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Figure 1: Si System with an interstitial defect (dataset I1) (a) Lattice with bulk and defect (b) Salient Iso-surface with ability to distinguish
between bulk and defect (c) An arbitrary slice of electron density data showing the shape of defect

ABSTRACT

In this article we explore techniques to detect and visualize features
in data from molecular dynamics (MD) simulations. Although the
techniques proposed are general, we focus on silicon (Si) atom sys-
tems . These systems are studied to understand the processes behind
the formation of point defects. Point and extended defects (derived
from point defects) have an impact on the electrical and mechanical
properties of silicon. We examine datasets generated from ab-initio
simulations of atom systems. The data has both the spatial location
of atoms and additionally the electron density at sampled points in
lattice.

The first set of methods use 3D location of atoms. Defects are de-
tected and categorized using local operators and statistical model-
ing. Our second set of exploratory techniques employ electron den-
sity data. This data is visualized to glean the defects visually. We
describe techniques to automatically detect the salient iso-values for
iso-surface extraction and designing transfer functions.We compare
and contrast the results obtained from both sources of data. Essen-
tially, we find that the methods of defect (feature) detection are at
least as robust those based on the exploration of electron density for
Si systems.
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1 INTRODUCTION

Scientific data analysis range from analyzing biological data to an-
alyzing geophysical datasets, from analyzing fluid flows to analyz-
ing astrophysical observations . In this article we focus our atten-
tion to datasets produced by Molecular Dynamics (MD) simula-
tion. We seek to understand defect dynamics in Si lattices. In semi-
conductor devices, defects can alter electrical and material proper-
ties of the device dramatically. In laser diodes, for example, defects
can lead to dark current which reduces device efficiency or even
causes device failure. The effect of defects are also extremely im-
portant in device fabrication. In the front-end processing, extended
defects dissolve to create small interstitial defect clusters, which
enhance the diffusion of dopant such as boron by three orders of
magnitude (not a desirable effect). Thus, presence of defects is one
of the limiting factors in device fabrication. Therefore, to precisely
control the distribution of a dopant it is important to understand of
the extent and evolution of interstitial defects clusters.

Datasets produced by MD simulation are often very large which
impedes easy understanding. Systematic study of defects can pro-
duce huge amount of data. In typical silicon defect simulations,
more than 120 million time steps are generated to study the evolu-
tion of single- or di-interstitial in a lattice [7]. Manual analysis to
seek point defects is cumbersome and error-prone. The other fac-
tor which limits human capabilities to deduce useful information is
the presence of thermal noise and the resulting uncertainty. Uncer-



tainty is inherent in almost all MD simulation data given round-off
and associated measurement errors. This is especially true of meth-
ods which estimate locations of atoms in a defect ensemble.

Retrieving useful information and drawing conclusions from such a
large scale simulation requires efficient and reliable feature mining
methods to search and verify defects generated in the simulation.
We describe some of those methods in this paper. These feature
mining techniques can not only uncover fundamental defect nucle-
ation and growth processes but also provide essential parameters
towards the modeling of macroscopic properties of materials. This
need is well recognized in the semiconductor industry as evinced in
its silicon road map that identifies the short- and long-range prob-
lems necessary to continually pack more transistors on a chip.

In this article we present two techniques to explore features in Si
lattices. The features we are interested are defects. The data we
examine is derived from a single simulation exercise based on ab-
initio calculations for various systems. The data is composed of two
parts namely i) the spatial location of atoms and ii) electron density
in regularly partitioned lattices. We deploy two sets of methods
to gain understanding about the inherent defects in the Si systems
under scrutiny.

The first method relies on the domain knowledge and statistical
modeling to locate atoms which constitute the defects. Local op-
erators are proposed after analyzing distribution of bond angles and
bond lengths. These measurements are replete with uncertainty.
Hence, there is a need to verify or validate the results. Often physi-
cists use only the density data to visualize the atoms and anomalies
in the bulk. Whereas, in reality they really need the location and
the configuration of atoms. The premise of this paper is therefore to
demonstrate the utility of visualization techniques in validating the
feature detection exercise. However as we shall soon show, visual-
ization without suitable analytic tools will not suffice. We describe
appropriate analysis of data to glean useful information. We expect
to see the defect in same spatial position using both techniques.
Essentially we wish to gain confidence in the feature detection ex-
ercise and hence resort to visualizing the results. Figure 1 shows
the lattice, iso-surface and slicing results. We explain these images
later in the article.

The contributions of this application case study are the following

1. Detection of defects based on domain knowledge and sta-
tistical modeling.

2. Use of visualization tools for verification of defect detec-
tion process.

3. Determination of salient iso-values that best describe the
defect.

We use three datasets depicting the presence of three distinct de-
fects. Each dataset has a 67-atom lattice configuration. The lattice
is partitioned in 112*112*112 regular grid. Electron density is cal-
culated at each grid point using the VASP suite [12]. The first and
second dataset each have a single tri-interstitial defect, we refer to
them as I1 and I2 respectively. The defects are of different type
and have different shapes. The third dataset has two defects in it,
referred as D1.

The paper is structured as follows. Related work is discussed in
Section 2. Section 3 provides an overview of MD simulations,
while Section 4 explains the generation of above mentioned local
operators. Visualization techniques developed for MD simulations
are described in Section 5. Finally, in Section 6 we summarize our
findings and describe our plans for the future.

2 PREVIOUS WORK

Traditionally physicists have used ground state energy and elec-
trostatic potential to find defects in lattice. [18, 6] use ab-initio
methods to locate interstitial defects in silicon lattice. These meth-
ods exploit anomalies in the energy/potential fields available at all
points in the lattice . The calculation and analysis of these ener-
gies/potential is very time consuming. However the most relevant
work is embodied in an approach called common neighbor analysis
(CNA) [5, 10]. CNA strives to understand the crystallization struc-
tures in lattices. CNA as the name implies takes into account the
number of neighbors of each atom and analyzes the data. However
the effectiveness of this approach is limited by the fact that num-
ber of neighbors alone cannot capture all (geometrical) properties
especially at high temperatures Moreover, the CNA approach does
not account for noise effects in such data. Machiraju et.al. [14, 15]
presented a framework for feature detection and classification of
data from simulations. We use the same framework to process MD
simulation data. The framework emphasizes on the use of shape
and structure of the features (defects) for classification and track-
ing. Traditional visualization techniques have relied on generating
video clips that depict the animated movement of atoms in a given
system. [3] proposed an MPEG-based method to visualize and
generate the animations for MD simulation. Levoy proposed the
use of special transfer functions to visualize molecular ensembles
[13]. Recently newer techniques that do not necessarily rely on an-
imation alone have been proposed to visualize the 3D atomic data.
Notable work includes [2, 1, 4]. Other efforts have targeted spe-
cific atomic and molecular systems. [17] proposed a method to
visualize biochemical data. Additionally, several software applica-
tion toolkits also have been offered for use by researchers. Visual
Molecular Dynamics (VMD) [9, 16]1 is one such software pack-
age that allows the manipulation and visualization of atoms in real
time. However visualization alone can not uncover important fea-
tures. Hence, there is a strong need to couple visualization tech-
niques with data analysis.

3 BACKGROUND

The key complexity of real materials for commercial applications is
not that they are defected in the trivial sense of being imperfect or
impure, but rather that their material properties depend critically on
their nonideality. As an example, the enhanced diffusion of dopants
in the presence of extended {311} defects2 in silicon is a limiting
factor in the fabrication of shallow junction devices [8]. Our ob-
jective is to mine such datasets to aid in the discovery of rules that
govern nucleation and defect growth. To do so we must effectively
detect and visualize defects. We now define some relevant aspects
of MD simulations.

Lattice: A lattice is an arrangement of points or particles or
objects in a regular periodic pattern in 3 dimensions. Consider the
simple silicon lattice in Figure 2a. The “atoms”, are denoted by
circles, stabilized by “bonds” denoted by cylinders connecting the
atoms. The bonds strive to preserve both the lattice spacing of 2.36
Angstroms between atoms and the dihedral angles of 109.28 de-
grees. It should be noted that only a portion of the “infinite” lattice
is shown. A perfect or ideal lattice is defined to be composed of
“bulk” atoms.

1http://www.ks.uiuc.edu/Research/vmd/
2Point defect which evolves to extend through the lattice.
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Figure 2: (a) Original lattice with repeating structure marked (b)
Lattice with one tri-interstitial defect

Repeating Structure: A repeating structure is set of atoms
which are repeated in preferred directions to form the bulk lat-
tice. This structure for Si system is composed of 5 atoms organized
as a tetrahedron, with 4 atoms connected to a single central atom
with bond length of 2.36 Angstroms and dihedral angle of 109.28
degrees. Figure 2a shows a bulk lattice with a specific structure
shaded differently.

Defect: Consider adding single atom to the lattice. The bonds
between the extra atom and other atoms strive to satisfy the lattice
parameters as described above. Figure 2b shows one such lattice
with one extra atom. Note that the dark shaded atoms do not follow
the regular tetrahedral structure. While this defect no longer has
the symmetry of the original simple square lattice, we can upon
visual inspection of, recognize the atoms that seem to be displaced
as “defect” atoms.

Multi-defects lattice: The real challenge arise with multiple
defects in a lattice that can then form even more extended defects.
Consider for simplicity two extra interstitial defects added to the
crystal that form disconnected defects. Figure 3 illustrates two pos-
sible defects: in the lower left and upper right corners respectively
of a 512-atom lattice. The different shades again represent separate
and distinct defects.

Electron Density: The location of an electron is not fixed, but
is instead described by a probability density function. The sum of
the probability densities of all the electrons in a region is the elec-
tron density in that region. The density function describes the prob-
ability of finding an electron around atom. This data is generated
by using Vienna Ab-intio Simulation Package (VASP) [12, 11] 3.
VASP is a package for performing ab-initio quantum-mechanical
molecular dynamics (MD) through the solution of integral equa-
tions. The lattice is partitioned to a regular grid and electron density
is calculated at each grid point.

4 DEFECT DETECTION USING LOCAL OPERATORS

In this section we describe defect detection based upon statistical
modeling. The idea is intuitive and simple: first identify the bulk
atoms; the rest are defect atoms. Identification of bulk atom can be
done by checking the bond lengths and bond angles it forms with
other atoms. From existing literature in material sciences, it is easy
to obtain these rules. These simple rules will work in the case of

3http://cms.mpi.univie.ac.at/vasp

Figure 3: Two separate defects in same lattice

noise-free lattices. However this is not the case when simulation is
conducted at higher temperatures. In the next section we describe
the methods to model the noise in discovery of rules.

As noted above, these precise rules cannot be directly used for for-
mulating rules to define the defect given the noise. To glean the
rules, we generate a histogram of the bond angles and bond lengths
of several silicon lattices. As shown in Figure 4 the distribution
follows the Normal Distribution with a mean very close to the ideal
values of bond angle and bond length as described in Section 3.
Since the defect atoms are relatively rare, we can consider them to
be outliers. A simple method for detecting outliers within a nor-
mal distribution is to to use the 95% two sided confidence interval
of the distribution. Under normal distribution 95% of data lies be-
tween ±2 ∗σ , therefore we obtain the following two relaxed rules
for silicon [14]:

1. R1: All bond angles with neighbors should lie in the interval
90-130 degrees.

2. R2: Each atom should form exactly 4 bonds with a bond
length ≤ 2.6 Angstrom. Unlike R1, R2 has only upper limit
because two atoms cannot get much closer to each other due
to presence of electrostatic forces.

These rules are applied locally to each atom in every frame gener-
ated by the simulation data. All the atoms which fails either one of
the rules is labeled a defect atom.

4.1 Segmentation of defects

The rules described above are local operators which only mark the
defect atoms. However since there can be several defects in a lat-
tice, an additional step is needed to group defect atoms in one or
more connected substructures (defects). Input to this stage is a list
of atoms along with their locations. We start with one atom at ran-
dom from this list and identify any neighbors to this atom within
a distance of εAngstrom from this atom. Each of these neigh-
bors repeatedly identify its neighbors until there are no additions to
the connected substructure. This defect substructure and the list of
atoms it is composed of are deleted from the original list of atoms,
and is labeled a defect. If there are any more atoms in the original
list, this process is repeated until all defects are found.

We use the upper bound of Rule R2 to determine the value of the
parameter ε . The final result of this step does not depend on the
choice of the initial atom. Figure 3 shows two detected defects
embedded in 512-atom lattice. The different shades again represent



separate and distinct defects. However there is a strong need to
verify the results.

5 DEFECT VERIFICATION USING VISUALIZATION

A simple visualization using standard iso-surface or transfer func-
tion techniques is not helpful. It is not clear what the iso-value
should be. Also, it is not clear what transfer functions are best.
Note the results in Figure 5. We use the linear ramp as the opacity
transfer function to render this volume. The position of the defect
structure cannot be easily ascertained by visually inspecting the im-
age. Some analysis is required. We now analyze the electron den-
sity data to better understand the behavior of this scalar field and
visualize the defect structure in a meaningful manner.

Figure 5: Dataset I1 volume rendered using the common ramp Trans-
fer Function

Levoy [13] proposed the use of transfer functions that vary with
distance from the grid points. Let us first examine the variation of
electron density to see if there is any trend we can exploit. The
electron density is maximum at the actual spatial position of atom
and decreases as we move away from the atom towards another
atom. At some point the density again starts to increase and reaches
maximum at spatial location of other atom. This behavior is well
exhibited by any two bulk atoms. However, the electron density
around the defect atoms do not follow these rules. This anomalous
behavior can be explained considering the fact that density is not a
local property between two atoms. It is affected by the presence of
neighboring atoms. Since in a defect the positions of atoms does
not follow a regular geometry, the density function deviates from
the normal behavior. Figure 6a shows the change in density be-
tween two bulk atoms and Figure 6b shows the behavior between
defect atoms. One can capture this variation of electron density by
designing transfer functions that change in both data space and the
embedded euclidean space. However, we choose to use a simpler
yet effective method for this effort. Our intent is to provide sim-
ple yet effective tools that a physicist can use in a tangible manner.
Therefore, we choose to determine the salient iso-value that can
discriminate between defect and bulk. We now describe an analytic
method to detect the defect.

5.1 Iso-value Analysis

Iso-surfacing is a common technique to visualize the data. How-
ever the most difficult part is to find the correct iso-value so that

the transition point is well captured. The salient iso-value if de-
tected correctly should depict the defect. Once this iso-value is de-
termined, we can use it to extract significant iso-surfaces and even
use it for constructing transfer functions. Next we present a method
to automatically find the correct iso-value for this problem.

Since there are two surfaces namely bulk and defect present in same
volume, there should exist some scalar value where both the sur-
faces can be seen. Our method tries to find that ”special” value
by analyzing the distribution(histograms) of the electron density
scalar field. We divide the scalar field into N bins. The histogram
is first smoothed using an Gaussian kernel of appropriate width.
Figure 8(a) shows the original histogram while Figure 8(b) shows
smoother version. The smoothed histogram SH is then transformed
into the frequency domain using the fast Fourier transform (FFT) to
obtain FH . Since we wish to retain the high frequency components
of the histogram, we construct the following exponential function
that serves well as a band-pass filter.

G(i) = exp(−2s2)/i2

where i ∈ [1 . . .N] and s is constant scaling factor in frequency
domain

FH is then convolved with G to obtain CH . This convolution ampli-
fies the high frequency component. An inverse Fourier transform
(IFFT) is then applied to CH to obtained a highly enhanced his-
togram. Figure 8(c) shows the histogram after the inverse FFT.

One should notice the dramatic change in the shape of the his-
togram. We believe that the values of electron density in the bins
spanning the large change include the salient iso-value. The bins se-
lected for inspection are those where the curvature of the histogram
is large. Finally, the values in the bins are averaged to get single
iso-value.

Please note that the change occurs in bins 15 and 16 and that the
average iso-value in these bins is around 450. Figure 9 shows the
iso-surface for iso-values less than, equal to and greater than the
automatically determined iso-value. It is clear from the rendered
images for iso-values less the salient iso-value the defect surfaces
are hard to distinguish. Same is true for iso-values greater than the
transitioning salient iso-value. However at the thresholded salient
iso-value, the defect structure is well separated and easily distin-
guishable.

5.2 Transfer Functions for Volume Rendering

We now use the derived iso-value to construct appropriate opac-
ity transfer functions. The intuition is that since at some particular
iso-value bulk and defect can be distinguished, all the points at that
iso-value should have highest opacity and other data values should
be assigned lower values of opacity. Therefore, in effect the opac-
ity should be highest at iso-value and then gradually decrease. The
relevant question the is ’how should the opacity decrease in the data
space ?’. While calculating the iso-value we average all scalar val-
ues which lie in bins across which the transition takes place. We
assign the opacity for all other grid points to a small constant value.
For points corresponding to iso-values in bin(s) our transfer func-
tion is a Gaussian with µ = iso-value and σ = standard deviation
of all scalar values in the bin(s) spanning the transition. Figure 7a
shows the transfer function and Figure 7b shows the volume ren-
dered using these transfer function.

It should be noted that although we did not incorporate any
distance-based variation in the transfer functions, the resulting im-
ages are quite telling.
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Figure 4: (a) Distribution of bond length (b) Distribution of bond angles

(a) (b)

Figure 6: (a) Density behavior between two bulk atoms - First atom is at distance 0 and second atom is at distance 10,000 (b) Density behavior
between two defect atoms

(a) (b)

Figure 7: Dataset I1 (a) Transfer Function derived using iso-value (b) Volume Rendered Image using the transfer function
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Figure 8: (a) Original Distribution (b) Smoothed Distribution (c) Band Pass Distribution

(a) (b) (c)

Figure 9: Dataset I1 (a) iso-surface before the transition point (b) At the transition point (c) After the transition Point

(a) (b) (c)

Figure 10: Dataset D1 (a) Original Marked Lattice with two defects (b) Slicing showing shape of one defect (c) volume rendering showing both
defects.



(a) (b) (c)

Figure 11: Dataset I2 (a) Original marked lattice (b) Slicing (c) Volume rendering

6 DISCUSSION

Figure 1a shows the detected defect in dataset I1. Figure 1b and c
shows the iso-surface at the salient iso-value and an arbitrary slice
for our dataset I1. Figure 7 shows the transfer function and volume
rendered using that transfer function for the same dataset. Figure 11
shows same three results for our second dataset I2. Please note that
the defect structure is split at boundary in I2. Our approach takes
care of boundary conditions by wrapping the defect, however we
can-not wrap the electron density data. Therefore for visualization
purposes we are not taking the boundaries in account.

Figure 10a shows the original dataset D1 lattice with defects atoms
marked. Figure 10b and c show the slicing and volume rendering
results for D1 respectively. The slice only shows one defect, the
other defect is visible at other slicing angle. All these visualizations
are done for electron density data of same lattice. The defects can
be seen at very easily in volume rendering. In this case also the
transfer function is constructed based on the derived iso-value.

In all three datasets our local operators are able to correctly locate
defects. Also multiple defects are correctly segmented. Also note
the shape of the defects. The shape of the detected defects is very
similar to the shapes gleaned on images obtained from a slicing
operation and volume rendering. The similarity is extremely high
for our first dataset. This can be explained by fact that the defect
in our first data is very compact and well connected. In other two
cases defects are bigger but still the shape is well captured. The
defects are also located at same spatial locations.

These observations validate that our approach mark correct atoms
as defects. Local operators are easy to apply and also time and
space complexity is less. A lattice has 67 atoms with each atom
represented by x, y and z coordinates. Thus we have 67×3 float-
ing points. However for electron density the size of datasets is
112××112×112 floats. Also local operators directly give us the de-
fect atoms. Other data sources require pare-processing l(e.g. find-
ing iso-values or the correct slice orientation). However these tech-
niques provide a solid and reliable way for verifying our approach.

For the future we will consider larger Si systems. Moreover, we
plan to study evolution of defects in Titanium alloy systems. The
unit cell is dramatically different and new defect rules have to be
discovered. Additionally, we plan to further investigate the design
of transfer functions that vary with distance.
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