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Abstract

We consider the problem of detection and tracking of multiple people in crowded

street scenes. State-of-the-art methods perform well in scenes with relatively few peo-

ple, but are severely challenged by scenes with many subjects that partially occlude each

other. This limitation is due to the fact that current people detectors fail when persons are

strongly occluded. We observe that typical occlusions are due to overlaps between people

and propose a people detector tailored to various occlusion levels. Instead of treating par-

tial occlusions as distractions, we leverage the fact that person/person occlusions result

in very characteristic appearance patterns that can help to improve detection results. We

demonstrate the performance of our occlusion-aware person detector on a new dataset

of people with controlled but severe levels of occlusion and on two challenging publicly

available benchmarks outperforming single person detectors in each case.

1 Introduction

Single people detectors such as the powerful deformable part models (DPM, [10]) have

shown promising results on challenging datasets. However, it is well known that current

detectors fail to robustly detect people in the presence of significant partial occlusions. In

fact, as we analyze in this paper, the DPM detector starts to break already at about 20%

of occlusion and beyond 40% of occlusion the detection of occluded people becomes mere

chance. Several methods, i.e. tracking and 3D scene reasoning approaches, have been pro-

posed to track people even in the presence of long-term occlusions. While these approaches

allow to reason across potentially long-term and full occlusions they still require that each

person is sufficiently visible at least for a certain number of frames. In many real scenes

however, e.g. when people walk side-by-side across a pedestrian crossing (see Fig. 1), a

significant number of people will be occluded by 50% and more for the entire sequence.

To address this problem this paper makes three main contributions. First we propose a

new double-person detector that allows to predict bounding boxes of two people even when

they occlude each other by 50% or more, and propose a new training method for this de-

tector. This approach outperforms single-person detectors by a large margin in the presence

of significant partial occlusions (Sec. 3). Second, we propose a joint person detector, that is

jointly trained to detect single- as well as two-people in the presence of occlusions. This joint

detector achieves state-of-the-art performance on challenging and realistic datasets (Sec. 4).
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Figure 1: Detection results at equal error rate obtained with the approach of [4] (top) and our

joint detector (bottom) on the TUD-Crossing [1] dataset. False-positive detections are shown

in red and missing detections in green. One of the two bounding boxes predicted from the

two-person detection is shown with the dotted line.

Last, we integrate the above joint model into a tracking approach to show its potential for

people detection and tracking (Sec. 5).

2 Related Work

Recent methods to track people [3, 6, 11, 18] employ people detectors to generate initial

tracking hypotheses, and often include elaborate strategies to link people tracks across oc-

clusion events. However, they typically fail to track people that remain significantly occluded

for the entire sequence. To overcome this limitation we propose a people detection approach

that can detect and predict the position of even severely occluded people. State-of-the-art

approaches to people detection [7, 10] are able to reliably detect people under a variety of

imaging conditions, people poses, and appearance. While being effective when people are

fully visible, their performance degrades when people become partially occluded. Various

remedies have been proposed, including a combination of multiple detection components

[10], large number of part detectors (Poselets) [5], and careful reasoning about association

of image evidence to detection hypotheses [4, 12, 16]. [12] proposed an approach that first

aggregates evidence from local image features into a probabilistic figure-ground segmen-

tation and then relies on an MDL formulation to assign foreground regions to detection

hypotheses. [4] proposed a probabilistic formulation of the generalized Hough transform

that prevents association of the same image evidence to multiple person hypotheses. These

approaches treat partial occlusion as nuisance and perform decisions based on the image evi-

dence that corresponds to the visible part of the person. This makes them unreliable in cases

of severe occlusions (i.e. more than 50% of the person occluded). Several works have aimed

at improving such weak detections using information from additional sensing modalities [8]

or by joint reasoning about people hypotheses and 3D scene layout [17]. In [17], a bank of

partial people detectors is used to generate initial proposals that are refined based on the 3D

scene layout and temporal reasoning.

Here, we explore an alternative strategy, observing that in crowded street scenes most oc-

clusions happen due to overlaps between people. Instead of using evidence from individual

people that becomes unreliable in cases of severe occlusion, we consider the joint evidence

of both people. This is possible since overlapping people result in characteristic appearance

patterns that are otherwise uncommon. Our approach is related to the “visual phrases” ap-

proach [9] in that we train a joint detector for the combination of two object instances. Our
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(a) (b) (c) (d)

Figure 2: Procedure to synthetically generate training images for our double-person detector.

(a) background person, (b) foreground person, (c) foreground person map, (d) generated

synthetic training image.

approach builds on the state-of-the-art people detector of [10], which we extend in two ways.

First, we propose a double-person detector that simultaneously detects two people occluding

each other and second, we propose a joint detector that can detect both one as well as two

people due to joint training. To capture typical appearance patterns of people occluding each

other we automatically generate a dataset of training images with controlled and varying de-

grees of occlusion. In this respect our work is also related to a recent literature that combines

real and artificially generated images to train people detectors [13, 14].

3 Double-Person Detector

Our double-person detector builds on the DPM approach [10] arguably one of the most

powerful object detectors today. The key concept of our double-person model is that per-

son/person occlusion patterns are explicitly used and trained to detect the presence of two

people rather than to treat these occlusions as distractions or nuisance as it is typically done.

Specifically, our double-person detector shares the deformable parts across two people which

belong to the same (two-person) root filter. In that way localizing one person facilitates the

localization of the counterpart in the presence of severe occlusions and the deformable parts

allow to improve the localization accuracy of both people using the above mentioned oc-

clusion patterns whenever appropriate. For this we build on the DPM framework to detect

the presence of two people and to predict the bounding boxes of both people, the occlud-

ing person as well as the occluded person. The latent SVM algorithm used to train DPMs

is susceptible to local minima. Therefore, proper initialization is crucial, as discussed be-

low. For training, we synthetically generate two-people samples based on the TUD training

data [1]. The synthetic images are ideal for training as they come with accurate occlusion-

level estimates. We demonstrate experimentally that our double-person detector significantly

outperforms a single-person detector in the presence of severe occlusions.

Double-person detector model: In full analogy to DPMs, our double-person detector uses

a mixture of components. Each component is a star model consisting of a root filter defin-

ing the coarse location of two people and n deformable part filters covering representative

parts and occlusion patterns of the two people. The vector of latent variables is given by

z = (c, p0, . . . , pn) with c denoting the mixture component and pi specifies the part’s image

position and feature pyramid level li. The score of a double-person hypothesis is obtained by

the score of each filter at the latent position pi (unary potentials) minus the deformation cost

between root position and part position (pairwise potentials). As in [10], the un-normalized

score of a double-person hypothesis is defined by 〈β ,Ψ(x,z)〉, where vector β is a concatena-

tion of the root and all part filters and the deformation parameters, and Ψ(x,z) is the stacked

HOG features and part displacement features of sample x. Ψ(x,z) is zero except for a certain
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Figure 3: Examples of synthetically generated training images. From (a) to (f), levels of

occlusion are gradually increased.

component c. Therefore, we obtain the construction 〈β ,Ψ(x,z)〉 = 〈βc,ψc(x,z)〉. Detection

in the test image is done by maximizing over the latent variables z: argmax(z)〈β ,Ψ(x,z)〉.

Model training: Given a set of training examples D = (〈x1,y1〉, . . . ,〈xN ,yN〉), with yi ∈
{−1,1}, we learn the model parameters β using latent SVM [10]. This involves iteratively

solving the quadratic program:

min
β ,ξ≥0

1

2
‖β‖2 +C ΣN

i=1ξi sb.t. yi〈β ,Ψ(xi,z)〉 ≥ 1−ξi ξi ≥ 0, (1)

and optimizing for the values of latent parameters z. We solve the quadratic program with

the stochastic gradient descent and employ data-mining of hard-negative examples after each

optimization round as proposed in [10].

Initialization: The objective function of the latent SVM is non-convex, which makes the

training algorithm susceptible to local minima. Therefore, a good initialization of the model

components is crucial for good performance. Instead of relying on the bounding box aspect

ratio as in [10], we initialize our model using different occlusion levels. This follows the

intuition that degree of occlusion is one of the major sources of the appearance variability,

and we capture it by different components. Other sources of appearance variability such

as poses of people and varying clothing are then captured by displacement and appearance

parameters of each component. In the experiments reported below we rely on the three

component double-person model. The components are initialized with the occlusion levels

0%–25%, 25%–55%, and 55%–85%.

Bounding box predictions: Given a double-person detection we predict the bounding boxes

of individual people using a linear regression. The location of each bounding box is modelled

as
Bi = gi(z)

Tαc + εi, (2)

where Bi is the predicted bounding box for a detection i, c is the index of the DPM component

that generated the detection, and gi(z) is a 2 ∗ n+ 3 dimensional vector that is constructed

by the upper left corners of the root filter and the n part filters as well as the width of the

root filter. εi is a Gaussian noise that models deviations between the predicted and observed

location of the bounding box.

The regression coefficients αc are estimated from all positive examples of the compo-

nent c. For each of the model components we estimate two separate regression models that

correspond to each of the persons in the double-person detection. This procedure allows to

accurately localize both people despite severe occlusions as can be seen e.g. in Fig. 5.

Training data generation: As it is difficult to obtain sufficient training data for the different

occlusion levels of our double-person detector we synthetically generate it. Fig. 2 illustrates

this process. For each person we first extract the silhouette based on the annotated fore-

ground person map. Next, another single-person image is selected arbitrarily and combined
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Figure 4: Detection performance of single- and double-person detectors for different occlu-

sion levels.

Figure 5: Qualitative comparison of single- and double-person detectors with occlusion.

with the extracted silhouettes. In order to generate a double-person training dataset we ran-

domly select background images, 2D positions and scale parameters. Each synthetic image

provides an accurate occlusion ratio estimated from the two persons’ silhouettes. For the

experiments reported below we generate 1,300 double-person training images from the 400

TUD training images [1]. For the synthetic dataset we uniformly sample occlusion levels

between 0% and 85%, and scale factors between 0.9 and 1.1.

Experimental study: In order to explicitly compare single-person and double-person detec-

tor performance for person/person occlusion scenarios, we captured several video sequences

and constructed a new double-person dataset (850 images) where the images are categorized

by different occlusion levels. The occlusion level is estimated from 2D truncated quadrics

which are constructed from stick-man annotation1 .

Single-person detector: Fig. 4(a) shows the performance of the standard DPM single-

person detector on our double-person dataset. In case of little partial occlusion (red curve,

below 5%), the single-person detector obtains good performance both in terms of recall (up

to 90% recall) as well as a high precision. However, the single person detector already misses

many people when the occlusion level is increased up to 15% (blue curve, maximal recall

below 80%), and further decreases in the presence of more occlusion. When the occlusion

level is 35% or more, the achieved recall is only slightly above 50% clearly indicating that

in most cases only one of the two people is correctly detected.

Double-person detector: Fig. 4(b) shows the performance of our proposed double-person

detector. For almost all occlusion levels the detector allows to reach 100% recall which is

clearly a significant improvement over the single person detector. Interestingly, for the low-

est occlusion level (red curve, up to 5%) we loose some recall which can be explained by

1The training and test datasets are available at www.d2.mpi-inf.mpg.de/datasets

www.d2.mpi-inf.mpg.de/datasets
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the difficulty to differentiate a single person that does not occlude a second person from the

case that a person occludes a second person significantly (e.g. 80%) (see for an example of

80% occlusion Fig. 5). At the same time the precision is very high for all but the highest

occlusion level (green line, up to 85%). From this experiment we conclude that our double-

person detector is much more robust than the single-person detector and obtains excellent

performance both in terms of recall and precision even for the heavy occlusion cases. Single

person localization (bounding boxes prediction) is not a trivial task especially for intermedi-

ate occlusion level cases (30% ∼ 60%), since we observe fair evidence from both persons,

which can be distracting for single bounding box localization. However, the results shows

that our double-person detector accurately and robustly predicts the single bounding box for

the above mentioned case as well. Fig. 5 shows comparative qualitative results. For the same

test examples, our double-person detector correctly detects the position of two persons and

predicts their respective bounding box with high accuracy.

4 Multi-Person Detection

The previous section has shown that our double-person detector can indeed outperform a

single person detector when people occlude each other by 25% or more. The employed

dataset however was somewhat idealistic as it contained exactly two people that occluded

each other at various degrees. In realistic datasets we will have both single people that

are fully visible and two and more people that occlude each other. This section therefore

proposes a detector that combines both single and two-person detectors into a single model

that is jointly trained. The model is again built upon the DPM-approach where the role of

the different components is now to differentiate both between single and two people as well

as between different occlusion levels among two people.

4.1 Joint Person Detector

We jointly train single- and double-person detectors by representing them as different com-

ponents of the DPM. We allocate 3 components for the double detector and 3 components

for the single-person detector, which after mirroring results in a 12 component DPM model.

Similarly to Sec. 3 we initialize the double-person components with training examples cor-

responding to gradually increasing levels of occlusion. For the single-detector components

we rely on the standard initialization based on the bounding box aspect ratio. During learn-

ing we allow training examples to be reassigned to other components of the DPM model,

but prevent assignments of 2-person examples to 1-person components and vise versa. We

found this to be important to improve detection of two people in cases of particularly strong

occlusion, that are otherwise often incorrectly handled by the single-person components.

Training data: We train our joint detector on the combination of 1-person and 2-person

training sets described in Sec. 3, but slightly modify the initial assignment of images to the

DPM components. We assign training images with less than 5% occlusion to the single-

person training dataset, since in that case the single-person detector already obtains high

performance for both people. We initialize the 3 double-person DPM components with im-

ages corresponding to occlusion levels: 5%–25%, 25%−55%, and 55%−75%.

Non-maximum suppression (NMS): The non-maximum suppression in the joint detector

is more complicated than in the standard DPM since we have bounding box predictions

from two different types of detections (single and two-person detections) as well as strongly
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overlapping bounding box predictions from our two-person components. We thus imple-

ment NMS in two steps. The first step is performed prior to bounding box prediction and

already removes a large portion of multiple detections on the same person. In this first

step two-people detections and single-person detections compete and suppress each other

depending on the respective score. The remaining multiple detections are either due to mul-

tiple two-person detections in cases when more than two people appear close to each other

(e.g. rightmost tree people in the fourth image in Fig. 1) or detections with significantly dif-

ferent bounding box aspect ratios. Given the reduced set of hypotheses after the first round

of NMS, we perform bounding box prediction followed by the second round of NMS. This

second step corresponds to the NMS typically performed for DPM [10]. The second round is

done independently for single-person and two-person components of DPM, as we found that

one-person detections may incorrectly suppress two-person detections otherwise. During

NMS of detections from the two-person components we additionally prevent two bounding

boxes predicted from the same double-person detection from suppressing each other. As an

illustrative example, we could correctly detect all three people in the fourth image on Fig.

1 despite strong occlusion of the middle person. In that case the single-person detections

where predicted from two double-person detections and multiple detections on the middle

person were correctly removed by the second stage of the non-maximum suppression.

4.2 Results

We evaluate the performance of our joint detector on two publicly available datasets, “TUD-

Pedestrians” and “TUD-Crossing”, originally introduced in [1]. “TUD-Pedestrians” contains

250 images of typical street scenes with 311 people all of which are fully visible. “TUD-

Crossing” contains a sequence of 201 images with 1008 annotated people that frequently

occlude each other partially or even fully. To capture the full range of occlusions we extended

the annotations of the “TUD Crossing” dataset to include also strongly occluded people,

which resulted in 1186 annotated people.

We begin our analysis with the “TUD-Pedestrians” dataset. Detection results are shown

in Fig. 6(a) as recall-precision curves. Since this dataset does not contain any occluded peo-

ple our double-person detector (Sec. 3) generates numerous false positives interpreting each

person as a pair of people one of which is severely occluded. As expected the single-person

detector performs well on this dataset, achieving an equal error rate (EER) of 87% . The joint

detector slightly improves over the single person detector achieving 90.5% EER. This result

is a bit surprising because the joint detector is trained to solve a more difficult problem of

detecting both fully visible and partially occluded people. We attribute the improvement of

the joint detector to the training set that in addition to real images has been augmented with

artificial training examples (c.f. Sec. 3). This parallels the recent results on using artificially

genertated data for training of people detection and pose estimation models [14, 15].

The evaluation on “TUD Pedestrian” demonstrates that integrating single- and double-

person detectors within the same model does not result in a performance penalty in the case

when people are fully visible.

In order to assess the joint detector in realistic scenes that contain both occluded and

fully visible people we evaluate its performance on the TUD-Crossing dataset. Quantita-

tive results are shown on Fig. 6(b) and a few example images on Fig. 1 (bottom row). First

we compare the performance of single and double-person detectors, which achieve approxi-

mately the same EER of 76%. The double-person detector achieves higher recall compared

to the single-person detector, being able to detect even strongly occluded people. However
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Figure 6: Detection performance on TUD-Pedestrians (a) and TUD-Crossing (b).

the precision of the double-person detector suffers from multiple detections on fully visible

people. The single-person detector produces fewer false positive detections, but also fails to

detect occluded people, saturating at a recall of 76%. Finally, the joint detector significantly

improves over both single and double person detectors achieving an EER of 83%. Note, that

while demonstrating overall improvement, the joint detector has a somewhat lower perfor-

mance in the high precision area compared to the single person detector. Inspecting the false

positives of the joint detector with highest scores reveals that most of them correspond to

cases when one-person and two-person components of the detector fired simultaneously on

the same pair of people, but these detections where sufficiently far from each other to persist

through the non-maximum suppression step (e.g. false positive detection in the first image

on Fig. 1).

Finally, we compare the performance of our approach with the Hough transform based

detector of [4], which is specifically designed to be robust to partial occlusions. The authors

of [4] kindly provided us their detector output (in terms of bounding boxes) which allows

to compare their result on our full ground-truth annotations making these results directly

comparable to the rest of our experiments (Fig. 6(b)). The approach of [4] improves over the

single-person detector in terms of final recall, but loses some precision, likely because their

local features are rather weak compared to the discriminatively trained DPM model. Our

joint model outperforms the approach of [4] by a large margin. Fig. 1 shows a few example

frames from the “TUD-Crossing” sequence, comparing our joint detector with the results of

[4]. Note that our approach is able to correctly detect occluded people in the presence of very

little image evidence (e.g. three pairs of people in the second image), whereas the approach

of [4] fails in such cases. At the same time our approach also correctly handles detection of

single people (e.g. second and third images).

5 Multi-Person Tracking

This section compares the performances of a single-person and the joint detector (Sec. 4)

in the context of multiple people tracking. To that end we employ the people tracking-by-

detection formulation of [2]. Given the set of detections in frame j as h j = [h1, . . . ,hN j
], we

find people tracks by finding sequences H of hypotheses that maximize the objective:

p(H) = pdet(h
1
j1
)

T

∏
k=2

ptrans(h
k−1
jk−1

,hk
jk
)pdet(h

k
jk
), (3)

where pdet(h) is the probability of correct detection and ptrans(h1,h2) is the probability that

hypotheses h1 and h2 correspond to the same person in subsequent frames. Tracking pro-

ceeds by maximizing Eq. 3 subject to the constraint that none of the transition probabilities

falls below a predefined threshold τtrans. At each iteration the longest track that does not
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Figure 7: Tracking-by-detection results on the TUD-Crossing dataset with single-person

detector (top row) and our joint detector (bottom row). Colors and numbers indicate tracks

corresponding to different people.

violate this constraint is returned and all detection hypotheses overlapping with the found

track are removed from further consideration. The maximization of Eq. 3 is repeated until

all hypotheses are removed. Similarly to [2] we model ptrans(h1,h2) as Gaussian distribu-

tion with respect to differences in position and scale of the detections and set pdet(h) to the

exponent of the score of h returned by the person detector. We keep the tracking parameters

as in [2] and set τtrans = exp(−5), which achieves a reasonable trade-off between obtaining

longer tracks while preventing tracks to drift from one person to another. The resulting set of

tracks will typically contain a few long tracks corresponding to correct detections of people,

but will also include a large number of short tracks which result from spurious detections

in background and occasional detections at significantly wrong scale. In order filter of such

spurious tracks we remove all tracks of length smaller than 10 from further consideration.

We apply the above tracking-by-detection approach without modifications both to the

output of the single-person and the joint detectors. The set of hypotheses in each frame is

given by the output of the detectors prior to non-maximum suppression. In the case of the

joint detector any hypothesis hi corresponds either to one person or two people, depending on

the detector component. Since the single-person and two-person detection components are

trained jointly we expect their detection scores to be comparable, and let the temporal infer-

ence decide which component to choose. Given the final set of tracks we then predict people

bounding boxes for all two-person hypotheses using the procedure described in Sec. 4.

Fig 7 shows sample frames visualizing the tracking results. Note, that tracker based on

the single-person detector is able to recover tracks of people even under significant partial

occlusions (e.g. track 5 in the first image and track 6 in the second image). However, it fails

when people become strongly occluded as for example the person behind track 28 in the first

image or tracks 16 and 39 in the fourth image. The tracker based on the joint detector is able

to correctly track people even in such difficult cases clearly showing the potential of using

our joint detector as the basis for multi-people tracking in scenes with many people and in

the presence of severe occlusions.

6 Conclusion

Occlusion handling is a notorious problem in computer vision that typically requires careful

reasoning about relationships between objects in the scene. Building on the state-of-the-art

DPM detector [10], we developed a joint model that is trained to detect single people as

well as pairs of people under varying degrees of occlusion. In contrast to standard people
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detectors that treat occlusions as nuisance and degrade quickly in the presence of strong

occlusions, our detector is specifically trained to capture various occlusion patterns. Our

joint detector significantly improves over a single-person detector when detecting people in

crowded street scenes, without loosing performance on images with one person only. On the

challenging TUD-Crossing benchmark our joint detector improves the previously best result

of [4] from 73% to 83% EER. Finally, we have demonstrated the effectiveness of our joint

detector as a building block for tracking-by-detection. We envision that our approach can

be applicable to detection of multiple people in various domains (e.g. surveillance videos or

sports scenes) and can be used as a building block for tracking-by-detection, pose estimation,

and activity recognition in multi-people scenes.

Acknowledgement: We would like to thank Bojan Pepik for the code and helpful discus-

sions on DPM.
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