounding systems,

due to the large number of channels ,

the measurements are usually performed sequentially for each

Tx–Rx antenna pair. The timing of sequential channel sounding

measurements is shown in Fig. 3, where denotes

the sampling interval at sampling frequency , and is

the time taken to measure a full MIMO channel (snapshot).

Each channel is commonly measured twice to ensure stability

after switching. It should also be noted that the time between

snapshots is typically large compared to .

The data analyzed in this work has been measured with

MEDAV’s RUSK sounder [10] by Ilmenau Technical Univer-

sity, Ilmenau, Germany. This sounder relies on the multi carrier

spread spectrum waveforms. The number of measured channels

in the used setup was and the number of

effective frequency samples was (on a bandwidth

of 120 MHz). This results in

complex samples per snapshot. The time between snapshots in

Fig. 3. Typical structure of sequentially switched MIMO channel sounding
measurements.

this setup was 20 ms, with . The carrier

frequency was 5.2 GHz.

III. PARAMETRIZATION OF THE DYNAMIC MIMO

PROPAGATION CHANNEL

In this section, fundamental statistics of propagation path pa-

rameters observed in MIMO channel sounding measurements

and the state-space model used in this work are discussed. The

state-space model presented in this paper is a tradeoff between a

desired ideal description for approximating the electromagnetic

propagation as a sum of discrete far-field propagation paths,

versus a realistic modeling approach to achieve reliable and

identifiable parameter estimates under the influence of measure-

ment system limitations [3], [11].

The parameters describing the propagation paths are com-

prised of the structural parameters

(2)

related to the propagation environment geometry, and the path

weight parameters

(3)

For the full model, (dual polarized link ends). How-

ever, depending on the measurement setup, the number of ob-

servable path weights may be only .

A. Path Weight Parametrization

One of the challenges in parametric state-space modelling of
radio channel observations is the design of a proper model for
the complex path weight in (3). For the state-space model, the
path weights are parameterized as

(4)

This logarithmic parametrization is justified by the log-normal
fading (shadowing) of the path weight magnitudes and it also fa-
cilitates tracking of the phases of the path weights. Parametriza-
tion using real and imaginary parts of the path weights would
allow the parameters to be linear in the measurement equation,
whereas their prediction (state transition) would be nonlinear.
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Fig. 4. Illustration how � � ��� ��� �� parametrization for the path weight
yields a nearly normal distributed state transition process. Empirical densities
�� � are evaluated from estimated path weights from a dynamic MIMO
measurement in an urban scenario [14]. (a) Density of the change in the path
weight magnitude. (b) Density of the change in the logarithm of the path weight
magnitude.

This conclusion stems from the fact that, for typical measure-
ment rates and dynamics in the environment, the path weight
phase can evolve to any value (from to ) between the mea-
surements. Hence, the real and imaginary parts have effectively
zero mean over time.

1) Parametrization of Magnitude: Ideally, the model (1) de-
composes the radio channel into individual multipath compo-
nents, which implicitly do not suffer from fast fading resulting
from superposition of paths (rays). In practice, the resolution of
the measurement system limits this assumption.

Let us consider that the path weight magnitude would be pa-
rameterized using the absolute value instead of its loga-
rithm in (4). This is illustrated in Fig. 4, where the
empirical densities of the time evolution
and are shown. The tran-
sition Fig. 4(b) has nearly normal distribution, whereas

Fig. 4(a) has heavier tails and resembles more a Lapla-
cian distribution. Using the logarithm of the magnitude

as a parametrization yields an additive random walk
prediction model instead of a multiplicative one (as would be
the case for ). Hence, the magnitude fluctuation is better
captured. This observation agrees well with the approach used
e.g., in the COST 273 MIMO-radio channel model [12]. One
can also observe from Fig. 4(b), that a contaminated normal dis-
tribution [13] would have an even better fit, which results from
the fact that the estimates originate from nonstationary measure-
ments, where the variance of the process is not constant.

2) Parametrization of Phase: The phase change of a (nar-
rowband) propagation path component during one measurement
cycle (duration ) is related to the carrier frequency , relative
motion (projection of the terminal or scatterer movement, or
both), and the path length (delay) change as

(5)

Fig. 5. Empirical density of path weight change without and with prediction
using estimated��� parameters. Empirical densities �� � are evaluated from es-
timated path weights from a dynamic MIMO measurement in an urban scenario
[14]. (a) Density of the change in the path weight phase over a measurement. (b)
Density of the change of the fast varying component of �� after prediction. (c)
Density of the change of the slow varying component of ��, i.e., of the short
term average ���, after prediction.

where denotes the propagation speed of light. For example
a system with 5 GHz, 1 m/s and 20 ms
yields 120 . The relative frequency
of observed in a MIMO channel sounding
measurement is shown in Fig. 5(a). One would have to specify
the state noise variance to account for this variation caused by
a large deterministic change in phase from to . In prac-
tice the variation is so large that e.g., an EKF would fail to track
the phase reliably, due to the linearization used in the filter. The
solution is to include the slowly varying component (short
term average) of the phase change , in the phase-model.

In Fig. 5, the models for the path-weight phase, with and
without , are compared. In practice the phase change
is (in average over time) almost uniformly distributed in the in-
terval as shown in Fig. 5(a). However,

can be well approximated with a zero-mean Normal
distribution as shown in Fig. 5(b). The statistics of the change
of is shown in Fig. 5(c). As a conclusion, including
in the state enables reliable prediction of the path weights by al-
lowing the linearization of the model using the first order Taylor-
series approximation, employed in the EKF.
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B. Doppler Shift in Channel Sounding

The phase evolution of the signal could, in principle, be

interpreted as a normalized Doppler shift . The relation of

and the Doppler shift is given by ,

where denotes the principal angle. However, due to the

possible nonlinearity of the observed phase evolution, the esti-

mation of is ambiguous in .

This ambiguity is irrelevant while tracking , and the Doppler

shift can be inferred in postprocessing with careful analysis

since the trajectories and velocities of the receiver and trans-

mitter are known.

Due to the sequential measurement of the channels (see

Fig. 3), the effect of the Doppler shift could also be included in

a straightforward manner (see [3]) in the measurement model

of a single MIMO snapshot (Section IV-B). However, in the

measurement setup considered in this paper (see Section II-C)

this effect is negligible. The time taken to measure a snapshot

is 0.82 ms. For a relative velocity

of m/s, and carrier frequency , the

resulting phase difference between the first and the last channel

is 0.01 rad. This is effectively hidden

in the phase noise of the sounding system (see [15] and [16]).

Hence, with these assumptions, the Doppler shift can not be es-

timated reliably from a single snapshot. The Doppler correction

becomes a necessity in scenarios with high mobility relative to

the snapshot measurement time. In that case, even the sequence

of measuring the channels could be optimized; see [17].

C. Modeling the Dynamics of the System

To describe the state-space model of the propagation paths,

we propose the following structure for realistic and identifiable

modeling of the dynamics. The state vector (parameters to track)

at time is given by

(6)

where also the rate of change of the structural parameters

is introduced. The evolution of the state from a mea-

surement to the next one is modeled as

(7)

where the vectors denote the state noise. The last parameter

is the short-term average rate of change of the path weight

phases , which is common for all polarization coefficients of

a path. Tracking the rate of change parameters ( and )

is related to ARIMA time series modeling [18] (with autore-

gressive, moving average, and differencing orders of 1, 0, and

1, respectively). This observation results from the fact that the

-parameters are essentially used for differentiating the respec-

tive parameters over time, yielding a stationary process for the

state evolution.

The continuous-time dynamic equation [19] for a single path

can be expressed as

(8)

where the rate of change of the structural parameters as

well as the path weight parameters ( and ) are perturbed

by a white Normal distributed process . The process

has a power spectral density

(9)

where denotes a diagonal matrix with its vector argu-

ment as the diagonal elements. This choice for the process noise

model is motivated by the assumption that the noise dynamics of

the structural parameters (2) are governed by the (macro-scale)

motion of terminals and/or scatterers in the system (no in (9)),

whereas the path weight parameters are in addition subjected to

surface roughness (e.g., in reflections from walls), antenna vi-

bration, and other (micro-scale) disturbances (modeled by

and ).

The values of the power spectral density in (9) are essen-

tially filter design parameters. The selection and fine tuning of

these should be done according to the expected kinematics in the

system (for and ), empirically evaluated fading statis-

tics (for ), as well as balancing between smoothness of

the filtered estimates versus faster tracking. The former leads to

losing track of paths, whereas the latter gives higher variance but

enables robust performance and longer tracks. In addition, the

state noise term captures all the modeling uncertainties. Such

uncertainties are bound to be present because of highly com-

plicated propagation environments. For further reading on the

subject, see [19].

IV. STATE-SPACE MODEL

State-space modeling of radio channel propagation pa-

rameters is based on the observation that the parameters, if

properly chosen, evolve slowly w.r.t. the measurement in-

terval, i.e., they are correlated in time. The process can be

described using a Gauss–Markov model [20], i.e., denoting

the state of the system at time as , the probability

(density) of the next state depends only on the current

state , and is normal

distributed. The state-space model used in this paper consist

of the linear state equation, describing the dynamic behavior
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of the propagation parameters of paths, and a nonlinear

measurement equation, mapping the double-directional model

parameters to the channel sounder output data.

A. State Equations

The state vector is given by (6)

i.e., the number of parameters per path in the state is .

In channel sounding the observation interval is usually con-

stant. Thus, the time between observations can be normalized to

one and the discrete-time (linear and time invariant) state transi-

tion and state-noise covariance matrices can be solved in closed

form from (8) and (9) using the matrix fraction decomposition

(see the Appendix) [21]–[23].

The state transition matrix (for a single path, ) is given

by (8) and (37) as

(10)

where the submatrices are identity matrices of corresponding

dimensions.

The discrete-time state transition equation can be expressed

as

where is the state noise with covariance matrix

. The discrete time state noise covariance matrix (for )

is defined as

(11)

where the submatrices are given by (8), (9), and (39) as

(12)

(13)

(14)

with for

, and . The coefficients 1/3, 1/2,

and 1 in (12)–(14) result from solving (38). The extension of

the state equations (10) and (11) to multiple paths is

obtained with the Kronecker product as , and

.

B. Measurement Equations

The structural parameters (2) are related to the channel

sounder output through a complex shift operation [3]

...
...

The shift matrices are multiplied by the corresponding

system responses (provided by calibration

measurements), yielding

(15)

where is the normalized delay ( being the

sampling frequency). The system functions for the

antenna array responses are calculated from antenna calibration

measurements using the effective aperture distribution function

(EADF) [3], [9], [11]. The EADF is essentially a numerically

efficient, algebraic differentiable representation of the antenna

array manifold through a 2D-Fourier series expansion. To obtain

the frequency response of the system, e.g., a back-to-back

cable calibration measurement is required.

As discussed in Section III-B, depending on the measurement

setup and scenario, the (15) could also include a phasor due

to the Doppler shift (see [3]). In our measurement model (15),

this is not compensated for, due to assumed low mobility in the

measured radio environment with respect to the relatively short

time taken to measure all the antenna array ports (see Fig. 3).

Given the expressions for the basis functions (15), the matrix

valued function is defined as

(16)

Using (3) and (15), the propagation path parameters and are

mapped to an observation vector of length

with the double-directional channel model [sampled version of

(1)] as

(17)

The nonlinear measurement equation of the state-space model

is given by

(18)

where is the mapping (17) of the propagation paths param-

eters to the observation, and is a colored

noise process with a covariance matrix .
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C. Measurement Noise Process: Receiver Noise and DMC

The measurement noise covariance in the state-space model

consists not only of i.i.d. second order ergodic Normal dis-

tributed measurement noise, but also of the dense multipath

component (DMC) [3]. The DMC is caused by the various

sources of distributed diffuse scattering in the radio channel. In

earlier work [6], [7], [24]–[26] the DMC was assumed to be

white in the angular domain, and to have structure (exponential

decay) only in the delay domain, yielding

(19)

This model yields a computationally attractable solution to the

EKF equations. This assumption holds for the distribution of

scattered radio signals in e.g., many indoor scenarios. However,

it is not generally valid in outdoor environments, e.g., street

canyons, see [27]. The price to pay for this modelling inaccu-

racy is observed in the quality of the propagation path parameter

estimates, which utilize the estimated DMC as the underlying

noise process. Especially detection of new paths as well as path

quality assessment suffer from the DMC model inaccuracy.

In this paper a further step is taken in the modelling of the

DMC by allowing an unconstrained structure of the covariance

matrices ( and ) at both ends of the measured radio

channel. The only major assumptions regarding the structure

of the measurement covariance matrix are, that the covariance

of the DMC can be expressed as a Kronecker product of three

matrices, namely the covariance matrices for the Rx ,

Tx and frequency domains, and that there is

additive i.i.d. Normal-distributed measurement noise present.

This approach yields the expression for the shifted Kronecker

structured measurement covariance matrix as

(20)

Fig. 6(a) shows the power-delay profile (PDP) of the residual

(after removing specular like path estimates) av-

eraged over all Tx–Rx channels. Two simulated

PDPs are provided as well. The first simulation (approach 1)

is using angular-white DMC. The proposed model (approach 2)

[28] uses, as an example for the angular distribution, the von

Mises–Fisher [29] distribution. Both of them fit well to the mea-

sured PDP in the delay domain [Fig. 6(a)], but Fig. 6(b) reveals

significant difference in the angular domain. The approach 2

with von Mises–Fisher angular distribution is similar to the mea-

sured one, whereas the assumption on whiteness in angular do-

main (approach 1) is clearly not valid.

Solutions to the implementation challenges imposed by the

shifted Kronecker structure are omitted here due to limited

space (see [28] for details). The discussion in this paper concen-

trates on the estimation of the dominating propagation paths,

and the elements of the measurement covariance are assumed

to be obtained by another estimator [30].

V. PROPAGATION PATH PARAMETER ESTIMATION

The proposed parameter estimation procedure is comprised

of multiple estimators. The core of the algorithm, tracking the

Fig. 6. Illustration of different approaches to model DMC. In the delay domain
(a) both approaches 1 and 2 fit well to the measured DMC. In the angular domain
(b) approach 1 clearly fails to model the measured DMC, whereas the proposed
angular distribution (approach 2) fits well to the real-world measurement. (a)
PDP of DMC in the delay domain (averaged over Rx and Tx channels). (b)
Spatial PDP of DMC.

Fig. 7. Estimation procedure principle. The state vector ���� (as well as other
EKF system matrices) of previous time instant may have different dimensions

than the current one ���� .

propagation path parameters over time, is based on the EKF.

The approach for propagation path parameter estimation using

Kalman filtering was introduced in [31]. One of the limitations

of [31] is that the state dimension, which is proportional to

the number of paths, was kept fixed. This is unrealistic, since

new paths may appear and old paths disappear from observa-

tion to observation due to changes in the propagation environ-

ment or motion of the Tx or the Rx. Solving the resulting model

order selection problem by a full log-likelihood based detec-

tion scheme [32] would be infeasible due to the large number

of degrees of freedom involved. These issues were addressed in

[6], [7], [24] along with other improvements to the state-space

model. In this paper two one sided tests are proposed, one for

detecting new paths (test for underfitting), and another for eval-

uating the significance of the tracked paths (test for overfit-

ting). The tests for overfitting is applied after the EKF, and the

path estimates for which the test statistics remain below the

threshold are dropped from the state. The second test is ap-

plied for underfitting by searching new paths at each observation

using a correlation-based grid detector. These tests are discussed

in Section V-C. Also the DMC component, i.e., the covariance

matrix , is estimated separately [30]. A block diagram of

the developed estimation procedure is given in Fig. 7.
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A. Extended Kalman Filter

The propagation parameters are tracked using the Extended

Kalman Filter. The EKF uses Taylor series expansion to lin-

earize the nonlinear data model about the current estimates.

To apply the EKF one needs to compute the first-order partial

derivatives with respect to the parameters of the data model

, i.e., the Jacobian matrix,

which is derived for similar parameterization in [3]. To get com-

pact expressions for the EKF, one can define the first order par-

tial derivatives of the log-likelihood function of the measure-

ment model , namely the score function

(21)

and the expected value of the second order partial derivative of

, the Fisher information matrix

(22)

Using (21) and (22), the EKF equations can be formulated using

the “Alternative form of the discrete Kalman filter” [33]. The

results can be summarized as

(23)

(24)

(25)

(26)

(27)

where the Jacobian in (21) and (22) is evaluated at

. One should note that this formulation

of the EKF (23)–(27) does not explicitly solve for the Kalman

gain. Instead, the filtering error covariance (25) and

filtered state estimate (27) are essentially updated in the

information form. In addition to computational advantages,

this formulation of the EKF with (21) and (22) allows the

measurement , its covariance matrix as well as the

Jacobian matrix to be complex valued.

Finding the direct numerical solution of (21) and (22) is i)

computationally inefficient, and ii) often infeasible due to the

large dimensions of . Therefore, already in [3], algorithms

have been developed to compute (21) and (22) without forming

explicitly. They exploit the Tensor-structure of the data

(16). However, the algorithms were derived using the simplified

model for (19) and are therefore not directly applicable for the

problem at hand, which is using the generalized model for the

noise-covariance matrix (20). Algorithms for computing

and without forming explicitly the inverse of the shifted

Kronecker-product of the DMC model (20), and the full

matrix are described in [28].

Fig. 8. Statistics for the number of paths tracked (a), added (b), and dropped (c)
within a snapshot. The histograms stem from eight independent measurement
routes and over 27 000 snapshots.

B. Reinitialization of Path Weights During Tracking

If the number of polarization coefficients is more than

one, it may happen that the tracking of the phase of one or more

polarization coefficients is lost since the individual SNR (rela-

tive to that of the dominating polarization) is low. This is due

to the fact that the polarization coefficients may fade indepen-

dently [see, e.g., Fig. 13(a)]. The weak polarization coefficients

are denoted in the following by . The estimator (EKF) keeps

track of the paths using the contribution of the polarization coef-

ficients with high SNR, denoted in the following by . Since all

polarization coefficients of one path share the same , only

the weak polarization coefficients must be reinitialized.1 For

this purpose the best linear unbiased estimate (BLUE) for com-

puting the polarization weights can be applied as [3]

(28)

where , i.e., the effect of the domi-

nating estimates has been removed from the observation. Also

the values related to in the filtering error covariance matrix of

the EKF should be reinitialized. The BLUE for the path weights

(28) is also used for initializing new paths; see Section V-C.

C. State Dimension Adjustment

This section describes the procedure for choosing the state

dimension, i.e., the number of paths to track. This is essen-

tially a model order selection problem. In channel sounding the

number of tracked paths may be over 100 [see Fig. 8(a)], and

also changes slowly over time. An optimal solution to determine

would be to compare all different path combinations using a

likelihood-ratio test, but the number of combinations together

1The decision to reinitialize a coefficient can be based on e.g., thresholding
the estimated phase variance provided by the filtering error covariance matrix.
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with the required computation time to evaluate a single likeli-

hood function renders this approach infeasible.

In the following, a suboptimal solution using two one-sided

statistical tests is proposed. This approach has proven to perform

well in practice.

1) Initialization and Adding Paths to the State: Increasing

the number of paths to track (the state dimension) is performed

by a successive path cancellation (detect-estimate-cancel) prin-

ciple, i.e., the contribution of the strongest estimated paths is

removed until no more significant paths are detected.

The proposed detection scheme relies on a ML-based grid

search. In [3] it was shown that the likelihood function of the

measurement model (18) can be maximized by finding the struc-

tural parameters that maximize

(29)

where is defined as (16), and is defined as in

(18) and (20). Equation (29) is expressed in terms of the struc-

tural parameters (2) only. For evaluating (29), a detection grid

is formed. The grid consists of points in

the space of the structural parameters (2). The detection grid

should be selected such that it provides detection of a signifi-

cant path from the entire parameter space (as a rule of thumb

, and is sufficient). Then,

using the most recent propagation path estimates , the residual

(30)

is computed. To detect if there is a significant path present in the

residual (30), the test statistic (29)

(31)

is evaluated for each point in . The test hy-

potheses are : (path weight(s) corresponding to is

zero), and : ( has nonzero weight(s)). If the current

model fits well to the data ( holds), then (the

values are distributed with degrees of freedom).2

A new path is detected if the value exceeds a given

threshold , which can be determined for a specified proba-

bility of false alarm as

(32)

The initial parameters for a new path are estimated by

increasing the density of the grid in the vicinity of the detec-

tion point and evaluating (29) for this denser grid. The

structural parameters corresponding to the maximum value

in the denser grid are chosen as a new path estimate and the pa-

rameters ( is given by (28) using )

2 � � � � can be shown by setting � � � �, and

� � � � � �� ��� �� � in (29), and by using properties of projection
matrices [34].

are added to the state. Then the residual (30) is recomputed to

cancel the contribution of the new path from the data. The de-

tect-estimate-cancel steps are repeated until no additional sig-

nificant path is detected. After the search, the variance values

corresponding to the new detected paths in the EKF’s fil-

tering error covariance matrix (25) are initialized by evaluating

the inverse of the observed Fisher information matrix (22) at

.

In practice, one should limit the number of new paths per

snapshot to increase robustness against possible (temporary or

systematic) model mismatches. Fig. 8 shows an example of the

statistics on the number of paths and the change of in 8

measurement routes ( 27 000 snapshots).

2) Reducing the Number of Paths: Removal of unreliable

paths from the state is based on the Wald test [32]. The Wald

test is not directly applicable for the parametrization of the path

weights (4). Hence, the linear-scale path weight magnitudes are

chosen as the test parameters ,

with the test hypotheses for each path being and

. However, it can be shown (through the invariance

property of Fisher information matrix under reparametrization

[35]) that this is equivalent to path being valid (hypothesis

holding), when

(33)

where is the filtering error covariance matrix corre-

sponding to the columns and rows related to parameters , and

is the one transformed for the linear-scale

parameters . If the path is insignificant ( holds), then

is distributed with degrees of freedom. Thus,

can be chosen through the probability of falsely deciding an in-

significant path to be significant as

(34)

For the data model with , and , the

threshold would be .

It should be noted that both tests have computational com-

plexity low enough to run in a reasonable processing time along-

side the EKF. A flow chart summarizing the implemented algo-

rithm is presented in Fig. 9.

VI. ESTIMATION EXAMPLES

The algorithm has been implemented and tested with mea-

surement data from downtown Ilmenau, Germany. The mea-

surements were conducted with the RUSK Channel Sounder

[10] by Technical University of Ilmenau in 2004 [14]. The mea-

surement parameters are given in Table I, and the map of the

measurements is shown in Fig. 10.

A visualization of the algorithm performance is shown in

Fig. 11. The individual plots in Fig. 11 illustrate the power-

angular-delay profiles (PADPs) of the full measurement ,

as well as the PADP of the residual after removing the esti-

mated propagation paths , and the PADP

of the whitened residual respectively. The
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Fig. 9. Complete estimation procedure. The higher level concepts in Fig. 7 are
marked with areas I and II.

Fig. 10. Map of the measured Tx routes at downtown Ilmenau. R2 denotes the
position of the receiver.

TABLE I
MEASUREMENT PARAMETERS

PADPs are computed using beamforming for visualizing the an-

gular spectra yielding

(35)

where denotes the impulse responses of all

the Tx channels and the Rx channel, and is

Fig. 11. Power-Tx azimuth angle-delay profile of a measurement �� �, com-
pared with the residual after removing estimated propagation paths ��� �
� � ����� �� and the whitened residual ��� � � �� �. The profiles
are obtained via beamforming, and are averaged over all Rx channels.

the Tx steering vector (calibrated response of the antenna array)

for the angles and . The Hann-window was applied in

the discrete Fourier transformation to estimate the impulse re-

sponses from the frequency domain data. For illustration pur-

poses, the PADPs of and are scaled such that the average

noise power is 0 dB. The lowest plot shows that the whitened

residual indeed resembles white noise.

Fig. 12 shows the delay [Fig. 12(a)] and Tx azimuth angle

[Fig. 12(b)] estimates of all paths, as well as the total number of

estimated paths over time [Fig. 12(c)] from the route between

the points 17 and 29 in Fig. 10. The sum power of both polar-

izations (in decibels) is indicated by the color scale.

Fig. 13 illustrates the estimates of the path weight compo-

nents of a single path over about 450 snapshots. The figures

show the magnitude [Fig. 13(a)], as well as the evolution of the

phase [Fig. 13(b)], and the phase prediction error [Fig. 13(c)]

for the vertical-to-vertical (VV) and vertical-to-horizontal (VH)

polarization components. The solid line in Fig. 13(b) denotes

the estimated parameter. The phase evolution of both po-

larization components in Fig. 13(b) clearly has the same trend

, which supports the assumption of a common for both

components (related to the Doppler shift, see Section III-B).

Fig. 13(c) shows the difference between predicted and filtered

path weight phase estimates. The solid and dashed lines denote

the estimated (by EKF) confidence intervals for both VV

and VH polarizations. Comparing these curves to the magni-

tudes in Fig. 13(a), it can be observed that the phase error esti-

mate is clearly higher at points where the magnitude of the cor-

responding (VV or VH) component experiences deeper fading

(e.g., after 21 s for VH polarization and at about 18 s for VV

polarization).

Fig. 14 shows the tracks of estimated delay and Tx azimuth

angle for a single path among the estimates in Fig. 12. Based

on the estimates, this particular path is being tracked while the
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Fig. 12. Example plots of the discrete path delay (a) and Tx azimuth (b) esti-
mates as well as the total number of tracked paths (c) from the route (of more
than 5000 snapshots) between the points 17 and 29 in Fig. 10. The color indi-
cates the sum power of polarization components. Both, the line of sight (bright
yellow, increasing delay, � � �20 ) and reflected paths (red, decreasing
delay, � �� �20 ) can be identified. The line of sight path is lost at � � 95 s
as the Tx moves behind a corner.

Tx moves besides a point of reflection. Fig. 14(a) also indi-

cates a clear relationship between the change in the propagation

delay of a path and the evolution of the path weight phase [see

also (5)].

VII. CONCLUSION

This paper introduces a novel approach to the sequential

estimation of propagation path parameters from MIMO channel

sounding measurements. A state-space model including all path

parameters is developed, and a computationally attractive form

of the EKF is introduced, allowing scalability in terms of both

the state and measurement dimensions. Furthermore, a statistical

approach is introduced to detect new propagation paths as well

as to remove disappeared paths. The importance of the path

weight parametrization, as well as a proper phase prediction is

addressed. In addition, introducing unconstrained Rx and Tx co-

variance matrices for the DMC process improves the estimation

of the propagation path parameter estimates, and enhances the

reliability of the model order selection (detection and removal of

paths). The estimation examples support the applicability of the

proposed methods for capturing the dynamic behavior of MIMO

Fig. 13. Example of an estimated path weight from a real measurement. Figures
show the magnitude (a), as well as the evolution of the phase (b), and the phase
prediction error (c) for a single path tracked for over 800 snapshots.

Fig. 14. Examples of the parameter estimates of a single path. The tracks of the
delay � (a) as well as the Tx azimuth angle � (b) estimates indicate that the
path was tracked while Tx was passing some point of reflection. The fluctuation
in the track of the delay � may be caused by the � value being too low (for
this particular path), leading to slow tracking. In (a) also the relation (5) of the
path weight phase change parameter ��� to the delay � is illustrated.
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channels, which is crucial in developing realistic channel models

for mobile MIMO communication systems.

APPENDIX

MATRIX FRACTION DECOMPOSITION FOR

DISCRETIZING THE STATE EQUATIONS

The discrete state transition and state noise covariance ma-

trices can be obtained as follows [21]. The continuous time dif-

ferential equation (8) can be written as

(36)

Given the matrices and (see (8) and (36)) as well as the

power spectral density of the noise (9), the discrete time state

transition matrix is defined as

(37)

and the state noise covariance matrix as

(38)

The matrix can be solved efficiently using the following ma-

trix fraction decomposition [21]

(39)
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