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Abstract

Open source software (OSS) libraries are widely used in the industry to speed up the devel-

opment of software products. However, these libraries are subject to an ever-increasing

number of vulnerabilities that are publicly disclosed. It is thus crucial for application devel-

opers to detect dependencies on vulnerable libraries in a timely manner, to precisely assess

their impact, and to mitigate any potential risk. This paper presents a novel method to detect,

assess and mitigate OSS vulnerabilities. Differently from state-of-the-art approaches that

depend on metadata to identify vulnerable OSS dependencies, our solution is code-centric,

and combines static and dynamic analyses to determine the reachability of the vulnera-

ble portion of libraries, in the context of a given application. Our approach also supports

developers in choosing among the existing non-vulnerable library versions, with the goal

to determine and minimize incompatibilities. Eclipse Steady, the open source implementa-

tion of our code-centric and usage-based approach is the tool recommended to scan Java

software products at SAP; it has been successfully used to perform more than one mil-

lion scans of about 1500 applications. In this paper we report on the lessons learned when

maturing the tool from a research prototype to an industrial-grade solution. To evaluate

Eclipse Steady, we conducted an empirical study to compare its detection capabilities with

those of OWASP Dependency Check (OWASP DC), scanning 300 large enterprise appli-

cations under development with a total of 78165 dependencies. Reviewing a sample of the

findings reported only by one of the two tools revealed that all Steady findings are true

positives, while 88.8% of the findings of OWASP DC for vulnerabilities covered by our

code-centric approach are false positives. For vulnerabilities not caused by code but due,

e.g., to erroneous configuration, 63.3% of OWASP DC findings are true positives.
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1 Introduction

The use of OSS libraries as well as the number of available libraries are ever-increasing:

Synopsys Black Duck (2019) reports that over 96% of the applications they analyzed

include OSS libraries, whose code often weighs more than 50% of the average code-base;

Snyk (2019) reports a growth of 102% in the number Java OSS libraries available in Maven

Central and of 40% for Python libraries in the Python package index (Pypi).

Though the use of OSS libraries speeds up development, it comes at a cost, as vulner-

abilities discovered in OSS libraries may affect the dependent applications. While using

OSS components with known vulnerabilities is included in the OWASP Top 10 Application

Security Risks since 2013 (OWASP Foundation 2013, 2017), the problem is still far from

being solved. OSS vulnerabilities keep on hitting the headlines of mainstream media: from

the Heartbleed1 and Shellshock2 bugs in 2014 to the (in)famous Equifax incident3 in 2017,

which was caused by a missed update of a widely used OSS component, and which com-

promised the personal data of over 140 million U.S. citizens. Moreover, Snyk (2019) reports

that the number of vulnerabilities disclosed for OSS libraries keeps on increasing (by 43%

in 2017 and 33% in 2018). It thus comes at no surprise that, as reported by Snyk (2017),

OSS vulnerabilities were the root cause of the majority of the data breaches that happened

in 2016.

Establishing effective OSS vulnerability management practices, supported by adequate

tools, is broadly understood as a priority in the software industry, and tools helping to detect

known vulnerable libraries are available nowadays, either as OSS, e.g., OWASP Depen-

dency Check4 (OWASP DC) and Retire.js,5 or as commercial products, e.g., WhiteSource6

and Synopsys Black Duck.7

These tools differ in terms of detection capabilities, but (to the best of our knowledge)

the approaches they use rely on the assumption that the metadata associated to OSS libraries

(e.g., name, version), and to vulnerability descriptions (e.g., technical details, list of affected

components) are always available and accurate. Unfortunately, these metadata, which are

used to map each library onto a list of known vulnerabilities that affect it, are often incom-

plete, inconsistent, or missing altogether (Nguyen and Massacci 2013; Plate et al. 2015).

Therefore, the tools that rely on them may fail to detect vulnerabilities (false negatives), or

they may report as vulnerable artifacts that do not contain the code that is the actual cause of

the vulnerability (false positives). To overcome the before-mentioned issues, the providers

of commercial tools and services usually maintain proprietary vulnerability databases that

map vulnerabilities onto the affected artifacts; however, the creation and maintenance such

1http://heartbleed.com/
2https://www.minttm.com/takeover-shellshocker-net
3https://investor.equifax.com/news-and-events/news/2017/09-15-2017-224018832
4https://www.owasp.org/index.php/OWASP Dependency Check
5https://retirejs.github.io/retire.js/
6https://www.whitesourcesoftware.com/oss security vulnerabilities/
7https://www.blackducksoftware.com/
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mappings requires substantial human effort that is multiplied across vendors and whose

results are error-prone.

Furthermore, merely detecting the inclusion of vulnerable libraries does not cater for

the needs of the entire software development life cycle. In the early phases of develop-

ment, updating a library to a more recent release is relatively unproblematic, because the

necessary adaptations in the application code can be performed as part of the normal devel-

opment activities. On the other hand, as soon as a project gets closer to the date of release to

customers, and during the entire operational lifetime, all updates need to be carefully pon-

dered, because they can impact the release schedule, require additional effort, cause system

downtime, or introduce new defects.

To evaluate precisely the need and the urgency of a library update, it is necessary to

answer the key question: “is the vulnerability exploitable, given the particular way the

library is used within the application?”. Answering this question is extremely difficult:

vulnerabilities are typically described in advisories that consist of short, high-level, tex-

tual descriptions in natural language, whereas a reliable assessment of the exploitability

and the potential impact of a vulnerability demands much lower-level, detailed, technical

information.

Our first steps in tackling this problem were documented in Plate et al. (2015), where we

introduced a method to analyze the code changes introduced by security fixes and to assess

the impact of the vulnerability for a given application using dynamic analysis.

Our follow-up paper (Ponta et al. 2018) builds on Plate et al. (2015), proposing a more

comprehensive code-centric and usage-based approach to detect, analyze, and mitigate OSS

vulnerabilities. Its central claim is that code-centric and usage-based approaches outperform

approaches relying on meta-data, namely regarding the accuracy of vulnerability detection,

the possibility to perform application-specific impact assessments with help of reachability

analyses, and mitigation support on the basis of metrics considering application-specific

library use.

More precisely, in Ponta et al. (2018):

– We generalize the vulnerability detection approach of Plate et al. (2015) by considering

fixes independently of the vulnerable libraries;

– We use static analysis to determine whether vulnerable code is reachable and through

which call paths;

– We introduce a novel combination of static and dynamic analysis to overcome their

mutual limitations;

– We define metrics that support the choice of alternative library versions that are not

vulnerable, highlighting which options are more likely to minimize the update effort as

well as the risk of incompatibility and regressions.

In this paper, compared to our previous two works:

– We provide an updated presentation of our approach, including an extended description

of the method we use to establish whether an OSS library contains vulnerable code.

– We propose five criteria to automatically establish whether a given OSS library contains

the vulnerable or the fixed code with respect to a given vulnerability.

– We present the results of an empirical study we conducted to compare the detection

capabilities of our approach with those of OWASP DC, which is a well-established and

mature flagship project of the OWASP Foundation.

– We revised the overall presentation of the existing material and we updated the section

on related work to account for the most recent research results.
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– We reflected the move of the open source implementation to the Eclipse Foundation

under the name Eclipse Steady (incubator project).

Our approach is implemented as a tool known as Vulas internally to SAP, that is available

as open source under the name Eclipse Steady. It is adopted at SAP as the recommended

solution to scan Java software, and has been successfully used to scan about 1500 applica-

tions under development (as of May 2019). Vulnerable code was found reachable for 213

of them, and we found that in 11.7% of the cases this was only determined by the com-

bination of static and dynamic analysis that is unique to our approach. We report on our

experience and on the lessons we learned when maturing Steady from a research prototype

to an industrial-grade solution that has been used to perform over one million scans since

December 2016.

To evaluate our approach, we performed a comparative empirical study by running both

Steady and OWASP DC on 300 large enterprise projects under active development, either

products or internal tools, and which have an average of 260 dependencies (including test

dependencies). The study targets vulnerability detection, as OWASP DC does not offer

assessment and mitigation capabilities. As our approach is code-centric, it covers the detec-

tion of vulnerabilities that are fixed by changing the source code. For those we obtained

over 2000 findings reported by both tools, about 1800 identified only by Steady, and over

17000 only by OWASP DC. To explain this difference, we manually reviewed a sample

of the findings reported only by one of the tools. The review revealed that all the Steady

findings are true positives because the vulnerable fragment of code corresponding to a vul-

nerability was found in a dependency. On the other hand, 88.8% of the findings of OWASP

DC were false positives, caused by the inherent imprecision of the mechanism that the tool

uses to match libraries with vulnerabilities. This result shows the advantages of our code-

based approach. Eclipse Steady can also use manually-provided annotations to specific

library versions, based on which it can detect vulnerabilities that are fixed without changing

the source code (e.g., erroneous default configuration). For those we obtained 843 findings

reported by both tools, 27 only by Steady (all true positives), and 1728 only by OWASP DC.

A sample review of the latter showed that 63.3% are true positives. Most of them are not

found by Steady as they affect libraries re-bundling the affected one. Though Steady did

not report any false positive, the presence of false negatives shows the limitations of relying

on manual annotations.

The remainder of the paper is organized as follows: Section 2 describes the technical

approach, Section 3 defines the update metrics, Section 4 illustrates our approach in prac-

tice, and Section 5 discusses the comparative empirical study. In Section 6, we report on

our experience, lessons learned and the challenges we identified. Section 7 discusses related

literature and Section 8 concludes the paper.

2 Technical Description of the Approach

In this section we illustrate our code-based approach. This material is partly based on Plate

et al. (2015) where we first introduced the idea of shifting the problem of establishing

whether an application incorporates OSS components that have exploitable vulnerabilities,

to the problem of assessing whether the vulnerable code of those components is reachable.

The code-centric and usage-based approach presented in the following Sections over-

comes weaknesses of approaches and tools based on meta-data. Phenomenons like library
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re-bundling8 or the fact that single open source projects commonly distribute multiple,

fine-grained libraries containing a subset of the original code base9 represent significant

challenges for approaches and tools based on meta-data. Their vulnerability detection

suffers from false positives and false negatives, and the maintenance of corresponding

vulnerability databases is costly and error-prone. Besides precise vulnerability detection

(cf. Section 2.2), the code-centric approach also supports functionalities out of reach for

approaches based on meta-data, especially the analysis whether vulnerable code can be exe-

cuted in the context of a given application (cf. Sections 2.3 to 2.5), which is needed in order

to prioritize findings, as well as update metrics considering the actual library use with the

goal to reduce regressions (cf. Section 3).

Compared to previous works, Sections 2.1, 2.2 and 2.3 generalize (Plate et al. 2015),

and Sections 2.2, 2.4, 2.5 extend it with unique novel contributions. In particular Sec-

tions 2.4, 2.5 are the basis of the update metrics presented in Section 3.

2.1 Representing vulnerabilities at the code level

Our approach is based on the idea that a vulnerability can be characterized, thus detected and

analyzed, by the set of program constructs (such as methods), that were modified, added, or

deleted to fix that vulnerability (Plate et al. 2015).

Definition 1 A program construct (or simply construct) is a structural element of the

source code characterized by a construct type (e.g., package, class, constructor, method), a

language (e.g., Java, Python), and a unique identifier (e.g., the fully-qualified name).

Example 1 The fully-qualified name of method baz(int) in class Bar and package foo is

foo.Bar.baz(int). The type of this construct is method.

It is important to remark that the term type as used in this definition denotes the different

kinds of syntactic constructs that form the structure of a program (as illustrated in the exam-

ples above); the same term is used with a different meaning in the domain of programming

languages. The two meanings should not be confused.

Changes to program constructs are performed through commits in a source code reposi-

tory; therefore, the set of changes that fix a vulnerability can be obtained from the analysis

of the corresponding fix commit. Note that in cases where a commit includes not only a

vulnerability fix but also unrelated changes, a post-processing of the construct changes is

required.

Definition 2 We define a construct change as the tuple

(c, t,AST
(c)
f ,AST(c)

v )

where c is a construct, t is a change operation (i.e., addition, deletion or modification) on the

construct c, and AST
(c)
v , AST

(c)
f are, respectively, the abstract syntax trees of the vulnerable

and of the fixed c.

8The inclusion of code taken from other libraries with the intention to create self-contained library artifacts

or self-contained applications.
9The open source project Apache POI, for instance, offers support for different Microsoft office formats,

e.g., Word documents or PowerPoint spreadsheets. For each supported format, the project distributes separate

library artifacts that can be used independently by developers.
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Notice that for deleted (added) constructs only AST
(c)
v (AST

(c)
f ) exists.

In practice, the typical source of source code changes (from which we extract construct

changes) are commits coming from code versioning systems: to a commit (that modifies

source code) corresponds a set of construct changes.

These fix commits represent the main input to our approach, and its implementation,

Eclipse Steady, requires the maintenance of a knowledge-base with triples each compris-

ing a vulnerability identifier, a URL of the versioning control system of the vulnerable

open source project and the identifiers of fix commits (cf. Sections 5 and 6.2.3). Steady

automatically processes those fix commits in order to determine all changed constructs

and the AST
(c)
f and AST

(c)
v , so that this information is available when analyzing concrete

applications and the libraries they depend upon (directly or transitively). Differently from

proprietary vulnerability databases, mentioned in Section 1, our knowledge-base is open

source. Furthermore, identifying (typically few) fix commits is less expensive and error-

prone than identifying all the library versions affected by a given open source vulnerability,

especially because of a popular technique called re-bundling, where code from one open

source library is copied into other libraries distributed with different identifiers. The identi-

fication and enumeration of affected library versions with help of, e.g., Common Platform

Enumeration10 identifiers (CPE) or Maven coordinates,11 is what we consider metadata,

and is used by many state-of-the-art approaches.

When a fix is implemented over multiple commits, we rely on commit timestamps to

compute the set of construct changes by comparing the source code before the first and

after the last commit. If the vulnerability fix includes changes in a nested construct (e.g., a

method of a class), two distinct entries are included in the set of construct changes, one for

the outer construct (the class), one for the nested construct (the method).

While, ideally, fix commits should be systematically indicated by the developers of open

source libraries (e.g., as part of security advisories), they are not always disclosed explicitly.

Some OSS projects (e.g., Apache Tomcat) provide such information via security advisories;

others reference issue tracking systems, which, in turn, describe the vulnerability being

solved; some other OSS projects do not explicitly refer to vulnerabilities being fixed. Thus

reconciling the information based on the textual description and code changes still requires

manual effort (see Section 6.2.3). A broader discussion of the data integration problem can

be found in Plate et al. (2015).

Differently from Plate et al. (2015), we provide a definition of construct change and con-

sider the ASTs of the modified program constructs. This is used in Section 2.2 to establish

whether a given library artifact includes the changes introduced by the fix.

2.2 Vulnerability detection

In this section we introduce the principles of our approach to detect the presence of vulner-

abilities, based on the concepts introduced in the previous subsection. A concrete example

of how this approach is applied in practice is illustrated in Section 4.1-(1).

Figure 1 shows how a vulnerability j is associated to an application a. Cj is the set of

the constructs obtained by analyzing the fix commits of j , as described above. The set Si

contains all the constructs of the OSS library i used by the application a, whereas Sa is the

set of all constructs of the application itself.

10https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe/
11https://maven.apache.org/pom.html
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Fig. 1 Vulnerability detection

Definition 3 An application depends on a vulnerable library i, affected by vulnerabil-

ity j , if that library includes code vulnerable to j (referred to as vulnerable constructs, i.e.,

constructs that have been changed in the fix commits of j ), thus, if

(Cj ∩ Si) �= ∅ ∧ ∀c ∈ (Cj ∩ Si),AST
(c) = AST(c)

v (1)

According to Definitions 1 and 2, the list of construct changes contains constructs whose

types are not limited to functions and methods but also include the outer constructs, e.g.,

the class. As a result, even if a vulnerability is fixed by adding new methods to an existing

class, the intersection Cj ∩Si is not empty, as it would contain a construct corresponding to

the class.

Condition (1) in Definition 3 requires the abstract syntax tree of each construct of library

i that was changed in the fix commits to be strictly equal to the vulnerable abstract syntax

tree. If such condition holds, it is then straightforward to conclude that the library is vul-

nerable to j . However, such a strict condition can hardly cope with real world scenarios. In

fact, the vulnerable and fixed abstract syntax trees of the construct change are representa-

tions of the code at a single point in time, i.e., before and after the patch is applied, whereas

it is often the case that several versions of a library (e.g., Spring Framework v4.x, v5.x) are

maintained in parallel and thus several, possibly different, corrections may be applied for

the different versions. If the same construct is changed in different ways in different ver-

sions, a given library version would only contain one of such vulnerable or fixed abstract

syntax trees, thereby violating condition (1) of Definition 3.12 Moreover the code evolves

over time and thus the code where the correction has to be applied may have undergone

numerous refactorings during the history of the library. Similarly, the fixed code may be

modified and refactored while moving forward. It is thus clear that in the case of library

versions released long before or after the application of the patch, it is unlikely to have an

exact match on the abstract syntax trees.

To cope with the above challenges, we relaxed condition (1) of Definition 3 as follows

to only require an exact match for a single construct as long as the remaining ones do not

raise any inconsistencies. Such inconsistencies occur if a single library version contains

12Note that, for the ease of readability, the formal notation used in this paper covers the case of a patch

in a single branch, however the existing implementation supports corrections applied in different repository

branches.
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both fixed constructs with AST
(c)
f and vulnerable ones with AST

(c)
v , and have to manually

resolved.

∃ ca ∈ (Cj ∩ Si) | AST(ca) = AST(ca)
v ∧ � ∃ cb ∈ (Cj ∩ Si) | AST(cb) = AST

(cb)
f (2)

Similarly, a library version Si includes the patch fixing vulnerability j if

∃ ca ∈ (Cj ∩ Si) | AST(ca) = AST
(ca)
f ∧ � ∃ cb ∈ (Cj ∩ Si) | AST(cb) = AST(cb)

v (3)

Whenever condition (2) ((3), resp.) holds, we conclude that a library version i is

vulnerable (fixed, resp.) to j according to criterion AST equality.13

For a given version of a library, it may happen that no equality is found while comparing

abstract syntax trees. In this case, to draw a conclusion as to whether that library version

contains the vulnerable or the fix version of the code, other versions of the same library can

be considered. The evaluation based on multiple library versions uses both the result of the

comparison of the AST of each construct changed and the order of the library versions.

The comparison of the AST of each construct changed (c) is used to determine a distance

between AST(c) and AST
(c)
v (AST

(c)
f ). To obtain the distance between abstract syntax trees

we use tree differencing algorithms (Falleri et al. 2014; Fluri et al. 2007). In particular

we use (Fluri et al. 2007) that, given two abstract syntax trees, provides an edit script to

transform the former in the latter. The number of edit operations in the edit script is used as

distance in our approach.

To order library versions we rely on semantic versioning, following the usual schema

MAJOR.MINOR.PATCH, extended with a fourth segment (BUILD). This extension was

made to cover the versioning schema of libraries like Apache Struts that use four segments

(MAJOR.MINOR.PATCH.BUILD).

Given a library name (e.g., the Maven group and artifact identifier), we order library

versions by constructing a set of release trees, where a release tree is defined as follows.

Definition 4 A release tree is a binary tree such that

– the root node always contains the first release of a given MAJOR.MINOR, i.e., X.Y.0.0;

– the left child contains the next patch release, i.e., given a node X.Y.Z1.0 the left child

connected through the edge p is X.Y,Z2.0 where Z2 > Z1 (denoted as X.Y.Z1.0 ≺p

X.Y,Z2.0);

– the right child contains the next build release, i.e., given a node X.Y.Z.W1 the right child

connected through the edge b is X.Y.Z.W2 where W2 > W1, (denoted as X.Y.Z.W1 ≺b

X.Y.Z.W2).

Figure 2 shows an example of a generic release tree. Note that, when omitted, the BUILD

segment of the version corresponds to 0.

In the following we present the additional criteria based on which we determine whether

a vulnerability should be reported for a certain library version based on abstract syntax tree

comparisons and release trees. Differently from criterion AST equality that may be applied

to a single library version i, these additional criteria use the knowledge of several library

versions. In fact, they require that both a release tree and the results of the abstract syntax

tree comparisons be available. These criteria are only used when conditions (2) and (3) do

not hold and they are applied in order of precedence.

13Note that in the existing implementation this criterion only works for constructs of type method, constructor

or function as the AST is not available for classes and packages.
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Fig. 2 Release tree

Intersection The intersection criterion considers library versions that are adjacent in the

release tree (i.e., directly connected) and checks whether the abstract syntax tree compar-

isons show that the ancestor library version is more similar to the vulnerable code whereas

the successor is more similar to the fixed code. If this is the case it concludes that the

ancestor contains the vulnerable code whereas the successor contains the correction.

Definition 5 Given libraries S1, S2 in a release tree such that

S1 ≺p S2∧ � ∃ S3 | S1 ≺p S3 ∧ S3 ≺p S2

or

S1 ≺b S2∧ � ∃ S3 | S1 ≺b S3 ∧ S3 ≺b S2

(i.e., S2 is a direct child of S1 either through the patch or build branch), then S1 is said to be

vulnerable and S2 is said to be fixed with respect to vulnerability j according to criterion

intersection if there exists a construct whose AST in S1 is more similar to the vulnerable

AST whereas the AST for the same construct in S2 is more similar to the fixed one, and

no other construct exists for which the opposite holds true. Let diff(ASTS1
(c),ASTS2

(c))

be the number of changes required to transform ASTS1
(c) into ASTS2

(c) (i.e., the abstract

syntax tree edit distance), then the intersection criterion establishes that S1 contains the

vulnerable code and S2 contains the corrected code if

∃ c ∈ (Cj ∩ S1 ∩ S2) | diff(ASTS1
(c),AST(c)

v ) < diff(ASTS1
(c),AST

(c)
f )

∧ diff(ASTS2
(c),AST(c)

v ) > diff(ASTS1
(c),AST

(c)
f ), (4)

and

� ∃ c1 ∈ (Cj ∩ S1 ∩ S2) | diff(ASTS1
(c1),AST(c1)

v ) > diff(ASTS1
(c1),AST

(c1)
f )

∧ diff(ASTS2
(c1),AST(c1)

v ) < diff(ASTS1
(c1),AST

(c1)
f ). (5)
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Note that these conditions hold also when either diff(ASTS1
(c),AST

(c)
v ) = 0 or

diff(ASTS2
(c),AST

(c)
f ) = 0, i.e., if S1 is vulnerable by criterion AST equality or S2 is

fixed by criterion AST equality.

Example 2 Consider the release tree of Fig. 2 and let

– S1 = X.Y .1

– S2 = X.Y .2

– diff(ASTS1
(c),AST

(c)
v ) = 1

– diff(ASTS1
(c),AST

(c)
f ) = 3

– diff(ASTS2
(c),AST

(c)
v ) = 4

– diff(ASTS2
(c),AST

(c)
f ) = 2

In Fig. 3, we connect the distances of S1 and S2 to the vulnerable AST and the ones to the

fixed AST. The former can be distinguished by the use of a bold line. As it becomes clear

from Fig. 3, the distances above represent an intersection as the distance is closer to the

vulnerable AST for S1 (i.e., the tree edit distance is smaller) whereas it is closer to the fixed

one for S2. As a result, according to criterion intersection we conclude that S1 is vulnerable

and S2 is fixed.

Major release The underlying intuition of the major release criterion is that once the cor-

rection of a security defect is included in a library version, all the versions that follow also

include the correction. Thus, the release tree for a given MAJOR.MINOR is used to establish

the ordering of library versions, and to determine those that are descendants of versions that

are known to be fixed by criteria AST equality or intersection.

Definition 6 Given the libraries S1 and S2 such that S1 is fixed according to criteria AST

equality or intersection, then S2 is said to be fixed according to criterion major release if

– S1 ≺p S2, or

– S1 ≺b S2

Fig. 3 Example of intersection
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Example 3 Consider the example of Fig. 4 where nodes marked with double circles are

fixed to vulnerability j by criteria AST equality or intersection. Then according to criterion

major release we can conclude that

– library versions X.Y .3 and X.Y .4 are fixed as X.Y .2 ≺p X.Y .3 and X.Y .2 ≺p X.Y .4,

i.e., they follow the fixed one X.Y .2;

– library versions X.Y .0.2 and X.Y .2.1 are fixed as X.Y .0.1 ≺b X.Y .0.2 and X.Y .2 ≺b

X.Y .2.1, i.e., they follow the fixed ones X.Y .0.1 and X.Y .2, resp.

Minor release Similarly to criterion major release, the idea of the minor release criterion

is that library versions preceding one containing the vulnerable code also contain the vul-

nerable code. Again, the release tree is used to establish the ordering of library versions.

The library versions for which the criteria AST equality or intersection concluded that they

contain the vulnerable code are used as starting point.

Definition 7 Given the library versions S1 and S2 such that S1 is vulnerable according to

criteria AST equality or intersection, S2 is said to be vulnerable according to criterion minor

release if

– S2 ≺p S1, or

– S2 ≺b S1

Example 4 Consider the example of Fig. 5 where dashed nodes are vulnerable to vulnera-

bility j by criteria AST equality or intersection. Then according to criterion minor release

we can conclude that

– library versions X.Y .1 and X.Y .0 are vulnerable as X.Y .1 ≺p X.Y .2 and X.Y .0 ≺p

X.Y .2, i.e., they are ancestors of the vulnerable one X.Y .2;

– library versions X.Y .0.1 and X.Y .0 are vulnerable as X.Y .0.1 ≺b X.Y .0.2 and

X.Y .0 ≺b X.Y .0.2, i.e., they are ancestors of the vulnerable one X.Y .0.2.

Note that library version X.Y .0 is vulnerable according to both conditions.

Greater release Criterion greater release is meant to cope with the case of library versions

released long after the vulnerability was found and henceforth fixed. The underlying idea

Fig. 4 Example of major release criterion
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Fig. 5 Example of minor release criterion

is to check whether the entire release tree was created temporally after all the versions that

were found fixed according to criteria AST equality or intersection.

Example 5 Consider a library having two release trees: the one of Fig. 4 and a tree with

root node A.B.0. All versions belonging to the release tree A.B are fixed according to

criterion greater release if the release date of A.B.0 is greater than the one of X.Y .2 and

X.Y .0.1 which are the versions that were found fixed according to criteria AST equality and

intersection.

Manual inspection is still required whenever no automated conclusion can be taken, e.g.,

when

∃ c1, c2 ∈ (Cj ∩ Si) | AST(c1) = AST(c1)
v ∧ AST(c2) = AST

(c2)
f .

Differently from Plate et al. (2015), we define the set of constructs Cj as independent of

any library i, which takes into consideration that single constructs, e.g., classes or packages,

are copied to (included in) libraries other than the original ones produced by the respective

open source project. A vulnerability in a library, be it one produced in the context of the

original open source project or one produced by other developers who just copied (included)

the code of other libraries, is then detected through the intersection of its constructs with

Cj . This approach has several advantages: First, it makes it explicit that the vulnerable con-

structs responsible for a vulnerability j can be contained in any library artifact i, hence, the

approach is robust against the prominent practice of re-bundling the code of OSS libraries.

Second, it is sufficient that a library version includes a subset of the vulnerable constructs

for the vulnerability to be detected. Last, it improves the accuracy compared to approaches

based on metadata, which typically flag entire open source projects as affected, even if

projects release functionalities as part of different libraries. Apache POI,14 for instance,

while developed in a single source code repository, is released as a set of distinct, inde-

pendent libraries. Because Plate et al. (2015) focuses on newly-disclosed vulnerabilities, it

14https://poi.apache.org/
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assumes that, at the time of disclosure, every library that includes constructs changed in

the fix commit must be vulnerable. While this assumption is valid at that moment in time,

it is not valid for old vulnerabilities, which require that one establishes whether a given

library contains the fixed code. We achieve this by comparing the AST of constructs in use

with those of the affected and fixed versions and providing a set of criteria to automatically

conclude.

2.3 Reachability of vulnerable code: Dynamic assessment

After having determined that an application depends on a library version that includes vul-

nerable constructs, it is important to establish whether these constructs are reachable. In this

paper, we use the term reachable to denote both the case where dynamic analysis shows that

a construct is actually executed and the case where static analysis shows potential execution

paths. The underlying idea is that if an application executes (or may execute) vulnerable

constructs, there exists a significant risk that the vulnerability can be exploited. The dynamic

assessment described here is borrowed from our previous work (Plate et al. 2015).

In the following we explain how we use dynamic reachability analysis in our approach;

in Section 4.1-(2-3) we illustrate its application in practice.

Figure 6 illustrates the use of dynamic analysis to assess whether the vulnerable con-

structs are reachable by observing actual executions. Tai represents the set of constructs,

either part of application a or its bundled library i, that were executed at least once during

some execution of the application. To increase readability, the figure only visualizes one

such library, while the actual analysis always considers all libraries that are directly or tran-

sitively used by the application. The intersection Cj ∩ Tai comprises all those constructs

that are both changed (added, deleted or modified) in the fix commits of j and executed in

the context of application a because of its (direct or transitive) use of library i.

The collection of actual executions of constructs can be done at different times: during

unit tests, integration tests, and even during live system operation. In our implementation

for Java, for instance, the collection is accomplished with a Java instrumentation agent. If

enabled using a command line argument of the Java Virtual Machine (JVM), the agent adds

suitable Java statements to each method when the corresponding class is loaded for the first

time. This happens regardless of whether a class belongs to a directly or indirectly used

library, since they are all included in the JVM’s classpath. Moreover, this implementation

does not require specific test cases, but relies on existing (unit, integration, or manual) tests.

Therefore, the effectiveness of dynamic analysis in discovering the execution of vulnerable

code significantly depends on the coverage achieved by such tests.

Fig. 6 Dynamic vulnerability analysis

Empirical Software Engineering (2020) 25:3175–3215 3187



Fig. 7 Static vulnerability analysis

2.4 Reachability of vulnerable code: Static assessment

In addition to the analysis of actual executions (dynamic analysis), our approach uses static

analysis to determine whether the vulnerable constructs are potentially executable.

An example of how this approach is applied in practice is presented in Section 4.1-(4).

Our method uses static analysis in two different ways.

First, we use it to complement the results of the dynamic analysis, by identifying the

library constructs reachable from the application.

Second, (Section 2.5) we combine the two techniques by using the results of the dynamic

analysis as input for the static analysis, thereby overcoming limitations of both techniques:

static analyzers are known to struggle with dynamic code (such as, in Java, code loaded

through reflection (Landman et al. 2017)); on the other hand, dynamic (test-based) methods

suffer from inadequate coverage of the possible execution paths.

Figure 7 illustrates how we use static analysis to complement the results of dynamic anal-

ysis. Rai represents the set of all constructs, either part of application a or a bundled library

i, that are found reachable starting from the application a and thus can be potentially exe-

cuted. Again, for the sake of readability, the figure only visualizes one such library, while

the actual analysis always considers all libraries that are directly or transitively used by the

application. Static analysis is performed by using a static analyzer, e.g., the T.J. Watson

Libraries for Analysis15 or the Soot framework,16 to compute a graph of all constructs of

all libraries reachable from the application constructs. The implementation of the approach,

Steady, only requires the distributed Java archives (JARs) of each library the application

depends on (but not their source code). However, as those archives are also needed in other

contexts, e.g., to compile or test the application source code, their presence does not repre-

sent an additional requirement. The intersection Cj ∩ Rai comprises all constructs that are

both changed in the fix commit of j and are part of the call graph, thus, can be potentially

executed.

2.5 Combination of dynamic and static assessment

This subsection presents our method to combine static and dynamic reachability analysis.

The application in practice is illustrated in Section 4.1-(5).

As shown in Fig. 8, in the combined method we use the set of constructs actually exe-

cuted, Tai , as starting point for the static analysis. The result is the set RTai
of constructs

reachable starting from the ones executed during the dynamic analysis. The intersection

15http://wala.sourceforge.net/wiki/index.php/Main Page
16http://sable.github.io/soot/
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Fig. 8 Combination of static and dynamic vulnerability analysis

Cj ∩ RTai
comprises all constructs that are both changed in the fix commit of j and can be

potentially executed. Note that library i, as in Figs. 6 and 7, can be directly or transitively

used by the application.

We explain the benefits of the combinations of the two techniques through the example

in Fig. 9. In the following, we denote a library bundled within a software program with the

term dependency.

Example 6 Let Sa be a Java application having two direct dependencies S1 and Sf where

S1 has a direct dependency S2 that in turn has a direct dependency S3 (thereby S2 and S3 are

transitive dependencies for the application Sa). S1 is a library offering a set of functionalities

to be used by the application (e.g., Apache Commons FileUpload17). Moreover the construct

γ of S1 calls the construct δ of S2 dynamically, e.g, by using Java reflection, which means

the construct to be called is not known at compile time. Sf is what we call a “framework”

providing a skeleton whose functionalities are meant to call the application defining the

specific operations (e.g., Apache Struts,18 Spring Framework19). The key difference is the

so-called inversion of control as frameworks call the application instead of the other way

round.

With the vulnerability detection step of Section 2.2, our approach determines that Sa

includes vulnerable constructs for vulnerabilities j1 and j2 via the dependencies Sf and S3,

respectively. Note that even if S3 only contains two out of the three constructs of Cj2
, our

approach is still able to detect the vulnerability.

We start the vulnerability analysis by running the static analysis of Section 2.4 that looks

for all constructs potentially reachable from the constructs of Sa . The result is the set Ra1

including all constructs of Sa and all constructs of S1 reachable from Sa . As expected, Sf

is not reachable in this case as frameworks are not called by the application. Moreover, it is

well known that static analysis cannot always identify dynamic calls like those performed

using Java reflection. As the call from γ to δ uses Java reflection, in this example only S1

is statically reachable from the application. As shown in Fig. 9 Ra1 does not intersect with

any of the vulnerable constructs.

The dynamic analysis of Fig. 6 produces the set Ta (omitted from the figure) of con-

structs that are actually executed. Though no intersection with the vulnerable constructs is

found, the dynamic analysis increases the set of reachable constructs (Ra1 ∪Ta in Fig. 9). In

particular, it complements static analysis revealing paths that static analysis missed. First,

17https://commons.apache.org/proper/commons-fileupload/
18https://struts.apache.org/
19https://projects.spring.io/spring-framework/
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Fig. 9 Vulnerability analysis example

it contains construct ǫ of framework Sf that calls construct α of the application. Second, it

follows the dynamic call from γ to δ.

Combining static and dynamic analysis, as shown in Fig. 8, we can use static analysis

with the constructs in Ta as starting point. The result is the set RTa (omitted in the figure)

of all constructs that can be potentially executed starting from those actually executed Ta .

After running all the analyses, we obtain the overall set Ra1 ∪Ta ∪RTa (shown with solid

fill in Fig. 9) of all constructs found reachable by at least one technique. Its intersection with

Cj1 and Cj2 reveals that both vulnerabilities j1 and j2 are reachable, since one vulnerable

construct for each of them is found in the intersection and is thus reachable (η ∈ Cj1
is

reachable from ǫ and ω ∈ Cj2
is reachable from δ).

2.6 Applicability of the approach to different programming languages

This section discusses the possibility to apply the above-presented approach to different

programming languages and ecosystems, considering their respective particularities.

A prerequisite for both vulnerability detection and reachability analysis is the unique

identification of constructs, both during the analysis of source code (altered by fix commits)

as well as during the analysis of distributed packages (downloaded during the build process

of downstream dependents).

The generic concept of unique construct identifiers, introduced with Definition 1,

has been implemented for the Java and Python programming languages. In both cases,

constructs are identified using their fully-qualified name.

In Java, the fully-qualified name of, e.g., method baz(int) in class Bar and package foo

is foo.Bar.baz(int). The Java compilation process does not remove or alter such identifiers

(apart from constructors of non-static inner classes), thus, they can be easily built from

source code and Java archives (JARs) containing Java bytecode.

In Python, the fully-qualified name of, e.g., function loads(s,**kwargs) in module json

and package flask is flask.json.loads(s,**kwargs). Python package formats, e.g., egg20 or

wheel,21 contain the Python source code as-is, thus, the same parser can be used to identify

Python constructs in source code and in distributed packages.

20https://setuptools.readthedocs.io/en/latest/formats.html
21https://www.python.org/dev/peps/pep-0427/
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The implementation choice of using fully-qualified names supports other programming

languages as long as they have a comparable naming scheme allowing construct identifi-

cation in source and distributed code. Moreover, its development community must follow

consistent naming conventions (that is, construct names can be assumed to be globally

unique). However, those properties are not satisfied for certain languages and cases.

Specifically, we acknowledge that fully-qualified names can hardly be used for program-

ming languages compiled into machine code, e.g., C and C++. For such languages, it is

very hard to recognize and compare constructs found in source code with those in the dis-

tributed binary packages. But even in case of interpreted languages, the code of distributed

packages can deviate significantly from its corresponding source code. JavaScript libraries

running in browsers, for instance, are commonly minimized and obfuscated in order to

reduce their download size, which makes it hard to relate constructs identified in source

code to their counterparts in the distributed libraries. Such transformations are less common

for JavaScript running on servers, e.g., in the Node.js runtime.

Where fully-qualified names cannot be used, one has to identify constructs using other

information, e.g., characteristics of method or function bodies. This, however, comes with

its own challenges and represents a separate body of research.

As described in Section 2.2, vulnerable detection is possible as soon as constructs can

be uniquely identified and compared, and has been successfully implemented for Java and

Python.

The subsequent reachability analyses, dynamic as described in Section 2.3 and static

as described in Section 2.4, depend on other language characteristics, and have only been

implemented for Java. However, before mentioning potential problems in other languages,

one has to note that the absence of one or the other analysis for a given programming lan-

guage does not render an implementation useless. The precision of code-based vulnerability

detection is valuable by itself, even when reachability analyses cannot be performed.

Static program analysis commonly struggles with dynamic languages such as Python

and JavaScript. Characteristics like the absence of static type information or dynamic code

execution through statements like eval make it hard to build accurate call graphs. Depending

on the chosen analysis approach, the approximated call graphs can be either too small or

too big, resulting in false negatives and false positives respectively.

Dynamic program analysis is considered straightforward in cases where tracing tools

already exist. In other cases, especially for interpreted languages, the source code of down-

loaded open source packages can be altered prior or during test execution, e.g., using

techniques like aspect-oriented programming.

3 Vulnerability Mitigation

The analysis presented in Sections 2.3 to 2.5 provides in-depth information about which

parts of the code of the application and of all its dependencies (both direct and transitive)

are executed (or could be executed). In the following, we show how we leverage this infor-

mation to support application developers in mitigating vulnerable dependencies. As long

as non-vulnerable library versions are available, updating to one of those is the preferred

solution to fix vulnerable application dependencies. And since the approach described in

Section 2.1 depends on the presence of at least one fix commit, such a non-vulnerable

library version becomes available when the respective open source project releases a version

including this commit.
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In practice, such updates are straightforward for direct dependencies. Typically, in case

dependencies are specified in a declarative manner, e.g., using Maven pom.xml files, the

application developer just needs to modify the version of the respective declaration. In case

of transitive dependencies, there exist two possibilities: Ideally, it is possible to update the

direct dependency, which is responsible for pulling in the transitive one, to a newer ver-

sion such that a non-vulnerable version is pulled. If that is not possible or wanted, e.g., no

such version of the direct dependency exists or the update has other side effects, the devel-

oper can transform the transitive dependency into a direct one by adding a corresponding

declaration, thereby pointing to a non-vulnerable version. Typically, dependency managers

prioritize versions of dependencies that are closer to the root of the dependency tree, hence,

the vulnerable version of the transitive dependency is ignored. Even though the introduc-

tion of a new direct dependency conflicts with the original idea of transparent dependency

management, it is an effective means to fix vulnerable transitive dependencies until all open

source projects of the respective dependency branch have updated their declarations.

In the following, our focus lies on the update of the vulnerable library, no matter whether

it is a direct or transitive dependency, and how the update is achieved in practice. In this

context, it is well known that developers are reluctant to update dependencies because of

the risk of breaking changes, the difficulties in understanding the implications of changes,

and the overall migration effort (Kula et al. 2018; Mostafa et al. 2017). Such risk and effort

depend on the usage the application makes of the library, and on the amount of changes

between the library version currently in use and the respective non-vulnerable version. As

a result of the analysis described in Sections 2.3 to 2.5, the reachable share of each library

is known. Whether a construct with a given identifier is also available in other versions

of a library can be determined, for instance, by comparing compiled code with tools such

as Dependency Finder.22 Among all the reachable constructs, of particular importance in

the scope of mitigation are those which are called directly from the application, as they

provide a measure of how many times the application developer explicitly used the library.

We define a touch point as a pair of constructs (c1, c2) such that c1 ∈ Sa is an application

construct, c2 ∈ Si is a library construct, and there exists a call from c1 to c2. We define

callee the library construct called directly from the application, i.e., c2. In the example of

Fig. 9 there are two touch points: (α, β) and (λ, ψ), with β and ψ being the callees.

Given a library version in use Si and its candidate replacement Sj , we define the

following update metrics.

Callee Stability (CS) Intuitively, this metric represents the share of touch-point callees

in Si that also exists in a given non-vulnerable library version Sj . Let c
(Si )
k with k =

1, . . . , n be the callees of Si , and c
(Sj )

k = 1 if c
(Si )
k ∈ Sj , 0 otherwise. Then the callee

stability is the number of callees of Si that exist in Sj over the number of callees of Si :

CS =

n∑

k=1

c
(Sj )

k /|{c
(Si )
1 , . . . , c(Si )

n }| =

n∑

k=1

c
(Sj )

k /n

If Sj contains all the callees of Si , then the callee stability is 1, to indicate that the

constructs of Si called by the application exist also in library version Sj . In case Sj does

not contain all the callees of Si , then the callee stability is smaller than 1 and reaches 0

when none of the callees of Si is present in Sj .

22https://github.com/jeantessier/dependency-finder
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Development Effort (DE) Intuitively, this metric represents the share of touch-point

callers in Sa that has to be changed due to non-existing callees in Sj . Let a
(Si )
k with

k = 1, . . . , n be the calls from the application to the callees of Si , and a
(Sj )

k = 1 if

a
(Si )
k �∈ Sj , 0 otherwise. The development effort for updating from library version Si in

use by the application to library version Sj is defined as the number of application calls

that require a modification due to callees of Si that do not exist in Sj .

DE =

n∑

k=1

a
(Sj )

k

Compared to the callee stability, the development effort takes into account the fact that

each callee can be called multiple times within an application.

In Fig. 9, for instance, each callee is called only once by α and λ respectively. However,

assuming that β is called by two application constructs in addition to α, and that it is not

contained in the new library version Sj , CS = 1/2 whereas the DE = 3. This reflects

the fact that multiple calls need to be modified as a result of a change in a single callee.

The notion of development effort we use does not take into account the complexity of

each modification; rather, it focuses on the number of modifications required by the

application, considering that each modification comes at the cost not only of updating

the code (which could be automated to some extent) but also of testing it.

Reachable Body Stability (RBS) The reachable body stability is calculated in the same

way as the callee stability, but instead of callees, it considers the reachable share of a

library version, i.e., the set of all library constructs reachable according to static analy-

sis, dynamic analysis, or both. Given the total number of constructs of Si reachable from

the application, it measures the ratio of those that are contained as-is, i.e., with identical

identifier and byte code, also in Sj . By quantifying the share of modified reachable con-

structs, this metric provides the likelihood that the behavior of the library changes from

Si to Sj . In case all reachable constructs of Si exist in Sj , then RBS = 1 and thus there is

a higher likelihood that the library change does not break the application.

Overall body stability (OBS) The overall body stability is calculated similarly to RBS

but now considers all the constructs of Si . This metric provides the same indication as

the one above but, by considering the entire library rather than only its reachable share,

it is independent of the application-specific usage.

The above metrics support the application developer in estimating the effort and risks

of updating a library. When several non-vulnerable library versions exist that are newer

than the one in use, they are all candidate replacements. By quantifying the changes to be

performed on the application and the changes that the library underwent, our update metrics

allow the developer to take an informed decision.

Note that the callee stability and development effort metrics only apply for dependencies

that are called directly from the application, whereas the reachable and overall body stability

also apply for transitive dependencies and frameworks.

4 Illustrative Example

In this section we illustrate how our approach works in a typical scan, applying it to a

SAP-internal web application that we adapted, for illustrative purposes, to include vulner-

able OSS. The application allows users to upload files (such as documents or compressed

Empirical Software Engineering (2020) 25:3175–3215 3193



Fig. 10 Vulnerable constructs for CVE-2017-5638 affecting a struts2-core artifact. Static analysis starting

from traced methods provides further evidence this CVE is relevant for the application at hand

archives) through an HTML form, inspects the file content and displays a summary to

the user. It is built using Maven,23 and it depends on popular open source libraries from

the Apache Software Foundation, such as Struts 2.3.24 (released on 3 May 2015), Com-

mons FileUpload 1.3.1 (6 February 2014), POI 3.14 (6 March 2016) and HttpClient 4.5.2

(21 February 2016). Overall, the application has 12 direct and 15 transitive compile-time

dependencies.

The analysis is performed using Steady, the open source implementation of the approach

described previously. This implementation is released under the Apache license version 2.

Sections 2.2, 2.4, and 2.5 are implemented as goals of a Maven plugin; the collection of

traces during the dynamic analysis (Section 2.3) is performed by instrumenting all classes of

both the application and all its dependencies as described in Plate et al. (2015). This happens

either at runtime, when classes are loaded, or by modifying the byte code of the application

before deploying it in a runtime environment such as Apache Tomcat. The knowledge-base

of vulnerabilities used by Steady is described in Ponta et al. (2019) and available at https://

github.com/SAP/vulnerability-assessment-kb.

4.1 Detection and analysis

To illustrate the benefits of our approach, we go through the analysis steps and highlight

selected findings. To demonstrate the added value of static analysis compared to Plate et al.

(2015), we perform it after dynamic analysis. However, our implementation also supports

changing their order (or executing only a subset of the steps).

(1) Vulnerability detection The first step is to create a bill of materials (BOM), consisting

of the constructs of the application and all its dependencies, as explained in Section 2.2.

Vulnerabilities in a library artifact are detected by intersecting the set of constructs found

in (the BOM of) that artifact with the vulnerable constructs of all the vulnerabilities in our

knowledge-base. As an example, the bottom part of Fig. 10 shows a table listing the vulner-

able constructs for CVE-2017-5638 (columns Type and Qualified Construct Name) together

with the respective change operation (column Change), as well as the information that those

constructs are actually present in the Java archive corresponding to struts-core:2.3.24 (col-

umn Contained). The same figure also illustrates the application of reachability analysis,

which is explained later in this section.

23https://maven.apache.org/
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Fig. 11 Criterion AST Equality establishes that struts-core:2.3.24 contains code vulnerable to CVE-2017-

5638

Additionally, Fig. 11 shows that the criterion AST equality was applied to establish that

such Java archive contains vulnerable constructs for which condition (2) holds. In more

detail, the AST of three out of the four constructs modified in the fix commit is equal to the

vulnerable one (column Distance to V) whereas there is a distance of five to the fixed one

(column Distance to F); the AST of the fourth construct is not equal to the vulnerable nor

the fixed one but is more similar to the former.

The vulnerability detection step reveals that our sample application includes vulnerable

code related to 25 different vulnerabilities, affecting nine different compile-time dependen-

cies: seven are direct, while the remaining two (ognl:3.0.6 and xwork-core:2.3.24,24 pulled

in through struts2-core:2.3.24) are transitive.

(2) Dynamic assessment (Unit tests) This step and the next use the method explained in

Section 2.3. The execution of unit tests reveals that vulnerable constructs related to three

vulnerabilities are executed, e.g., the method URIBuilder.normalizePath(String),25 which is

part of httpclient:4.5.2 and subject to vulnerability HTTPCLIENT-1803.26 Another exam-

ple is shown in Fig. 12: method SharedStringsTable.readFrom(InputStream), which is part

of poi-ooxml:3.14 and subject to CVE-2017-5644, is invoked in the context of unit test

openSpreadsheetTest. The fact that reflection is heavily used inside the poi-ooxml method

XSSFFactory.createDocumentPart(Class,Class[],Object[]) (as visible from a sequence of

four invocations of newInstance, see figure) makes it difficult for static analysis to determine

the reachability of the vulnerable method.

(3) Dynamic assessment (Integration tests) The execution of integration tests is done

using an instrumented version of the application deployed in a runtime container. They

24Maven dependencies are denoted using their artifact identifier followed by, where necessary, a colon and

their version. Group identifiers are omitted for brevity.
25Where possible, Java package and class names are omitted for brevity.
26https://issues.apache.org/jira/browse/HTTPCLIENT-1803
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Fig. 12 Unit tests reveal the

execution of vulnerable construct

SharedStringsTable.readFrom

(InputStream) in poi-ooxml

reveal the execution of vulnerable code related to eight additional vulnerabilities, all affect-

ing struts2-core, or its dependencies ognl and xwork-core. As an example, the last line

of the table in Fig. 10 shows a vulnerable construct of CVE-2017-5638, FileUploadInter-

ceptor.intercept(ActionInvocation), whose actual execution is traced (column Traced) at the

reported time. This method is included in struts2-core 2.3.24 which is part of the Struts2

framework and exemplifies the inversion of control (IoC) happening when frameworks

invoke application code.

(4) Static assessment Using the method introduced in Section 2.4, the static reacha-

bility analysis starting from application constructs reveals that the constructor Multipart-

Stream(InputStream,byte[],int,[4]ProgressNotifier), part of commons-fileupload:1.3.1 and

subject to CVE-2016-3092, is reachable from the application. Dynamic analysis was not

able to trace its execution due to the limited test coverage.

On the other hand, static analysis starting from the application constructs falls short in

the presence of IoC. As application methods are called by the framework, there is no path on

the call graph starting from application and reaching framework constructs that are involved

in the IoC mechanism.

(5) Combination of static and dynamic assessment This step combines the two com-

plementary approaches to reachability analysis, as explained in Section 2.5. The static

analysis starting from constructs traced with dynamic analysis provides additional evi-

dence regarding the relevance of CVE-2017-5638 (the vulnerability that was exploited

in the Equifax breach). In addition to the execution of method FileUploadIntercep-

tor.intercept(ActionInvocation) during step 3, the combination of static and dynamic analy-

sis reveals that method MultiPartRequestWrapper.buildErrorMessage(Throwable, Object[]),

included in struts2-core 2.3.24, is reachable with two calls from the traced method Dis-

patcher.wrapRequest(HttpServletRequest), as shown in Fig. 13. Its reachability is indicated

with the red paw icons in the table containing the construct changes for CVE-2017-5638 (cf.

the two right-most columns of the table in Fig. 10).
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Fig. 13 Combined analysis reveals the reachability of MultiPartRequestWrapper.buildErrorMessage(. . . ) in

struts2-core

4.2 Mitigation

During the execution of dynamic analysis (steps 2 and 3) and static analysis (steps 4 and 5),

touch points and reachable constructs are collected. They are the basis for the computation

of the update metrics for the application at hand.

Figure 14 shows that for httpclient:4.5.2, one of the direct dependencies of the

application, there are nine touch points between the application and the library. The

application method ArchivePrinter.httpRequest2(String), for instance, calls the constructor

HttpGet(String) (cf. first table in the figure). This invocation was observed during dynamic

analysis, and was also found by static analysis (cf. rightmost columns in the first table in

the figure). The second table of the figure shows the number of constructs of httpclient:4.5.2

by type. For example, of the 608 constructors (CONS), 199 were found reachable by static

analysis, and 117 were actually executed during tests.

The table at the bottom of Fig. 14 shows the update metrics that can guide the developer

in the selection of a non-vulnerable replacement for httpclient:4.5.2. Each table row corre-

sponds to a release of Apache HttpClient that is not subject to any vulnerability known to

our knowledge-base, hence, the developer is advised to choose among the three versions:

Fig. 14 Touch points, reachable constructs and update metrics for httpclient:4.5.2
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Fig. 15 Update metrics for struts2-core:2.3.24

4.5.3, 4.5.4 and 4.5.5. The callees of all touch points exist in all of those versions, hence,

the update to any of those would not result in signature incompatibilities (cf. columns 3 and

4). The RBS metric indicates that 872 out of 876 reachable constructs of type method and

constructor are also present in release 4.5.3 (870 out of 876 in 4.5.4 and 4.5.5). The OBS

metric is also relatively high for all three non-vulnerable releases, thus, the developer would

likely choose httpclient:4.5.5 in order to update the vulnerable library.

While the update decision is relatively straightforward for httpclient, it is more difficult

for struts2-core, since there are non-vulnerable replacements from both the 2.3 and the 2.5

branch (cf. Fig. 15). Here, the RBS and OBS metrics indicate a more significant change of

constructs between the current version struts-core:2.3.24 and the latest version of the 2.5

branch (RBS=862/887 and OBS=2781/3101) than between the current version and the latest

version of the 2.3 branch (RBS=885/887 and OBS=3095/3101). Hence, the developer may

be more inclined to stick to the 2.3 branch, thus updating to struts-core:2.3.34 rather than to

struts2-core:2.5.16.

5 Empirical Evaluation

5.1 Goals of the Study

This section presents a study of the effectiveness of our approach when used to detect

vulnerabilities in open source dependencies of real-world enterprise applications.

An open source implementation of the approach presented in this paper for the analysis

of Java and Python applications is available on GitHub at https://github.com/eclipse/steady.

The tool was first developed at SAP and has been released as open source in 2018. At the

time of writing, the tool became an incubator project of the Eclipse Foundation under the

name Eclipse Steady.

This study compares the results produced by Steady with those of OWASP DC in term

of findings, i.e., vulnerabilities reported for a dependency of a project (or project module in

case of multi-module projects). We selected OWASP DC, because it is an established open

source tool for the detection of OSS vulnerabilities in Java projects, developed since 2012

and a mature flagship project of the OWASP foundation. Since OWASP DC does not offer

neither reachability analysis nor mitigation capabilities, the comparison is limited to the

detection of vulnerable dependencies.

More precisely, the goals of the study are the following:

– To determine the differences in the findings reported by the two tools;
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– To evaluate the coverage of Steady’s vulnerability database;

– To identify strengths and weaknesses of the two approaches.

5.2 Methodology

Selection of projects Eclipse Steady, in its current architecture, is continuously operated at

SAP since December 2016. Depending on the tool configuration, the location of an applica-

tion’s versioning control system (VCS) is collected and persisted. In order to run the study,

we selected all applications whose GitHub repository URL is available, and obtained a set

of 444 large enterprise projects, either products or internal tools, under active development.

The selected projects are regularly scanned with Steady as part of SAP’s secure develop-

ment life cycle, whose goal is to ensure security and quality. As a result, OSS vulnerabilities

are regularly mitigated by updating the vulnerable dependency and/or by introducing a

security control in the library or in the application. Since our study aims at comparing the

findings of Steady and OWASP DC, we targeted the project repositories at a point in time

where the Steady findings were not yet addressed.

In most cases, the project descriptor (pom.xml file) is located in the root folder of the

source code tree; however, the folder structure can vary from one project to another, and in

some cases the descriptor is located in some sub-folder.

For practical reasons, we further restricted the analysis to Maven projects whose project

descriptor (pom.xml file) is located in the root folder, thereby reducing the number of

projects under analysis to 300.

Coping with the other cases (i.e., automatically locating the descriptor when it is in an

arbitrary sub-directory) is not straightforward and would would have complicated our exper-

imental setup considerably. Based on our experience, we have no reasons to believe that

the projects we excluded would be easier (or harder) to analyze with Steady and OWASP

DC; nonetheless, we cannot exclude that this selection criterion could have an impact on the

generalizability of our findings.

Vulnerability data Steady and OWASP DC use vulnerability data coming from different

sources; also, the nature of contents of the vulnerability knowledge-bases used by the two

tools differs significantly.

OWASP DC uses the data feeds published regularly on the NVD website.27 These feeds

expose the content of each CVE record in JSON format. A record typically contains a textual

description of the vulnerability, a set of references to other Web resources related to the

vulnerability (e.g., vendor advisories, blog posts, GitHub issues, and the like), a severity

assessment expressed using the Common Vulnerability Scoring System28 (CVSS), and a

set of Common Platform Enumeration29 identifiers (CPE) that indicate which products are

affected by the vulnerability at hand. Before each run, OWASP DC downloads these feeds

(or updates them, if the last download is recent enough).

Steady on the other hand uses its own vulnerability knowledge-base (whose content is

also released under the same license as the tool, Apache v.2.0) that we actively maintain

since 2014. Essentially, the Steady knowledge-base contains, for each vulnerability, the

27https://nvd.nist.gov/vuln/data-feeds
28https://nvd.nist.gov/vuln-metrics/cvss
29https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/cpe/
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Fig. 16 Excerpt from the Steady knowledge-base

identifiers (i.e., repository URL and commit hash) of the commits that fix it, as shown in the

excerpt in Fig. 16. The knowledge-base is described in further detail in Ponta et al. (2019),

and is available for download at https://github.com/SAP/vulnerability-assessment-kb.

For this study, we used a more recent (thus larger) snapshot, than the one described

in Ponta et al. (2019), covering 813 vulnerabilities (May 2019).

Retrieval of project data and setup of automated scans Using a set of Python scripts we

retrieve the projects and we prepare them for the analysis. A first script is used to clone

all repositories. A second script modifies the pom.xml files by removing the name tag (if

present) to ensure that both Steady and OWASP DC report the findings referring to the

projects by their artifactId.30 A third python script generates (in the root folder of every

project) two bash files containing the commands that are necessary to run the vulnerability

detection with either tool. Steady was run using its Maven plugin, which offers the goal

vulas:app31 to retrieve all information about the application and its dependencies, and the

goal vulas:report to generate a report containing the detected vulnerable dependencies (i.e,

vulnerabilities whose code is included in application dependencies). The commands for

Steady are as follows:

mvn -fn com.sap.research.security.vulas:plugin-maven:3.0.16:app

mvn -fn com.sap.research.security.vulas:plugin-maven:3.0.16:

report

The -fn flag forces Maven to build each project module, even in case a build failure occurs

for one of them. Further information on how to run Steady can be found at https://eclipse.

github.io/steady/. Note that the vulas:report goal of Steady must be run separately, once the

vulas:app goal has been executed for all the modules in the case of multi-module projects,

in order to aggregate the results for the entire project.

OWASP DC also offers a Maven plugin and the analysis was run using a goal (aggregate)

that runs the analysis and generates the report. A dedicated configuration was used to

include findings for dependencies declared in scope TEST as follows

30This is necessary because OWASP DC would use the project name to identify the project, unless that tag is

missing. Steady uses the artifactId by default.
31The old name of Vulas is still visible in the goal names and in the source code of Eclipse Steady
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mvn -fn -Dformat=ALL

-DassemblyAnalyzerEnabled=false

-DskipProvidedScope=false

-DskipRuntimeScope=false

-DskipSystemScope=false

-DskipTestScope=false

org.owasp:dependency-check-maven:5.0.0-M2:aggregate

Note that both tools produce a single report for multi-module projects.

Collection and post-processing of findings Both Steady and OWASP DC produce reports

in several formats. For gathering the results we used the JSON format for both tools. We

collected the reports and processed them with help of a Jupyter notebook32 that parses

the reports, retrieves all the findings and gathers them in a data structure containing the

following information:

– the name of the GitHub repository hosting the project under analysis;

– the artifactId of the affected project or module in the case of multi-module projects;

– the library dependency for which the finding was reported;

– the vulnerability identifier;

– the information whether Steady reported the finding;

– the information whether OWASP DC reported the finding;

– the CPE identifiers that OWASP DC used to associate the vulnerability to the depen-

dency;

– the source for the vulnerabilities reported by OWASP DC (either the National Vulnera-

bility Database (NVD) or RETIRE.JS were found in our study),

– the information whether Steady threw an error during the analysis;

– the information whether OWASP DC threw an error during the analysis.

As the study targets Java, we then filtered out the OWASP DC findings for source

RETIRE.JS that provides JavaScript vulnerabilities, and obtained a set of 27769 findings.

Finally, we enriched the dataset with the following additional information:

– whether the vulnerability is available in the NVD, and

– whether the vulnerability has vulnerable constructs (rather than only involving config-

uration changes).

5.3 Analysis of findings

In this section we compare the findings reported by Steady and OWASP DC according to

eight different categories.

Note that three of those categories relate to so-called vulnerabilities without vulnerable

constructs, which are vulnerabilities whose fix does not involve any code change, but, for

instance, changes of default configuration. Though the approach presented in this paper is

based on the presence of vulnerable code, the existing implementation, which is used in a

productive setting to scan commercial applications, has been extended to also cover such

kinds of vulnerabilities. This is done by a manual effort to identify affected artifacts, e.g.,

32https://jupyter.org/
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Table 1 Findings of Steady (S) and OWASP DC (O) by category

Category Findings Distinct Distinct vulnerabilities

vulnerabilities known to NVD

SOC 2099 92 92

SONC 843 10 10

SC 1829 148 128

SNC 27 10 9

OC 17062 (2909) 187 187

ONC 1728 (237) 27 27

ONOKB 4124 (633) 146 146

UC 57 7 7

The letters of the category names indicate which tool reported the findings (S indicates Steady only, O

indicates OWASP DC only, SO indicate both tools). The subscripts C, NC indicate that the findings refer

to vulnerabilities with or without construct changes respectively. The subscript NOKB is applied to the

findings that refer to a vulnerability that is not present in the Steady knowledge-base (of course, these only

apply to O findings). The category UC contains the findings of Steady for which the tool could not determine

automatically whether the constructs identified contain or not the correction to the vulnerability at hand. The

figures reported in parentheses are the number of findings affecting project modules that Steady failed to

analyze (e.g., because of dependency resolution issues)

using its Maven coordinates, thus, it is subject to false negatives in case an affected depen-

dency is missed. Also note that the current implementation also considers code changes not

involving methods or constructors (e.g., changes in a static block) as vulnerabilities without

vulnerable constructs.

Accordingly, by using the Jupyter notebook described above, we cluster the findings in

the following eight categories:

– SC : Findings reported only by Steady for vulnerabilities with vulnerable constructs;

– SNC : Findings reported only by Steady for vulnerabilities without vulnerable con-

structs;

– OC : Findings reported only by OWASP DC for vulnerabilities with vulnerable con-

structs;

– ONC : Findings reported only by OWASP DC for vulnerabilities without vulnerable

constructs;

– ONOKB : Findings reported only by OWASP DC for vulnerabilities not present in the

Steady knowledge-base;

– SOC : Findings reported both by Steady and OWASP DC for vulnerabilities with

vulnerable constructs;

– SONC :Findings reported both by Steady and OWASP DC for vulnerabilities without

vulnerable constructs;

– UC : Findings reported only by Steady for which it is unclear whether the vulnerable or

the fixed version of the construct is included.

Table 1 shows the analysis results by category:33

33Note that the findings also include vulnerabilities for dependencies in scope TEST, which are less critical

(as they are not present at runtime) but still relevant. In our study, the vulnerable dependencies in scope TEST

represent 4, 82% of the total.
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Table 2 Manual review of sample findings for categories SC , OC , SNC , and ONC

Category Proportion of TP

SC 30/30 (0.943 ± 0.0568)

OC 3/30 (0.145 ± 0.111)

SNC 27/27 (1.0)

ONC 19/30 (0.618 ± 0.163)

The table reports the proportion of true positives and confidence intervals (Wilson score, α = 0.05). The

class SNC only has 27 elements, we reviewed them all

Categories SOC and SONC represent cases where the tools agree and, as expected, those

findings arise for vulnerabilities available in the NVD. In particular, 92 CVE identifiers for

vulnerabilities with vulnerable constructs yield 2099 findings, and 10 CVE identifiers for

vulnerabilities without vulnerable constructs yield 843 findings.

Categories SC , SNC , OC , and ONC represent cases where the tools disagree. It is impor-

tant to notice that Steady requires the project dependencies to resolve successfully (by

running, e.g., mvn dependency:resolve) in order to run the analysis, whereas OWASP DC

seems to work even if some dependencies cannot be resolved (we were not able to estab-

lish whether such cases have an impact on the quality of the findings reported). As a result,

categories OC , ONC , and ONOKB also contain findings for projects (project modules) for

which the dependency resolution failed and thus Steady was not executed. The number of

findings reported for projects (i.e., “modules” in the Maven terminology) that could not be

analyzed by Steady (because of dependency resolution issues) is shown in brackets for each

category where it applies in Table 1. In order to establish whether the findings of categories

SC , SNC , OC , and ONC are true or false positives, we manually reviewed 30 findings for

each of them. The manual reviews were performed for findings of projects (project mod-

ules) for which both tools successfully ran. Also note that categories SC and OC are the

most relevant for the evaluation of our code-based detection approach, whereas the com-

parison for categories SNC and ONC mostly evaluate the quality of our manual efforts in

covering such cases.

Table 2 summarizes the results of the manual evaluation.

Category SC (Vulnerabilities with construct changes, found only by Steady) Manual

review showed that all the findings of Steady are true positives. It also revealed that 2 out of

the 30 findings are also found by OWASP DC, however they show up in this category (and

OC resp.) rather than SOC because Steady uses an identifier different from the CVE. This

usually happens in case the vulnerability is added to Steady’s knowledge-base at a time the

CVE does not exist yet. The remaining 28 findings are false negatives for OWASP DC. We

then investigated the possible reason for OWASP DC to miss those findings and, to the best

of our knowledge,

– 3 are caused by vulnerabilities affecting library artifacts bundled in a Java Web

application archive (WAR) dependency of the application (inside the WAR folder

WEB-INF/lib);

– 6 are caused by vulnerabilities not available in the NVD;34

34Although it did not occur in our sample, this category would also contain findings for CVEs already

published in the NVD but whose metadata are not available yet.
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– 4 originate from vulnerabilities whose affected products listed by the NVD seem to

considerably differ from the library metadata;

– for 1 finding it remains unknown why OWASP DC didn’t report it;

– for 14 cases it is not clear why OWASP DC didn’t even list the vulnerable dependency

among the complete list of application dependencies.

As an example, OWASP DC fails at reporting CVEs for the Bouncy Castle35 library

whose artifact often uses the abbreviation bcprov whereas the vulnerabilities are assigned to

CPEs using a variety of naming (e.g. cpe:2.3:a:bouncycastle:[4]bouncy castle crypto package,

cpe:2.3:a:bouncycastle:legion-of-the-bouncy-castle-java-cryptography-api) or are assigned

to the overarching archive as in the case of CVE-2016-6644 that is assigned to cpe:2.3:o:

google:android.

Category OC (Vulnerabilities with construct changes, found only by OWASP DC) The

manual review showed that 3 out of 30 findings are true positives as OWASP DC correctly

identifies that vulnerable libraries where re-bundled in another one. Steady was not able to

report those findings as the signature of the vulnerable construct was altered while being re-

bundled (i.e., a new Java package name-space was created by concatenating the one of the

outer and the one of the re-bundled library). The remaining 27 findings are false positives

as the vulnerability does not affect the application dependency but another Java archive

built from the same library project. This commonly happens when open source projects

release a set of Java archives (with disjoint constructs), and when applications can depend

on a subset of those, according to the required functionalities. As an example, according

to the NVD description and to the advisory page https://pivotal.io/security/cve-2018-11040,

CVE-2018-11040 applies to the part of the Spring Framework responsible for the handling

of requests via JSONP; however OWASP DC reports it for dependency spring-expression-

4.3.16.RELEASE.jar, which does not contain any related functionality or code.

Category SNC (Vulnerabilities without construct changes, found only by Steady) Man-

ual review showed that all 27 findings of Steady are true positives. To the best of our

knowledge, OWASP DC did not detect them because

– 17 findings are for vulnerabilities affecting library artifacts bundled in a WAR

dependency;

– 3 findings are for vulnerabilities that are not available in the NVD;

– 4 findings most likely are for dependencies whose metadata are too far from the affected

products listed by the NVD;

– 3 findings are reported for dependencies that are not listed by OWASP DC (considering

all application dependencies).

Category ONC (Vulnerabilities without construct changes, found only by OWASP DC)
The manual review showed that 19 findings are true positives whereas 11 are false pos-

itives. Among the false positives, 3 are for dependencies whose version is not listed as

fixed by the NVD (though the library maintainers confirmed it is), and 8 findings are

reported for an archive which is not affected (whereas another archive published starting

from the same library project is). Most of the true positives (15) are not found by Steady as

35https://www.bouncycastle.org/
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they are reported for libraries that re-bundle the affected artifact while modifying the con-

struct signatures; the remaining 4 are due to some missing affected library versions in our

knowledge-base.

To summarize, we can conclude that none of the tools includes all findings of the other.

Steady didn’t report any false positives but was subject to few false negatives. OWASP

DC complements our approach in the sense that it is able to identify vulnerable libraries

whose signature was altered while being re-bundled; however such findings needs to be

manually identified while reviewing a non-negligible share of false positives. In particular,

for categories SC and OC , which are those suitable to compare the effectiveness of our

code-based approach, only a small fragment of OWASP DC findings are true positives.

Category ONOKB Category ONOKB in Table 1 contains findings of OWASP DC for vul-

nerabilities that are not known to Steady. The 4124 findings originate from 146 distinct

vulnerabilities available in the NVD. We manually reviewed those vulnerabilities and

concluded that:

– 80 are out of scope as they affect products that are not open source or do not contain

any Java code;

– 12 affect the non-Java part of library artifacts that also include Java code; and

– 54 relate to vulnerabilities in Java libraries that are not covered by the Steady

knowledge-base.

Note, however, that the 54 missing vulnerabilities also include, e.g., disputed CVEs for

which the library developers question the presence of a vulnerability and, hence, did not cre-

ate a fix. The 12 vulnerabilities whose vulnerable code is not in Java could only be covered

by the current implementation of Steady as vulnerabilities without vulnerable constructs,

but they could be covered by our code-centric approach once implemented for the respective

languages.

It is interesting to observe that, despite the number of vulnerabilities (813) in the Steady

knowledge-base being orders of magnitude smaller than the number of vulnerabilities con-

sidered by OWASP DC (the entire NVD, with 123031 vulnerabilities), when running our

experiments only 66 distinct vulnerabilities could not be detected because they were miss-

ing from the Steady knowledge-base. This observation confirms that the criteria we use

to maintain the vulnerability knowledge-base are correct (that is, we are focusing on the

vulnerabilities that matter for enterprise products that incorporate OSS components). After

running the experiments we incorporated many of those missing CVEs in the Steady

knowledge-base (we left out CVEs that are disputed or that affect OSS software imple-

mented in programming languages other than those currently supported by Steady, i.e., Java

and Python).

Category UC This category contains findings of Steady where the tool was able to detect

the presence of constructs modified to fix a vulnerability but was not able to conclude

whether it is contained in its vulnerable or fixed form (i.e., whether it contains the correction

to the vulnerability). These are cases where the criteria of Section 2.2 were not able to

automatically draw a conclusion and thus a manual review is needed.

We consider the number of findings in category UC to be low, the reason being that the

criteria presented in Section 2.2 were automatically evaluated for the majority of libraries

and vulnerabilities. Table 3 shows the corresponding data collected when running Steady
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Table 3 Evaluation

of vulnerability detection criteria Criteria Conclusions Verified OK Verified Err

AST Equality 82490 9252 312

Intersection 4915 1226 88

Major release 6932 915 23

Minor release 4679 646 162

Greater release 18382 2233 5

for more than two years: The column Conclusions contains the number of cases for which

the criteria were able to establish whether a given library version contained the vulnerable

or the fixed code for a given vulnerability. Criterion AST equality was the one concluding in

the majority of cases (82490), thereby establishing whether a vulnerability affects a given

library version.

Columns Verified OK and Verified Err show in how many cases our manual reviews

confirmed the results of the automated assessment (Verified OK) and in how many cases a

wrong assessment had to be overwritten (Verified Err). Considering the conclusions man-

ually reviewed, across all detection criteria, we observe that they concluded correctly in

97.5% of the cases.

However, when compared to the other criteria, the minor release criterion yields a rel-

atively high-number of wrong assessments, roughly 20%, even though the criterion only

considers versions having the same MAJOR.MINOR. All of those correspond to false posi-

tives, because a library version is wrongly assessed as being vulnerable. This observation

relates to the question with which version a given vulnerability has been introduced, which

is out of scope of the proposed approach. Nguyen et al. (2016) investigate this prob-

lem, and question the common approach of vulnerability databases such as the NVD to

highlight all previous versions as being vulnerable, even those having smaller MAJOR or

MINOR versions. In the context of using Steady in a productive setting, considering that

the minor release criterion is responsible for the smallest number of automated assess-

ments (4679 compared to a total of 117,398), and that the alternative would be to not

have any assessments at all for those 4679 cases, it was decided to accept its false positive

assessments.

6 Lessons Learned

6.1 From research prototype to industrial-grade solution

As introduced in the previous section, the approach presented in this paper was first imple-

mented as a SAP-internal tool known as Steady. Initially, a research prototype was used

to run pilots with a small number of development units, to clarify the needs of real-life

development projects and to evaluate the viability of our approach.

From the feedback gathered from the users of the prototype, we could make two clear

observations:

Precision Developers feared that using yet another tool (general static code analyzers as

well as dynamic security testing tools were widely available to scan the code of open source
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dependencies used in SAP’s products) would mean being flooded with more findings refer-

ring to potential issues, many of which irrelevant (not exploitable) in practice. Especially the

more security-aware among developers were reluctant to use metadata-based tools, because

of their excessive rate of false positives and false negatives. As a matter of fact, frequent

false positives can challenge the adoption of a tool as much as false negatives do. This obser-

vation confirmed the importance of our decision to strive for a reliable, precise method to

detect the actual presence of vulnerable code in a given library artifact.

Unobtrusiveness and automation A tool whose adoption requires changes in the devel-

opment practices is extremely hard to promote. We made the choice to integrate with the

de-facto standard build processes and tools, making Steady a pluggable element of the auto-

mated build tool-chain that could be enabled with minimal configuration effort. Automating

vulnerability scans has the additional benefit that issues are detected in a more timely man-

ner, allowing better prioritization and effort allocation to identify and apply cost-effective

fixes. Of course, the integration into commit-triggered build pipelines also comes with

requirements regarding the tool’s availability and performance: For instance, regarding the

entire build infrastructure, developers expect a service availability of 99.95%.

After the prototyping phase, as the demand for Steady started to increase, the tool under-

went a major re-implementation in order to make it more flexible and scalable, by adopting

a micro-services architecture and deploying it onto SAP’s internal cloud infrastructure. With

the growth of the user base, we could observe that the tool is used differently depending on

the phase of the development life-cycle. To deal also with legacy applications, built without

modern tools such as Maven36 or Gradle,37 a dedicated command-line version of Steady is

often used.

Quick vs. Deep scans Projects in the earliest phases of development, and particularly those

that have not yet been released to customers, are mainly concerned with identifying as early

as possible the dependency on a vulnerable library. The large majority of the projects that

adopted Steady are scanned routinely, as part of an automated build pipeline, in which

vulnerability detection (based purely on the analysis of the constructs of the application

and its libraries as presented in Section 2.2) is performed at each commit; these projects

perform a deeper analysis during nightly (or weekly) jobs. The performance offered by

the vulnerability detection implemented in Steady is adequate for frequent scans, since its

average execution time is about 76 seconds (static reachability analysis can take hours to

complete, depending on the size of the application).

We observed that in this phase, the resistance to updates (especially, to minor releases)

is quite low, and developers tend to update their open source dependencies in a short time-

frame.

Deeper analysis of the vulnerability becomes more and more critical the closer the project

gets to the date of release to customers, and stays so throughout the operational lifetime of

the application because new vulnerabilities impacting the application could be discovered

at any point in time after the release. After the release date, Steady is used mostly in man-

ual scans, as a program comprehension tool, to achieve a deeper understanding of whether

and how vulnerable code is reachable in a target application, what its concrete impact is,

and what remediation options are available. We observed, for instance, that users run sev-

eral iterations of dynamic and static scans (using the collected execution traces as entry

36https://maven.apache.org/
37https://gradle.org/
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points for the call graph construction), whereby they observe and step-wise increase the test

coverage throughout those iterations. In fact, the value of this combination of two reacha-

bility analysis techniques becomes evident when considering all applications scanned with

our approach: vulnerable constructs are reachable, statically or dynamically, in 213 out of

1556 applications. In particular, we observed 960 pairs of applications and vulnerabilities

whose constructs were reachable. In 113 cases, the reachability could only be determined

through the combination of techniques, which represents a 11.7% increase of evidence that

vulnerable code is potentially executable.

At the time of writing, Steady is the recommended tool at SAP to scan Java projects

and it is used in over 1500 distinct development projects. The number of dependencies of

the applications scanned (as of May 2019) is plotted in the distribution graph of Fig. 17.

It becomes visible, for instance, that only very few of those 1500 projects have more than

1000 dependencies.

Despite its success, several challenges, pertaining to either organizational or technical

aspects, remain to be addressed. In the remainder of this section we briefly discuss the most

important ones.

6.2 Challenges

6.2.1 Developer opt-in vs. Central scans

To foster the uptake by developers, one has to minimize the required changes of develop-

ment artifacts and processes. Plug-ins for common build tools support this goal, and the

provision of templates for continuous integration pipelines goes as far as enabling in-depth

Steady scans by means of boolean flags. Still, the tool adoption ultimately depends on the

developer’s initiative, even at that degree of integration and automation. Awareness and

training campaigns, and other organizational measures are one means to this end. However,

they require significant resources in large, international and heterogeneous development

organizations. Future work aims at overcoming such issues by running fully-automated

scans at a few central elements of an organization’s development infrastructure, e.g., its

source code or artifact repositories.

Fig. 17 Number of dependencies in the applications analyzed (May 2019)
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6.2.2 Decision-support vs. Decision-making

Steady is essentially a fact-finding tool, whose goal is to provide comprehensive evidence

that vulnerable code is included and reachable in a given application. Clearly, it cannot

prove (decide) whether vulnerable code can or cannot be exploited. However, we occasion-

ally observe this expectation, particularly when library updates are difficult and expensive.

Again, security training and awareness campaigns are essential to ensure that develop-

ers internalize that they are responsible for drawing the final conclusion in regards to

the exploitability of each vulnerability, especially before deciding to stick to a vulnerable

version of an open source dependency. Also, while such conclusions and the decision to

upgrade (or not) a library have to be documented, we decided to keep this functionality out

of the scope of Steady and to stick to its fact-finding mission.

6.2.3 Vulnerability knowledge-base

The creation and maintenance of a comprehensive vulnerability database is key for our

approach. However, the required vulnerability information is scattered across many differ-

ent sources, e.g., public vulnerability databases, issue trackers and security advisories of

individual projects, or source code repositories. Moreover, as discussed in Plate et al. (2015)

and Alqahtani et al. (2016), different sources like the National Vulnerability Database and

code repositories are difficult to integrate using the existing data. Based on a study that we

performed on the NVD, we estimate our knowledge-base (Ponta et al. 2019) to cover about

90% of all vulnerabilities affecting Java open source projects and that are part of the NVD,

which is consistent with the outcome of the review of all CVEs originating the findings of

category ONOKB in Section 5.

At the time of writing, we are working with other members of the SAP Security Research

organization to experiment with machine-learning methods to automate the identification of

fix commits. Such automated support has the potential to ease significantly the maintenance

of a rich knowledge-base linking vulnerabilities to the corresponding source-code fixes. Our

early attempts to tackle this problem are reported in Sabetta and Bezzi (2018), where source

code changes are represented using a bag-of-words model; more recently we explored the

use of AST embeddings and transfer learning in an approach called COMMIT2VEC (Cabrera

Lozoya et al. 2019), but this very promising investigation is still in progress.

Complementary the introduction of automation in the curation of accurate vulnera-

bility data, a coordinated approach to vulnerability disclosure and patch release across

the open source community, through the governance exercised by established institu-

tions (such as the Apache Software Foundation, the Eclipse Foundation, and the like)

would be extremely beneficial to the maintenance of a comprehensive, high-quality, open

vulnerability knowledge-base.

6.2.4 Shallow vs. Deep updates

The metrics of Section 3 support the update to non-vulnerable library versions. For transi-

tive dependencies, however, developers are required to interfere with the transparency and

automation of the dependency resolution mechanism. In fact, one would need to add the

updated non-vulnerable version of the library as a direct dependency, thereby taking the risk

of future incompatibilities. Therefore, the mitigation strategy could be optimized to recom-

mend the update of the dependency that is “nearest” to the application (shallowest in the
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dependency tree). As an example, to mitigate the vulnerable library version S3 of Fig. 9, a

newer version of S1 can be recommended if it pulls in a fixed version of S3.

6.2.5 Problematic types of vulnerabilities

By identifying a vulnerable dependency through the presence of vulnerable code, our

approach is robust against false positives and false negatives, as typical for solutions based

on the mapping of library and vulnerability metadata. As a drawback, the fraction of

vulnerabilities whose fix does not involve any code change, e.g., those that are fixed by mod-

ifying a default configuration, cannot be covered by our code-centric approach described in

Section 2.1. Nevertheless, Steady is able to cover such cases, which are relatively rare com-

pared to code-related vulnerabilities, by flagging entire libraries as affected (cf. categories

ONC and SNC in Section 5).

By assessing the exploitability of a vulnerability in terms of potential or actual code

execution, our approach provides evidence about the application-specific usage of vulner-

able code. However, this approach does not work with vulnerabilities that are due to the

de-serialization of untrusted data, where the mere presence of so-called de-serialization

gadgets in the application classpath can cause the application to be vulnerable (regard-

less of whether they can be reached during normal program execution). Attackers exploit

the behavior of the Java serialization mechanism, which creates objects (through de-

serialization) as long as the definition of the respective class is known, regardless of whether

the application actively uses it or not.

7 Related work

7.1 Vulnerability detection

There exist several free (e.g., OWASP DC) and commercial tools (e.g., WhiteSource,38

snyk,39 Black Duck,40 SourceClear41) for detecting vulnerabilities in OSS components.

In Plate et al. (2015) we compared the vulnerability detection capabilities of our approach

with state-of-the-art tools at the example of an application we developed to include vul-

nerable libraries. In this work we evaluate our approach against OWASP DC by analyzing

300 enterprise applications under development and observe that while all Steady findings

are true positives, OWASP DC has a high-rate of false positives. To the best of our knowl-

edge, the combination of static and dynamic techniques and the metric-based support to

mitigation offered by our approach are unique.

OWASP DC is used in Cadariu et al. (2015) to create a vulnerability alert service and

to perform an empirical investigation about the usage of vulnerable components in pro-

prietary software. The results showed that 54 out of 75 of the projects analyzed have

at least one vulnerable library. However the results had to be manually reviewed, as the

matching of vulnerabilities to libraries showed low precision. Alqahtani et al. proposed an

ontology-based approach to establish a link between vulnerability databases and software

repositories (Alqahtani et al. 2016). The mapping resulting from their approach yields a

38https://www.whitesourcesoftware.com/oss security vulnerabilities/
39https://snyk.io/
40https://www.blackducksoftware.com/technology/vulnerability-reporting
41https://www.sourceclear.com/
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precision that is 5% lower than OWASP DC. All these approaches and tools differ from

ours in that they focus on vulnerability detection based on metadata, and do not provide

application-specific reachability assessment nor mitigation proposals. Dashevskyi et al. pro-

pose a screening test based on slicing to identify which older versions of FOSS components

are likely to be affected by newly disclosed vulnerabilities (Dashevskyi et al. 2018). Though

this approach is able to quickly establish whether a given library version in a versioning

control system (VCS) is affected, it relies on the availability of the complete history of the

library (which may not be available in cases where, e.g., a library is migrated to a differ-

ent VCS), and it does not link the VCS revisions to the library versions available in artifact

repositories such as Maven Central, which are ultimately used to retrieve application depen-

dencies. On the contrary our approach aims at establishing whether the actual application

dependencies (the packaged artifacts) include vulnerable code.

7.2 Reachability of vulnerable code

In our previous work (Plate et al. 2015), we used reachability analysis (and in particular,

dynamic analysis) to establish whether vulnerable code is actually executed and thus to

make a first step beyond the mere detection of vulnerabilities. In this work, we extend (Plate

et al. 2015) by including static reachability analysis and presenting a novel combination of

static and dynamic reachability analysis. To the best of our knowledge, none of the exist-

ing works and tools combine static and dynamic reachability analysis, or provide mitigation

proposals according to the application-specific use of library code. Zapata et al. (2018)

performed a manual inspection of 60 npm projects to establish whether the vulnerable con-

structs of three vulnerabilities affecting the projects’ dependencies were reachable. They

found that up to 73.3% of the projects depending on vulnerable versions were actually safe.

This work confirms that the analysis at level of libraries is indeed an overestimation and

underlines the importance of a code-centric approach like the one we propose in this work.

7.3 Library update

The empirical study conducted by Kula et al. on library migrations of 4600 GitHub projects

showed that 81.5% of them do not update their direct library dependencies, not even

when they are affected by publicly known vulnerabilities (Kula et al. 2018). In particular,

that study highlights the lack of awareness about security vulnerabilities. Considering 147

Apache software projects, Bavota G et al. (2015) studied the evolution of dependencies

and found that applications tend to update their dependencies to newer releases containing

substantial changes. Tools based on reward or incentives to trigger the update of outdated

dependencies exist (e.g., the David project,42 Greenkeeper43), however as shown in Mirhos-

seini and Parnin (2017), project developers are mostly concerned about breaking changes

and mechanisms are needed to provide–next to transparency–a motivation for the update

and confidence measures to estimate the risk of performing the update. By automatically

detecting vulnerabilities, providing evidence about the reachability of the vulnerable code,

and supporting mitigation via update metrics, our work addresses the need of motivating

updates and estimating effort and risk.

42https://david-dm.org/
43https://greenkeeper.io/
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Raemaekers et al. (2012) propose four metrics to measure the stability of libraries

through time. In particular they consider the removal of units (constructs in our context), the

amount of change in existing constructs, the ratio of change in new and old constructs, and

the percentage of new constructs. Similar to our work, the metrics are meant to be represen-

tative for the amount of work required to update a certain library and thus they also consider

usages of library methods in other projects. However the main focus of Raemaekers et al.

(2012) is the library, and the metrics are used to measure its stability over time given a set

of projects. Though some of their metrics ingredients can also be considered in our work,

the metrics we propose are about the application-specific library usage. Moreover, our met-

rics benefit of our in-depth analysis of the application (e.g., some usages of the libraries that

can only be observed with a combination of static and dynamic reachability analysis).

Raemaekers et al. studied breaking changes in Java library releases over seven years and

showed that they occur with the same frequency in major and minor releases (Raemaekers

et al. 2014). This shows that the rules of semantic versioning, according to which breaking

changes are only allowed in major releases, are not always followed in practice, at least

not in the Java/Maven ecosystem. They also showed that the top 3 most frequent breaking

changes involve a deletion of methods, classes, fields, respectively. This result reinforces

our belief that our update metrics based on measuring the removal of program constructs

provides a critical information. However, regarding compliance with semantic versioning

in other ecosystems than Java/Maven, Decan and Mens showed that it generally increases

during an observation period of five years, but also depends on ecosystem-specific factors

such as notations or maturity (Decan and Mens 2019).

Mileva et al. (2009) studied the usage of different library versions and provided a tool

to suggest which one to use based on the choice of the majority of similar users. Our work

differs from theirs, in that we provide quantitative measures to support the user in selecting

a non-vulnerable library.

7.4 Library migration

Existing works on library migration (Hora and Valente 2015; Dagenais and Robillard 2009;

Nguyen et al. 2010) are complementary to our approach in that they support develop-

ers in evolving their code to adapt to new libraries or library versions. Hora and Valente

(2015) propose a tool that keeps track of API popularity and migration of major frame-

works/libraries, amounting to 650 GitHub projects resulting in 320000 APIs at the time

of publication. Dagenais and Robillard (2009) describe tools able to recommend replace-

ments for framework methods accessed by a client program and deleted over time. Nguyen

et al. (2010) present a tool able to recommend complex adaptations learned from already

migrated clients or the library itself.

8 Conclusion

The unique contributions of this paper are (i) the detection of vulnerabilities based on

abstract syntax tree comparisons, (ii) the use of static reachability analysis and its com-

bination with dynamic reachability analysis to support the application-specific assessment

and mitigation of open source vulnerabilities, and (iii) the comparative empirical study to

evaluate the effectiveness of our approach to vulnerability detection. This approach fur-

ther advances the code-centric detection and dynamic reachability analysis of vulnerable

dependencies we originally proposed in Plate et al. (2015).
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The accuracy and application-specific nature of our method improves over state-of-the-

art approaches, which commonly depend on metadata. Steady, the implementation of our

approach for Java, was chosen by SAP among several candidates as the recommended OSS

vulnerability scanner. Since December 2016, it has been used for over one million scans of

about 1500 applications, which demonstrates the viability and scalability of the approach.

The variety of programming languages used in today’s software systems pushes us to

extend Steady to support languages other than Java. However, as demonstrated by our

comparative evaluation of Section 5, fully-qualified names can be inadequate to uniquely

identify the relevant program constructs in certain languages, so we are considering the use

of information extracted from the construct bodies.

Finally, the problem of systematically linking open source vulnerability information to

the corresponding source code changes (the fix) remains open. Maintaining a compre-

hensive knowledge-base of rich, detailed vulnerability data is critical to all vulnerability

management approaches and requires considerable effort. While this effort could be sub-

stantially reduced creating specialized tools, we strongly believe that the maintenance of

this knowledge-base should become an industry-wide, coordinated effort, whose outcome

would benefit the whole software industry.
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