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1 Introduction

Coherent structures are a key component of unsteady flows 

such as propulsive wakes, flow separation, and instabilities 

in shear layers (Berson et al. 2009). They play a key role in 

fluid mixing and instabilities, kinetic energy production and 

dissipation, mass transport and diffusion, etc. The detection 

of vortices helps to explain the basic physics of turbulent 

motions and to improve turbulent flow modeling, predic-

tion, and control design and implementation. Consequently, 

it benefits the design of high-lift devices, mixing progress 

in power engines, or artificial adaptation of biological flex-

ible control surfaces (Cucitore et al. 1999; Eldredge and 

Chong 2010).

Although the identification and tracking of vortices is 

not a new problem, a widely accepted, objective definition 

of a vortex and its boundaries remains elusive (Jeong and 

Hussain 1995). In the past, different vortex identification 

criteria have been used as analysis tools in many unsteady 

aerodynamic problems. In particular, understanding the 

unsteady aerodynamics associated with flow over a wing 

or fin oscillating in a pitching and/or heaving motion 

continues to receive significant attention as a research 

area. Pitching and heaving propulsive surfaces that are 

involved in gusts and agile maneuvering are susceptible 

to unsteady laminar separation, which can either enhance 

or destroy the lift. Certain animals (Sane 2003; Żbikowski 

2002; Videler et al. 2004) use these motions to maintain 

the high transient lift associated with a rapid pitch-up. 

The leading-edge vortex formation in unsteady flow pro-

vides temporarily enhanced lift and decreased pitch-

ing moment, but causes dramatic lift loss upon shedding 

(Smith et al. 2005; Brunton and Rowley 2009). The oscil-

lating motion in unsteady flow will generate a nominally 

two-dimensional thrust-producing reverse von Kármán 
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street (high-aspect-ratio bodies) (Triantafyllou et al. 2000; 

Koochesfahani 1989; Anderson et al. 1998) or a highly 

three-dimensional wake (low-aspect-ratio bodies) (Dong 

et al. 2006; Buchholz and Smits 2006, 2008; Borazjani 

and Sotiropoulos 2010). Wake dynamics downstream of 

the fluid-structure interaction can reflect the forcing his-

tory of the body (Young and Lai 2007). Therefore, qualita-

tive and quantitative descriptions of the vortex dynamics in 

unsteady flow can provide insight into the physical mecha-

nisms of lift generation and balance (Magill et al. 2003), 

which can then lead to improved models for the design 

of biometric propulsions for underwater vehicles and fish 

habitat structures (Ol et al. 2005; Kaplan et al. 2007; Ahuja 

et al. 2007; Brunton and Rowley 2009).

Study of the role of vortex formation, shedding, and 

breaking down in the lift histories of pitching flat plates (as 

models of fins) has been previously carried out both com-

putationally and experimentally (Buchholz and Smits 2006, 

2008; Green and Smits 2008). This classic case is a first, 

fundamental step toward understanding the more com-

plicated unsteady flow (Ringuette et al. 2007). Ellington 

(1984) found that the extra circulation of the leading-edge 

vortex formed during the early stages translating at large 

angle of attack generates the necessary lift. Wang (2000) 

investigated the connection between flapping cycle and 

lift loss that accompanies a vortex shedding event. Buch-

holz and Smits (2008) used the vortex topology in the wake 

of a rectangular pitching panel to study the connections 

between the kinematic parameters and force augmentation. 

Pitt Ford and Babinsky (2013) used dye flow visualization, 

particle image velocimetry (PIV), and force measurements 

to investigate the influence of leading-edge vortex (LEV) 

and trailing-edge vortex (TEV) circulation and position 

on the lift history of an accelerating flat plate. Arora et al. 

(2014) studied the roles of LEV and TEV with respect to 

lift and drag evolution with a “clap and fling” stroke. How-

ever, there is a corresponding lack of fundamental research 

based on direct vortex detection of these cases at the appro-

priate low-to-moderate Reynolds numbers. While there is a 

wealth of previous work correlating the dynamics of TEV 

and LEV shedding to the fluctuating forces on fin-like sur-

faces, more work is needed to track these vortex structures 

automatically and to determine when and how they shed.

Lagrangian methods for coherent structure identification 

can be applied to reveal dynamic features of aerodynamically 

and biologically relevant flows, with data obtained experi-

mentally or computationally. Lagrangian coherent structures 

(LCS) have been used in computational studies of turbu-

lence (Green et al. 2007; Mathur et al. 2007; Yang and Pul-

lin 2011), vortex shedding behind an airfoil (Lipinski et al. 

2008; Cardwell and Mohseni 2008), n-dimensional flows 

(Lekien et al. 2007), and the evolution of a single hairpin 

vortex in a turbulent channel simulation. Using Lagrangian 

methods, Shadden et al. (2006) studied the entrainment and 

detrainment of an empirical vortex ring, as well as in the 

vicinity of a free-swimming Aurelia aurita jellyfish during 

its recovery stroke. Peng and Dabiri (2008, 2009) studied the 

entrainment regions of a flexible flat plate swimming in an 

inviscid fluid to investigate the capture region of free-swim-

ming jellyfish and predator–prey interactions between jelly-

fish and their planktonic prey. Brunton and Rowley (2009) 

used LCS to visualize the wake of a flat plate either fixed 

or undergoing oscillatory pitching and plunging kinematics 

in a freestream with Reynolds number 100. Lagrangian vor-

tex identification has played a role in experimental studies 

as well, such as in the currents of Monterey Bay (Shadden 

et al. 2009), unsteady separation (Weldon et al. 2008), and 

two-dimensional turbulence (Voth et al. 2002). Green et al. 

(2010) used LCS to investigate the evolution of vortical 

structures in the wakes of rigid pitching panels with a trap-

ezoidal planform geometry chosen to model idealized fish 

caudal fins. O’Farrell and Dabiri (2014) used Lagrangian 

methods on both numerical and experimental data to study 

the vortex formation and pinch-off qualitatively and quanti-

tatively in starting jets. In each of these cases, LCS was used 

to help identify and to add the description of the dynamics of 

different vortex-dominated flow fields. As the amount of data 

from numerical and experimental studies grows, however, 

the development of automated procedures that can handle 

the velocity data directly for vortex identification becomes 

more critical (Chong et al. 1990).

In this work, vortex visualization and tracking using 

both Eulerian and Lagrangian methods are applied to two 

example data sets. The first is a simulation of a flat plate 

undergoing a transient 45 degree pitch-up maneuver. Dur-

ing this motion, there is formation and shedding of large-

scale LEV and TEV, the dynamics of which are shown to 

correlate with the fluctuation of lift on the plate (Wang and 

Eldredge 2012). These data were generated by Eldredge 

(2007), and have been distributed among the AIAA Low 

Reynolds Number Discussion Group in an effort to share 

insight into the different analysis methods. The current 

work also uses experimental two-component particle image 

velocimetry (PIV) data in the wake of a purely pitching 

trapezoidal panel (Green et al. 2011). In that previous work, 

a loss of coherence in a reverse von Kármán street wake 

was shown to correspond to particular dynamics of the 

Lagrangian coherent structure saddle points. In this paper, 

that data set will be used to not only qualitatively observe 

the dynamics of the different visualization techniques, but 

also to track them in order to obtain quantitative measures 

of where and when the vortex dynamics occur.

Using both cases, we demonstrate the benefit of includ-

ing the LCS analysis in order to detect both shedding and 

breakdown phenomena of the vortex structures. The meth-

ods presented here can be applied to both numerical and 
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experimental data, as long as the data have sufficient sup-

port in time and space. This is discussed in Sect. 4.

2  Analysis methods

Many commonly used vortex criteria are Eulerian, and 

identify coherent structures by an instantaneous local swirl-

ing motion in the velocity field, which are indicated by 

closed or spiral streamlines or pathlines in a suitable refer-

ence frame. These criteria are often Galilean invariant, and 

perform well when identifying vortex cores as local maxi-

mizing points of different calculated scalar fields. Because 

Eulerian scalar quantities depend only on the instantaneous 

velocity field and its gradient, they are relatively quick to 

compute. However, when visualizing the data, especially in 

3D, the structure size and boundary shape can vary with the 

user’s selection of threshold or isosurface level.

There are a number of Eulerian methods being used 

in vortex identification. For example, Zhou et al. (1999) 

developed the Q criterion, Zhou et al. (1990) employed 

swirling strength criterion !2

ci
 to locate vortex in regions 

where !u has a complex pair of eigenvalues, and Chong 

et al. (1990) used ! criterion which also concerns complex 

eigenvalues of !u. Jeong and Hussain (1995) developed 

the !2 criterion to identify pressure minima within 2D sub-

spaces as a vortical structure, and Chakraborty et al. (2005) 

proposed using the ratio of real and imaginary parts of the 

complex eigenvalues of !u to refine the definition of a vor-

tex core. As Haller (2005) pointed out, these Eulerian crite-

ria identify similar structures in most flows except in some 

special cases, i.e., in time-dependent rotations. We employ 

two well-established Eulerian criteria for visualization 

of the relevant vortex structures: the Γ1 and Γ2 criteria of 

Graftieaux et al. (2001), which has gained popularity due 

to its simplicity, and the Q criterion. In addition to these 

quantities, we calculate the finite-time Lyapunov exponent 

(FTLE), a Lagrangian scalar field that augments the infor-

mation yielded from an Eulerian analysis. From each of 

these methods, we identify and track dynamically relevant 

points in the flow field that indicate the occurrence of phys-

ically significant phenomena.

Γ1, Γ2 criteria Graftieaux et al. initially defined a scalar 

function Γ1 by using the topology of the velocity field to 

yield the center of the vortex core (Graftieaux et al. 2001). 

The velocity field is sampled at discrete spatial locations, 

and the Γ1 quantity is defined as,

where S is a rectangular domain of fixed size and geometry, 

centered on P (shown in Fig. 1) and M lies in S.

(1)

Γ1(P) =
1

N

N∑

i=1

(PM × UM) · z

||PM|| · ||UM ||
dS =

1

N

N∑

i=1

sin(θM)dS,

Here, N is the number of points M inside S, and z is the 

unit vector normal to the measurement plane. θM is the 

angle between the velocity vector UM and the radius vec-

tor PM, and || · || represents the Euclidean norm of the vec-

tor. The parameter N plays the role of a spatial filter, but 

only weakly affects the location of the maximum Γ1. The 

location is determined by local maximum, typically rang-

ing from 0.9 to 1 near the vortex center. The Γ1 function 

provides a simple and robust way to identify the locations 

of centers of vortical structures.

The Γ1 quantity itself is not Galilean invariant, meaning 

that it is affected by reference frame translation. The local 

function Γ2 was derived from the previous Γ1 algorithm 

to account for this (Graftieaux et al. 2001). It takes into 

account a local convection velocity ŨP around P and thus is 

Galilean invariant. Γ2 is defined as,

where ŨP =
1

N

∑
N

i=1
U dS.

2.1  Q criterion

Another Eulerian scalar, the Q criterion, identifies regions 

as vortices if the norm of the local rate of rotation tensor 

is dominant over the norm of the local rate of strain ten-

sor (Hunt et al. 1988). The velocity gradient tensor ∇u is 

decomposed into the symmetric rate of strain tensor S and 

antisymmetric rate of rotation tensor !, as,

where S = 1

2
[∇u + (∇u)T ] and ! = 1

2
[∇u − (∇u)T ].

The Q criterion is then defined as,

Here, ||!|| represents the Euclidean norm of the local rate 

of rotation tensor and ||S|| represents the Euclidean norm of 

(2)Γ2(P) =
1

N

N∑

i=1

(PM × (UM − ŨP)) · z

||PM|| · ||UM − ŨP||
dS,

(3)∇u = S + !,

(4)Q =
1

2
[||!||2 − ||S||2] > 0.

Fig. 1  Demonstration of Γ1 function calculation
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the local rate of strain tensor. A vortex is defined in those 

regions where Q > 0, which is interpreted as a dominance 

of rotation over strain.

2.2  Lagrangian coherent structures

Lagrangian coherent structure (LCS) analysis was initi-

ated by Haller (2001), and includes a series of Lagrangian 

methods that calculate quantities based on the behavior of 

fluid particle trajectories. One such method identifies LCS 

as maximizing ridges of the scalar finite-time Lyapunov 

exponent field (FTLE), and these ridges have been shown 

to represent structure boundaries in vortex-dominated flows 

(Haller 2002). The FTLE value measures the maximum 

rate of separation around a certain location in space (x0)  

by first calculating the flow map of neighboring particles 

φ(x0, t0, T) over an integration time T, and constructing the 

Cauchy–Green strain tensor from the spatial gradient of the 

flow map. The maximum eigenvalue of the Cauchy–Green 

strain tensor is referred to as the coefficient of expansion σT.

From there, the FTLE field is defined from the coefficient of 

expansion as,

Maximizing ridges in this field indicate high levels of 

Lagrangian stretching among nearby particle trajectories.

This calculation can also be done by calculating particle 

trajectories initialized at t0 in negative time. This calculation 

will also yield a scalar FTLE field, and because it measures 

Lagrangian separation in negative time, its ridges represent 

those regions in the flow where particle trajectories are cur-

rently being attracted. By including ridges from both FTLE 

(5)σT (x0, t0) = !max

(

[

∂φ(x0, t0, T)

∂x0

]

T
[

∂φ(x0, t0, T)

∂x0

]

)

.

(6)FTLET (x0, t0) =

1

2T
log σT (x0, t0).

calculations, the analysis produces both the repelling mate-

rial lines along which particle trajectories locally separate 

from each other (positive time, pLCS) or attracting mate-

rial lines along which particle trajectories locally contract 

to each other (negative time, nLCS). The pLCS and nLCS 

intersect at the outer boundaries of vortices but do not over-

lap. Inclusion of both LCS provides a more complete bound-

ary delineating which particles are entrained into the vortex 

from those that continue to convect with the outer flow.

2.3  Analysis implementation

Two examples flows will be used to compare the vortex 

identification and tracking methods. In the first case, vorti-

ces forming and shedding from both the leading and trail-

ing edge of a flat plate in a uniform freestream flow are 

visualized and tracked using Γ1, Q criterion, and LCS. In 

the second case, the evolution of coherent structures down-

stream of a continually pitching panel is studied using the 

Q criterion, Γ2, and LCS. This set of criteria is used to iden-

tify both the vortex centers and the vortex boundary points.

2.3.1  Vortex center identification

Vortex centers are first found using the Γ1 or Γ2 functions, and 

are shown as the yellow dot in Fig. 2a. Another method uses Q 

criterion (black-filled contours in Fig. 2a) by first identifying a 

rectangular area around the Γ1 center that roughly bounds the 

vortex and then finding the “center of mass” of Q in that rectan-

gular region, shown as the green box and green dot in Fig. 2a. 

In the present results, we found that these two centers gener-

ally, but not exactly, locate the vortex core at the same location.

2.3.2  Vortex boundary identification

To track vortices using the LCS, we do not use the full 

ridges of the FTLE fields (red ridges and blue ridges in 

Fig. 2  Examples of vortex 

identification methods Γ 1(Γ2) center

Q center
LCS saddle

(a) Vortex center identification (b) Vortex boundary identification
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Fig. 2b), but those points where the nLCS intersect with the 

pLCS. These intersections of the attracting and repelling 

material lines in the flow are effective saddle points (cyan 

dot in Fig. 2b), and have been shown to be dynamically 

important features of the vortex boundaries (Green et al. 

2010, 2011).

3  Results

The vortex detection methods used in this work allow us to 

simultaneously consider the multiple vortices present in the 

data, and they reveal complex vortex dynamics. With the 

code developed in this work, it is possible to both visual-

ize and track the vortex critical points in the flow automati-

cally. This enables the tracking of vortex dynamics in both 

time and space, such as formation, attachment, growth, 

shedding, and convection.

3.1  Vortex formation and shedding: transient 45
◦ 

pitch-up maneuver

Leading-edge vortex (LEV) separation is of interest due 

to its correlation with the lift history on unsteady aerody-

namic surfaces (Eldredge 2007). The flow at Re = 1000 

(Re = U∞c/ν) surrounding a flat plate in the process of a 

45
◦ pitch-up maneuver is shown in Fig. 3, where the flow 

structures are visualized by regions of positive and negative 

vorticity. Figure 4 shows the plate pitching angel α change 

in time, which is the angle between plate and freestream. 

Figure 5 shows the time history of the LEV separation pro-

cess at eight instances of the flow evolution. Each figure 

shows an instantaneous snapshot at t∗ = tU∞/c, where t is 

the dimensional time, U∞ is the freestream flow velocity, 

and c is the plate chord. In the figures, multiple vortex iden-

tification techniques are employed. Red and blue ridges 

are the negative- and positive-time LCS, respectively, 

and were calculated using a T
∗

= 2.0 integration time. 

Black regions indicate positive Q criterion, and cyan, yel-

low, and green dots mark vortex cores and saddles via the 

methods described in Sect. 2.3. In Fig. 5a when t∗ = 1.85, 

the leading-edge vortex has formed, and multiple vortices 

have shed from the trailing edge. Both Γ1 centers (yellow 

dots) and Q centers (green dots) locate the vortex centers 

in approximately the same location for each vortex core. 

As described, the cyan dots locate the saddle points at the 

intersections of the pLCS (blue) and nLCS (red).  

After formation until t∗ = 2.45, the LEV center contin-

ues to move downstream, from approximately x/c = 0.25 

to x/c = 0.50, but the LEV saddle point stays in approxi-

mately the same position ([x/c, y/c] = [0.11, 0.07]). This 

location is not exactly at the leading edge of the plate, but 

remains toward the top of a pair of counter-rotating sec-

ondary and tertiary vortices that form at the leading edge 

after the formation of the primary LEV. That the saddle is 

stationary and connected to the vortex system during this 

time indicates continued LEV attachment. After t∗ = 2.45,  

the first saddle accelerates downstream, and the centers of 

the LEV continue to move downstream at a steady rate. 

Figure 6 shows the location of each of these tracking tar-

gets in time, measured as distance from the leading edge 

and scaled by the plate chord. From this figure, we see that 

Q center and Γ1 center give very similar traces of the vortex 

core path.

The traces of the saddle points, on the other hand, 

appear to move with a different profile. As can be observed 

in a movie of the tracking center motion, this is due to the 

rotation of the structure boundary after it sheds and begins 

to evolve downstream. Each point on the LEV bound-

ary (including the saddle) will trace out a large arc unlike 

the vortex core path. A portion of the difference, however, 

also comes from the fact that as a structure grows, the 

core might shift downstream even as it remains attached 

to the plate. This is evident in the trace of the cyan saddle 

marker labeled “a” in Fig. 6, which is part of the bound-

ary of the primary leading-edge vortex that forms first and 

sheds between Fig. 5b, c. The saddle point moves away 

from its initial stationary location with a rapid accelera-

tion at approximately t∗ = 2.45. We propose that this rapid 

x/c

y
/
c

5.0- 0.25.10.15.00.0

0.0

1.0

-1.0

-2.0

Fig. 3  Vorticity contour in the vicinity of pitch-up flat plate. Nega-

tive vorticity (red), contour level at 35 % of the maximum value; 

positive vorticity (blue), contour level at 25 % of the maximum value

0.0 2.0 4.0 6.0 8.0 10.0
0.0

15.0

45.0

30.0

t
∗

α
(d

e
g
)

Fig. 4  Angle of plate relative to freestream (α) with respect to time
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∗
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∗

=3.60 (h) t
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=4.05

Fig. 5  Instantaneous snapshots 

of the LEV separation process. 

Negative- and positive-time 

LCS are contoured as red and 

blue ridges, respectively, with 

contour level of values more 

than 85 % maximum. Positive 

Q criterion (black) with contour 

level Q = 0. Flat plate is plotted 

as purple line
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acceleration of saddle points from their formation zone 

gives a good indication of the timing of vortex shedding.

Similar to the cyan trace of saddle point a after shed-

ding, the other two traces of LCS saddle points b (green) 

and c (blue) indicate additional dynamics of the LEV shed-

ding process. LEV separation can be described as a process 

in which the leading-edge shear layer stops feeding circu-

lation to the LEV, and the LEV does not pinch-off until it 

reaches its maximum circulation (Ringuette et al. 2007). In 

the present case, however, this process is intermittent. By 

observing the shear layer in Fig. 5 as the thin black region 

of Q > 0 extending from the leading edge of the plate to 

the LEV, we see that the Q magnitude in the shear layer 

near the first saddle drops considerably at time t∗ = 2.60 as 

saddle point a sheds. In Fig. 5c, the value of Q in the region 

of interruption has become negative, indicating that that 

region is no longer considered part of a vortex according 

to the Q criterion. However, an additional region of shear 

is entrained into the LEV after that, before breaking again 

at t∗ = 3.05, as shown in Fig. 5e. The timing of this second 

interruption corresponds to the acceleration of saddle point 

b at approximately t∗ = 3.00, as seen in the green symbols 

of Fig. 6. Finally, an additional region of vorticity is shed 

and entrained into the LEV at approximately t
∗

= 3.60 

(as shown in Fig. 5g), which corresponds to saddle point c 

shedding at that time (as shown in blue symbols in Fig. 6). 

This is the last saddle to move from the region and wrap 

around the LEV, and after its departure a drastically differ-

ent LCS topology emerges, as shown in Fig. 5h.

The lift coefficient (CL = L/(ρU
2
∞

c)) and total force 

coefficient (CF = F/(ρU
2
∞

c)) on the 45
◦ pitch-up panel 

are shown in Fig. 7 (Wang and Eldredge 2012). There is 

an initial drop in the amount of lift and total force on the 

plate that occurs at t∗ = 2.0, which is associated with the 

end of the transient motion of the plate. After t
∗

= 2.0, 

the fluctuations in force are associated with the unsteady 

Fig. 6  Distance of tracking 

markers, measured from the 

panel leading edge, in time. 

Inset in the lower right shows 

the relative position of vortex 

markers at t∗ = 3.15. Red lines 

indicates the trace segments 

slopes of saddle point a
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fluid dynamic effects, and not the motion of the plate 

itself. By comparing the saddle point traces and lift coef-

ficient with respect to time after this, we observe that the 

lift drops most precipitously at t∗ = 3.0 (corresponding to 

Fig. 5e and indicated with an “e” in Fig. 7) and t∗ = 3.6 

(corresponding to Fig. 5g indicated with a “g” in Fig. 7). 

It is at these times that the saddle points b and c acceler-

ate away from their original location near the leading edge 

of the plate. Although not shown in Fig. 5, the recovery of 

lift after t∗ = 4.0 is associated with the formation of a vor-

tex that develops from the trailing edge of the plate, which 

in turn sheds at t∗ = 6.0. The continuing oscillation of the 

lift history between t∗ = 6.0 and t∗ = 10.0 continues to be 

related to the alternating formation and shedding of struc-

tures from the leading and trailing edges.

3.2  Vortex wake breakdown: continually pitching 

trapezoidal panel

The vortex detection techniques were also applied to 

experimental results of flow in the wake of a continually 

oscillating flat plate. The flow field is reconstructed from 

phase-averaged two-dimensional PIV data downstream of 

a rigid trapezoidal panel pitching around its leading edge 

(x/c = −1.0), and an example three-dimensional repre-

sentation of the flow field is shown in Fig. 8. Experimental 

details about the acquisition of this data can be found in 

Green et al. (2011). In this figure, the x direction is aligned 

with the freestream flow from left to right, and the z direc-

tion is aligned with the span of the panel trailing edge. The 

data plane for the current work is taken at the midspan 

(z/S = 0), where S is the half-span of the trailing edge, and 

is parallel to the freestream flow. A Lagrangian analysis is 

performed with an FTLE integration time of four pitching 

periods in the positive-time calculation and two pitch-

ing periods for the negative-time calculation. Results are 

presented for Re = 4200 (Re = U∞c/ν) and a Strouhal 

number of St = 0.28, where St = fA/U∞, with f as the fre-

quency of oscillation, A as the width of the wake, and U∞ 

as the freestream velocity. The peak-to-peak amplitude of 

the trailing edge is commonly used as an approximation for 

A.

The main result of the previous work was the observa-

tion of a loss of independent vortex coherence at a certain 

distance downstream of the pitching panel trailing edge. 

This loss of coherence in vorticity isosurfaces is evident in 

Fig. 8 near x/c = 1.5, and was shown to coincide, both in 

space and time, with the merging of two LCS saddle points 

that belonged to the boundaries of two distinct vortex struc-

tures. The merging of the saddles indicated the interaction 

of the two vortex structures, and the loss of coherence of 

each. In the current work, we use the tracking technique 

from the shedding study not only to observe the merging, 

but also to quantitatively identify the location at which it 

occurs.

Figure 9 displays instantaneous snapshots of the wake 

from t
∗

= 0.0 to t
∗

= 1.2, where t
∗

= t/T , and T is the 

period of panel pitching motion. The panel is continuously 

pitching, and t∗ = 0.0 is taken at the phase of motion where 

the panel is aligned with the flow, with the trailing edge 

moving in the positive y direction. From the trailing edge 

(x/c = 0.0) to approximately x/c = 1.5 downstream, the 

wake consists of a 2S vortex street. In the figure, it is clear 

that nLCS (red curves), pLCS (blue curves), and LCS sad-

dles (cyan dots) provide a transverse boundary of the wake, 

and an alternating scroll pattern around the vortex cores. As 

each LCS saddle moves downstream, it approaches another 

saddle associated with a vortex shed in either the previous 

or subsequent half period. By approximately x/c = 1.0 

downstream, the saddle pairs have nearly merged together 

entirely.

In addition, the Γ2 function and Q criterion have been 

calculated for this case. The function Γ2 is used here instead 

of Γ1 because of the large velocity of the whole vortex core, 

relative to the LEV velocity in the first example. In the 

first case, the LEV drifted from a relatively stable location. 

Here, the cores are continually moving downstream as part 

of the wake. As Γ1 is not Galilean invariant, its identifica-

tion of the vortex center will be affected by the vortex core 

motion, whereas Γ2 will not be. The locations of the vortex 

cores as identified by Γ2 centers are shown as yellow dots, 

and the regions of positive Q criterion are the black round 

areas that give an indication of the vortex core regions. 

The contour setting for Q criterion is 5 % Qmax, so cho-

sen to avoid small-scale noise associated with the experi-

mental data. Farther than approximately one chord length 

downstream, both the Q regions and the Γ2 centers seem 

Fig. 8  Spanwise vorticity (ωz) isosurfaces in the flow around a con-

tinually oscillating trapezoidal panel. Panel is shown in black, posi-

tive vorticity in white isosurfaces, negative vorticity in blue isosur-

faces. Vorticity isosurface level is 14 % maximum and minimum ωz.  

Recreated from the data set of Green et al. (2011)
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to disappear, indicating the destruction of the coherent vor-

tex structures. The location of where these Eulerian metrics 

disappear is consistent with the previously calculated iso-

surfaces of vorticity, shown in Fig. 8. In order to use these 

Eulerian quantities to determine a location of breakdown 

though, we would need to identify the downstream location 

at which the centers disappear, indicating the lack of coher-

ent rotation around them. That process, however, would be 

highly sensitive to a user-defined threshold on the value of 

Q or Γ2 at the center point.

Figure 10 shows one snapshot of this wake, with the 

LCS saddles labeled as they are referenced in Fig. 11. 

Fig. 9  Instantaneous snapshots 

of the continuously pitch-

ing trapezoidal panel wake 

at St = 0.28. Negative- and 

positive-time LCS are con-

toured as red and blue ridges, 

respectively, with contour 

level of values more than 67 % 

maximum. Positive Q criterion 

is contoured as black region 

with contour level at 5 % of the 

maximum value. Panel is plot-

ted as purple line
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There are four markers labeled, two each that belong to 

boundaries of two subsequent structures along the cen-

terline of the wake. They are labeled with either “H” to 

represent that they are on the higher half of the figure as 

presented, or “L” to represent that they are on the lower 

half of the figure as presented. Each of the distinct vortex 

cores has one H saddle and one L saddle, and as shown in 

Fig. 9, we expect the lower saddles to merge together, and 

the higher saddles to merge together. In particular, L1 and 

L2 are shown to approach merger in Fig. 9d at y/A ≈ −1 

and x/c ≈ 1. H1 and H2 are shown to approach merger in 

Fig. 9d at y/A ≈ 1 and x/c ≈ 0.8.

In Fig. 11, the distance between the labeled H saddles 

and the distance between the labeled L saddles are pre-

sented as a function of the downstream distance of each 

pair’s centroid. Both trace out a similar path as they move 

downstream, with an apparent deceleration of the merg-

ing occurring downstream of approximately 0.6 chord 

lengths. This is observed as a shallowing of the slope of 

the two curves. As shown in Fig. 9d, the lower half sad-

dles approach each other at x/c ≈ 0.8, and the two red 

nLCS ridges that are associated with each of the two sad-

dles become parallel to each other, but can never intersect. 

Therefore, the distance between the saddles will never 

go identically to zero. For this reason, we take the slope 

of these curves from trailing edge to x/c = 0.6, and find 

that both the upper half saddles and the lower half saddles 

have a projected merge location of x/c = 0.8 chord lengths 

downstream at St = 0.28.

In the previous work, the location of the vortex wake 

breakdown that accompanies the LCS saddle point merg-

ers was shown to move upstream with increasing Strouhal 

number. By using the LCS analysis, a more direct and con-

sistent analysis of the breakdown location is possible, and 

as in the current results, can identify and track these struc-

tures with relatively less user interaction.

4  Summary

The vortex dynamics in two cases have been studied using 

a range of identification and tracking techniques: the flow 

around a 2D panel undergoing a transient pitch-up maneu-

ver, and the wake downstream of a trapezoidal plate in 

purely pitching motion. The implementation of the analysis 

automatically detects dynamically significant points in the 

core and boundaries of vortex structures in a robust man-

ner. In the case of the plate undergoing a pitch-up maneu-

ver, tracking the LCS saddle points provides a direct identi-

fication of leading-edge and trailing-edge vortex shedding: 

saddles associated with each vortex hold station in the 

flow before rapidly accelerating away at the time of vor-

tex shedding. In contrast, Eulerian vortex core identifica-

tion methods such as Γ1 and Q only show the core moving 

downstream at a relatively constant speed both while the 

attached vortex is still growing and while the vortex con-

vects downstream after shedding. For the case of the trap-

ezoidal panel pitching about its leading edge, the saddle 

tracking code is used to project a location of vortex break-

down, following the work of Green et al. (2011). This early 

work qualitatively observed the breakdown as an interac-

tion of LCS saddles from different vortices, which was not 

evident from a strictly Eulerian analysis, but did not pro-

vide a quantitative technique to determine the downstream 

location of breakdown.

In the future, the methods developed here will be applied 

to other experimental and simulation data, especially in 

three dimensions, to verify and to continually improve 

the process. Once they are designed to track important 
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topological elements rigorously in three-dimensional space 

and time, these metrics have the potential to inform the 

design and implementation of feedback flow control. The 

saddles can be tracked back in time to their formation dur-

ing a fluid-structure interaction, and their dynamics can be 

correlated with more easily sensed quantities, such as pres-

sure or velocity on the body surface. With this information, 

strategies can be developed that utilize common control 

actuators in a more targeted manner to cause topological 

changes in the flow. In the current flow cases, this could be 

used to either promote or delay the phenomena of vortex 

shedding or vortex breakdown.

As a final note, use of the Lagrangian FTLE with experi-

mental data requires both temporal and dimensional support 

in the data. While it is not uncommon to use a trajectory 

integration timestep during particle trajectory calculation 

that is smaller than the time between subsequent velocity 

data sets, the temporal resolution of the data must be suf-

ficient so that interpolation techniques adequately recreate 

intermediate velocity fields when it is necessary. For inher-

ently three-dimensional flows, a single plane of data, even 

if it contains all three velocity components, is not sufficient 

to generate an accurate Cauchy–Green deformation tensor 

and FTLE field. In particular, vortex structures that are par-

allel to the data plane, such that the vortex-induced veloc-

ity will be in and out of the plane, will not be captured. In 

those cases where it is known ahead of time that the struc-

tures of interest are mainly perpendicular to the plane in 

which data are acquired, the FTLE calculation will capture 

the majority of the structures in the plane.
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