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Abstract— We propose a view-based approach for labeling
objects in 3D scenes reconstructed from RGB-D (color+depth)
videos. We utilize sliding window detectors trained from object
views to assign class probabilities to pixels in every RGB-D
frame. These probabilities are projected into the reconstructed
3D scene and integrated using a voxel representation. We
perform efficient inference on a Markov Random Field over the
voxels, combining cues from view-based detection and 3D shape,
to label the scene. Our detection-based approach produces
accurate scene labeling on the RGB-D Scenes Dataset and
improves the robustness of object detection.

I. INTRODUCTION

3D scene understanding is a fundamental problem in

robotics and perception, as knowledge of the environment

is a prerequisite for complex robotic tasks and interactions.

Thus far, most robotic scene understanding work has focused

on outdoor scenes captured with laser scanners, where tech-

nologies have matured and enabled high-impact applications

such as mapping and autonomous driving [2], [25], [21], [7],

[30]. Indoor scenes, in comparison, prove more challenging

and cover a wider range of objects, scene layouts, and scales.

A variety of approaches have been proposed for labeling 3D

indoor scenes and detecting objects in them [29], [14], [12],

[4], [19], [26], typically on a single camera view or laser

scan. Purely shape-based labeling is often very successful

on large architectural elements (e.g. wall, chair) but less so

on small objects (e.g. coffee mug, bowl). Robust labeling

of objects requires the use of rich visual information in

addition to shape. While image-only object matching can

work very well for textured objects [4], recent works on

RGB-D perception combine both shape and color and show

promising results for generic object detection [26], [19], [20].

Advances in RGB-D matching and scene reconstruction

make it feasible to go beyond single-view labeling and allow

the continuous capture of a scene, where RGB-D videos

can be robustly and efficiently merged into consistent and

detailed 3D point clouds [18]. One way to label a multi-

frame scene would be to directly work with the merged

point cloud. Point cloud labeling has worked very well for

outdoor scenes [21], [7], [30], and the recent work of [1]

illustrates how labeling can be done on indoor 3D scenes,

where local features are computed from segments of point

clouds and integrated in a Markov Random Field (MRF)
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Fig. 1. An illustration of our detection-based approach versus a 3D segmen-
tation approach. (a) A typical approach to 3D labeling segments the scene
into components, inevitably causing some objects to be oversegmented. (b)
We train object detectors and use them to localize entire objects in individual
frames, taking advantage of rich visual information.

model. Such approaches focus on 3D point clouds and do

not fully utilize the RGB-D frames, nor do they make use

of detection techniques developed for images [11].

In this work, we emphasize an object-centric view of 3D

labeling, combining techniques in object detection, scene

labeling, and 3D reconstruction. Instead of learning from

entire scenes, we train object detectors on view-based data,

i.e. views of objects possibly isolated and/or from a different

domain. We run object detectors on the RGB-D frames

to score individual pixels and then project these into the

reconstructed 3D scene. A voxel representation is used in an

MRF model to integrate these projections to produce accurate

labeling and segmentation of detected objects.

The resulting approach works on non-textured objects

and does not require complete 3D object models or finding

supporting surfaces in the scene. Combining views from

multiple frames, we greatly improve the accuracy of object

detection on the RGB-D Scene Dataset [19], where our

detection-based labeling achieves almost 90% F-score. We

also experimentally demonstrate another advantage of our

approach: the ability to train object detectors using large

repositories on the Web (e.g. [6], [13]).

II. RELATED WORK

Scene labeling has been extensively studied under many

different settings. Techniques have been developed for label-



ing surfaces such as grass, walls, or pavement, and small

sets of object types such as foliage, people, and cars in 3D

outdoor scenes. Most of these approaches label individual 3D

laser points using features describing local shape and appear-

ance in combination with spatial and temporal smoothing via

graphical model inference [2], [25], [21], [7], [30]. Features

are either extracted from a fixed neighborhood around 3D

points [2], [30] or from small patches generated via an over-

segmentation of the scene [25], [21]. Instead of labeling

individual points, Douillard and colleagues [8] first generate

a voxel representation and then classify voxels based on

cumulative shape features within. Unlike these approaches

that only analyze the reconstructed scene, we take advantage

of rich visual information by first extracting features from

and detecting objects in the constituent RGB-D images.

Object detection in 3D indoor scenes is challenging due

to variation in object appearance and size. Triebel et al. [29]

built on associative Markov networks introduced in [2] to

detect large objects such as chairs, tables, and fans in 3D

laser scans. They label individual points based on local shape

features extracted from one point cloud. Lai et al. [19] detect

objects with sliding window object detectors using shape

and color features extracted from a single RGB-D frame

collected by a Kinect style camera. Unlike this previous

work, the proposed approach here analyzes an entire video

sequence covering objects from multiple viewpoints and

performs spatial reasoning in 3D. Anand et al. [1] segment

a point cloud generated from an aligned set of RGB-D

frames and performs classification based on local features

accumulated over segments. An alternative approach is to

match existing 3D object models into a scene [9], [12], [8],

[14]. However, these techniques require either annotated 3D

scenes for training, or the availability of 3D object models.

Many also focus on shape information, thereby ignoring

valuable appearance information provided by RGB cameras.

In contrast, Collet et al. [4] used only visual features to build

sparse 3D models of textured objects and efficiently match

them. Our technique combines both appearance and shape

information without requiring annotated scenes or complete

3D object models for training.

In computer vision, both scene labeling and object de-

tection have been extensively studied. [15] is an example

of scene labeling in images using a multi-scale CRF model

to integrate local and contextual cues. Image labeling has

focused mostly on large scene elements (such as sky, ground,

building) and less on small everyday objects. For object

detection, HOG (histogram of oriented gradients) templates

based sliding window classifiers have been shown to be

robust and is widely used [5], [11]. However, most existing

object detection systems only output bounding box detec-

tions, as in Helmer et al. [17] who used sliding window

classifiers to detect objects from several viewpoints. We

instead analyze RGB-D videos and provide dense labeling

of every point in the 3D scene.

Algorithm 1: Detection-based Scene Labeling

1. Input: Aligned RGB-D frames f1, ..., fK ,

trained object detectors 1, ..., C.

2. For each k in {1, ...,K}

3. Project all N pixels in fk into 3D points x1, ..., xN

using the camera pose estimate of fk .

4. For each c in {1, ..., C}

5. Run sliding window detector c on frame fk to obtain

p(c|x), ∀x ∈ {x1, .., xN} // Eq.3.

6. End

7. Compute background probabilities p(cB |x) // Eq.5

8. End

9. Create voxel map V , each voxel v containing 3D points Ωv .

10. For each voxel v in V

11. Compute ψv(yv) using p(yv |x), ∀x ∈ Ωv . // Eq.7

12. End

13. For each pair of neighboring voxels {i, j}

14. Compute φi,j(yi, yj) using surface normals. // Eq.10

15. End

16. Minimize E(y1, ..., y|V|) using multi-class graph cuts [3]

and return voxel labels y1, ..., y|V|. // Eq.1

III. 3D OBJECT LABELING

We consider the problem of object labeling in RGB-D

scenes, i.e. 3D scenes that are captured from a set of RGB-

D video frames. We utilize RGB-D mapping [18] to globally

aligned and merge each frame with the scene under a rigid

transform. The goal is to label objects of interest in such

scenes, where these objects may comprise only a small part

of the 3D point cloud.

We represent a 3D scene as a set of voxels V . Each

voxel v is associated with a label yv ∈ {1, ..., C, cB}, where

1, ..., C are object classes and cB is the background class.

We model the joint distribution of voxel labels using an MRF

with pairwise interactions. The optimal labeling of the scene

minimizes the following energy:

E(y1, · · · , y|V|) =
∑

v∈V

ψv(yv) +
∑

{i,j}∈N

φi,j(yi, yj) (1)

where N is the set of all pairs of neighboring voxels. The

data term (first sum) measures how well the assigned label

fits the observed data and the pairwise term (second sum)

models interactions between adjacent voxels.

MRF-based techniques have been used for many labeling

tasks, providing a unified framework for combining local

evidence, such as appearance and shape, with dependencies

across regions like label smoothness. An approach that has

shown some promise is to define the data term using local

features on over-segmentations (e.g. [21], [30], [1]). These

segmentation-based approaches deal with imperfect segmen-

tation by generating a “soup of segments” [23] by running

multiple segmentation algorithms on the same scene and

aggregating classification results, hoping that at least some

of segments will be distinctive enough to be recognized.

We instead train view-based object detectors that run

on individual RGB-D frames and incorporate the responses



into the data term. Sliding window based approaches learn

templates from object views that have been annotated with

bounding boxes encompassing the entire object. An object

is localized in an image by scanning over multiple positions

and scales.

We illustrate the differences pictorially in Fig. 1. A typical

3D scene labeling approach first aggregates the data into the

reconstructed scene and then extracts features and performs

classification on the scene. Our view-based approach instead

evaluates classifiers on the individual frames before merging

the evidence into the 3D scene using an MRF. This allows us

to extract rich visual and depth features and leverage state-of-

the-art detection techniques, including max-margin detector

training, searching over image scale pyramids, and mining

hard negative examples. We now describe our approach,

summarized in Algorithm 1, in detail.

A. Detection-based Probability Maps

We compute the data term ψv(yv) in Eq.1 using responses

from object detectors that have been independently trained

using a database of objects and background images. The

detectors are run on individual RGB-D frames and their

responses are used to estimate an object class probability

for every pixel in every frame.

Scoring 3D points using object detection. View-based

object detection has been extensively studied [5], [10], [16].

Sliding window detectors assign scores to a grid of loca-

tions in the image on which the detector window has been

centered, often across multiple image scales. The standard

object detection framework uses this score map pyramid to

select a subset of high scoring detector bounding boxes to

label as object candidates.

For scene labeling, we instead want to assign a label to

every 3D point in the scene. For scenes reconstructed from

Kinect videos, each point is a pixel in some RGB-D frame

and the system can remember this one-to-one mapping.

Instead of using the score map pyramid to select bounding

box candidates, we use it to compute a score map over all

pixels (and hence 3D points).

Throughout this paper we use x to denote a 3D point.

When computing features for x, the system looks up the

corresponding pixel and computes them using the source

RGB-D frame. Let fhc (x) be the feature vector of x for object

detector c at scale h. We use features extracted from both the

RGB and depth images (see Section III-C). An object can

appear in different sizes depending on its distance from the

camera, so it is necessary to run sliding window detectors

on multiple scaled versions of the image. While RGB-D data

makes it plausible to select the “proper” scale based on the

physical sizes of objects, we choose not to enforce any hard

scale constraint and instead use scale as an input feature

to the detector, as in [19]. Hence, the maximum detector

response across all scales is the best estimate of the true

object scale at a particular image position and we obtain the

score map of a linear SVM object detector c:

sc(x) = max
h

{w⊤
c f

h
c (x) + bc} (2)

where wc and bc is the weight vector and bias of the object

detector c, learned from training data. We train one detector

for each object class, so 1 ≤ c ≤ C. We convert these linear

score maps into probability maps that define the probability

of point x belonging to class c, using Platt scaling [24]

(Algorithm 1, line 5):

p(c|x) = 1

1 + exp{usc(x) + v} (3)

where u and v are the parameters of the sigmoid and can be

found by minimizing negative log likelihood of the training

or validation set. This is not a probability over all classes,

but instead a probability obtained from the binary classi-

fier between class c and background [27]. The advantage

of training C binary classifiers instead of one multi-class

classifier is that we can train each detector with a different

template window size and aspect ratio, using a different

training dataset.

Background probability. A point belongs to the back-

ground class if it does not lie on any of the objects. Detectors

provide evidence for the background class when they do not

fire at a location. The object detectors are trained and eval-

uated independently, each seeing other objects as negative

examples. To obtain a background probability, we observe

that when there are C foreground classes, the following holds

for the probability of point x being background:

p(cB |x) ≤ 1− p(c|x), ∀c ∈ {1, ..., C} (4)

Hence, we can use the smallest probability of the negative

classes as the upper bound for that of the background class.

In practice, we use the discounted value

p(cB |x) = α min
1≤c≤C

{1− p(c|x)} (5)

where 0 < α ≤ 1 controls the looseness of the upper bound

(Algorithm 1, line 7).

Integrating evidence from multiple frames. The RGB-

D mapping algorithm [18] performs frame alignment and

estimates the camera pose of each frame in the global 3D

scene. We voxelize the resulting point cloud so that each

voxel v contains a set of 3D points Ωv .

We generate the likelihood of voxel v by multiplying the

likelihoods of its constituent points Ωv and normalizing the

resulting likelihood using the geometric mean

p(yv|Ωv) =

{

∏

x∈Ωv

p(yv|x)
}

1

|Ωv|

(6)

where yv ∈ {1, ..., C, cB} and p(yv|x) is looked-up from

the corresponding probability map. Here we cannot simply

take the product because the class probabilities of each 3D

point are not independent; without discounting, the resulting

probabilities will be overconfident. Hence, we discount the

probabilities by normalizing them by the number of points

in the voxel [28]. As is standard in multi-class graph cuts,

the data term in the MRF is the negative log likelihood:

ψv(yv) = − ln p(yv|Ωv) = − 1

|Ωv|
∑

x∈Ωv

ln p(yv|x) (7)



Fig. 2. Each voxel in the scene (center) contains 3D points projected from
multiple RGB-D frames. The points and their projections are known, so we
can compute average likelihoods for each voxel based on the likelihoods
of constituent points. Combining detections from multiple frames greatly
improves the robustness of object detection.

This corresponds to setting the log likelihood of a voxel

v to be the arithmetic mean of the log likelihoods of its

constituent points Ωv (Algorithm 1, line 11).

B. Label Consistency and Geometric Information

The pairwise term φi,j(yi, yj) in Eq.1 encodes interactions

between nearby voxels. The simplest pairwise interaction is

the Potts model [3]

λ · 1yi 6=yj
(8)

where 1yi 6=yj
evaluates to 1 when yi 6= yj and 0 otherwise.

This adds a constant penalty λ when adjacent elements do

not share the same label. This is based on the assumption

that the world is “smooth” in the sense that nearby elements

tend to share the same label. However, in reality abrupt label

changes do occur at object boundaries.

In image labeling, researchers have used the contrast-

dependent smoothness prior [22],

λ · 1yi 6=yj
exp(−θ‖xi − xj‖2). (9)

Here xi and xj are the intensities/colors of pixels i and j, so

label changes between dissimilar pixels are penalized less,

with θ controlling the sensitivity. This captures the intuition

that label changes tend to occur at sharp edges, where

adjacent pixels have very different intensities/colors. How-

ever, intensity/color changes in an image do not necessarily

correspond to object boundaries, since objects can often have

internal edges (e.g. logos on a soda can). Furthermore, the

boundary between two similarly colored objects may not

have strong image gradients.

For labeling RGB-D scenes, 3D shape information can

be used as a more reliable cue for object boundaries. We

incorporate this information into our model by defining

φi,j(yi, yj) = λ · 1yi 6=yj

d(ni, nj)
(I(ni, nj) + ǫ) (10)

where λ and ǫ are balancing parameters (Algorithm 1, line

14).

As in the Potts model [3], the pairwise term is non-

zero only when yi 6= yj . d(ni, nj) measures the difference

between surface normals ni and nj of, respectively, voxels

i and j; if d(·) is small, the normals are similar, i and j
are on a smooth surface and the cost is high to assign them

different labels. We use the L2-distance plus a small constant

as our distance metric between surface normals. I(ni, nj) is

an indicator variable expressing whether i and j are part of a

convex surface (such as the top of a cereal box) or a concave

one (where a cereal box touches its supporting surface).

Since objects tend to have convex shapes and concave surface

transitions are more likely to occur at object boundaries, the

cost is lower to cut the scene at a concave shape than a

convex one, with the parameter ǫ controlling the trade-off.

This pairwise term captures the intuition that object bound-

aries tend to have large changes in surface orientation, and

that objects tend to be supported by flat surfaces, leading to

concave surface transitions. As was done in [1], we use

I(ni, nj) = [(ni − nj) · (i− j) > 0] (11)

to indicate whether the surface transition between voxels i
and j is convex. To compute this we need to ensure that all

surface normals point outward and not into the object. This

can be done because the camera pose of the video frame

from which each point originates is known, and the surface

normal should form a sharp (> 90◦) angle with the camera

view vector.

The data term ψv(v) and the pairwise term φi,j(yi, yj)
together define a multi-class pairwise MRF, whose energy is

quickly minimized using graph cuts [3] (Algorithm 1, line

16). There are three free parameters in our model (α,λ,ǫ)
and they are easy to set by hand. We leave learning the

parameters to future work.

C. RGB-D Object Detection

The HOG based sliding window classifier is among the

most successful object detection techniques [5], [10]. We

use its extension to RGB-D data, first proposed in [19], as

the object detector for generating our probability maps. We

now describe this particular detector in detail. Note that the

proposed MRF-based scene labeling approach only uses the

probability maps. If desired, this detector can be substituted

with, for example, the deformable parts-based model of

Felzenszwalb et al. [11], without changes to the rest of the

framework.

Following Lai et al. [19], we extract HOG features over

both the RGB and depth image to capture appearance and

shape information of each view of an object. We use a variant

of the feature that has been shown to slightly outperform the

original HOG descriptors [10]. The gradient orientations in

each cell (8× 8 pixel grid) are encoded using two different

quantization levels into 18 (0◦ − 360◦) and 9 orientation

bins (0◦ − 180◦). The resulting 4 × (18 + 9) = 108-

dimensional feature vector is analytically projected into a

31-dimensional feature vector. The first 27 dimensions corre-

spond to different orientation channels (18 contrast sensitive

and 9 contrast insensitive). The last 4 dimensions capture

the overall gradient energy in four blocks of 2× 2 cells. As

in [19], we use a recursive median filter to fill in missing

values in the depth image and then compute HOG features

in the same way. This feature is sensitive to the large depth

discontinuities that occur at object boundaries, enabling it

to capture object silhouette information. Finally, we also



compute a normalized depth histogram. We normalize the

depth image using the size of the bounding box and then

compute histograms over an 8×8 grid. We used a histogram

of 20 bins with each bin having a range of 0.30m. This is

based on the observation that an object that is d times as far

away will appear 1/d times as large in the image. Hence,

this feature is sensitive to whether the detector is centered

on a set of points that are representative of the true size of

the object.

The performance of classifiers heavily depends on its abil-

ities to exploit negative data. In a typical image or depth map

captured by Kinect, there are many (105) potential negative

examples, which makes it impractical to use all negative

examples. We use a bootstrapping procedure to mine the hard

negative examples. The initial negative examples consists

of cropped rectangles from background videos and objects

from other categories. After training a classifier, the resulting

classifier is used to search background images and select

the false positives with the highest scores (hard negatives).

These hard negatives are added as negative examples and the

classifier is retrained. This procedure is repeated 10 times to

obtain the final classifier.

When using RGB-D object detectors, we found it helpful

to perform a depth-based refinement to improve the probabil-

ity map defined in Eq.10. In Fig. 3, we show the probability

map of a cereal box sliding window detector. In this example

the detector correctly finds the location of the cereal box;

however, strong signals are only localized around the center

of the object. The probabilities quickly decrease near the

edges of the cereal box. This is not surprising since bounding

boxes centered near the edge contain a large amount of

background and look very different from the cereal box itself.

To better capture the spatial extents of detected objects, we

refine the probability map using high scoring bounding boxes

found by our object detectors. For each bounding box above

a detector score threshold of −0.6, we set

p(c|x) = p(c|x0) exp(−γ‖x− x0‖2), x ∈ B (12)

where B is the set of 3D points in a bounding box, x0
is the center of the corresponding bounding box, and the

parameter γ controls how quickly the probability decreases

with increasing depth difference. This expansion is analogous

to bilateral filtering using depth. From the example in Fig. 3,

we can see that many more pixels inside the cereal box

now have a strong signal. We note that this procedure can

falsely introduce some strong signals on non-object pixels

(the table in this case) into the refined probability map. While

a more expensive approach using more cues may yield better

refinement, we found that our simple and quick approach is

sufficient, as the false signals can be cleaned up by the MRF.

IV. EXPERIMENTS

We evaluate the proposed detection-based 3D scene la-

beling on the RGB-D Object Dataset [19], which contains

everyday objects captured individually on a turntable, as

well as kitchen and office scenes containing multiple objects

Fig. 3. An example of using RGB-D object detectors to obtain a probability
map defined on all pixels. We first run the cereal box detector to obtain a
class probability at each pixel (top left). We then use high scoring bounding
box candidates (bottom left) to perform depth-based refinement and obtain
the final probability map that better fits the shape of the object (right).

captured with a freely moving Kinect style camera (RGB-

D Scenes Dataset). We train our object detectors using

individually captured objects and evaluate scene labeling on

point clouds reconstructed from the RGB-D scene videos. We

show how to use 3D scene labeling results to improve the

performance of bounding box based object detection. Finally,

we show examples of 3D labeling using only web image data

for training.

A. Experimental Setup

The RGB-D Object Dataset [19] contains 250,000 seg-

mented RGB-D images of 300 objects in 51 categories. It

also includes the RGB-D Scenes Dataset, which consists of

eight video sequences of office and kitchen environments.

The videos are recorded with a Kinect-style sensor from

Primesense and each contain from 1700 to 3000 RGB-D

frames. We evaluate our system’s ability to detect and label

objects in the five categories bowl, cap, cereal box, coffee

mug, and soda can, and distinguish them from everything

else, which we label as background. Each scene used in our

evaluation contains things ranging from walls, doors, and

tables, to a variety of objects placed on multiple supporting

surfaces. Considering only the five categories listed above,

each scene contains between 2 to 11 objects in up to all five

categories. There are a total of 19 unique objects appearing

in the eight scenes.

We train a linear SVM sliding window detector for each

of the five object categories using views of objects from the

RGB-D Object Dataset. Each view is an RGB-D image of

the object as it is rotated on a turntable. This provides dense

coverage of the object as it is rotated about its vertical axis.

The data contains views from three different camera angles

at 30, 45, and 60 degrees with the horizon. Each detector is

trained using all but one of the object instances in the dataset,

so 5 of the 19 objects that appear in the evaluation were

never seen during training. The aspect ratio of the detector’s

bounding box is set to be the tightest box that can be resized

to contain all training images. In total, the positive training

set of each category detector consists of around 500 RGB-

D images. We use the 11 background videos in the RGB-D



Technique Micro F-score Macro F-score

Random 16.7 7.4

AllBG 94.9 15.8

DetOnly 72.5 71.3

PottsMRF 87.7 87.4

ColMRF 88.6 88.5

Det3DMRF 89.9 89.8

Fig. 4. Micro and Macro F-scores for two naı̈ve algorithms (random and
labeling everything as background) and the proposed detection-based 3D
scene labeling approach and its variants.

Scenes Dataset to mine for hard negative examples.

We use a voxel representation with 1cm×1cm×1cm vox-

els, where the neighborhood of each voxel is the 26 directly

adjacent voxels. We experimented with larger neighborhoods

but found no appreciable difference in performance. The

surface normal of each voxel is computed using voxels within

a
√
27cm radius. Energy minimization via multi-class graph

cuts [3] yields the optimal labels for all voxels, which is

used to label the constituent points to obtain the final scene

labeling. In our experiments we use the parameter settings

α = 0.1, λ = 100, ǫ = 1/49, which we found to work well

for all video sequences.

B. 3D Scene Labeling Results

The primary task of the proposed approach is to perform

3D scene labeling, which is to assign a label to every point

in a 3D scene. We evaluate the proposed approach described

in Section III (Det3DMRF), as well as variants involving (a)

only the data term in our model (DetOnly); (b) incorporating

the standard Potts smoothness term, Eq.8 (PottsMRF); (c)

incorporating the contrast-dependent smoothness term, Eq.9,

over voxels that take on the mean color of its constituent

points (ColMRF).

Fig. 4 compares the micro and macro F-scores of variants

of the proposed approach, as well as the naı̈ve approaches

of randomly labeling each point (Random) and labeling

everything as background (AllBG). The Micro F-score is

computed from the overall precision and recall of the scene

labeling, while Macro F-score is the average of the F-scores

of the five categories, each computed separately. Random is

obviously terrible regardless of the performance metric used.

Since most points are background, AllBG actually performs

well in terms of micro F-score. However, it fails to detect

any of the objects and hence performs poorly when each

category is given equal weight in the macro F-score.

Fig. 5 shows the per-category and overall precisions and

recalls of variants of the proposed approach. The overall pre-

cision/recall is a macro-average across categories; a micro-

average would not be informative with the majority of points

being background. The results show that PottsMRF signifi-

cantly improves precision while also yielding modest gains in

recall. Det3DMRF boosts precision and recall further; table

points that are mislabeled as objects because they often lie

inside high scoring detector bounding boxes can be removed

because there is often a sharp concave normal transition

between the table and the object. ColMRF can also robustly

segment objects if the color is significantly different, but

overall does not perform as well as Det3DMRF on the RGB-

D Scenes Dataset. Although the gains from Det3DMRF

seem modest when looking at the numbers, qualitatively

segmentation is improved substantially as points on the table

are now almost always excluded from the objects (see Fig. 6).

In Fig. 7 we show three complex scenes that were labeled

by our 3D scene labeling technique (Det3DMRF). The top

row shows the reconstructed 3D scene and the bottom row

shows results obtained by Det3DMRF. Objects are colored

by their category label, where bowl is red, cap is green, cereal

box is blue, coffee mug is yellow, and soda can is cyan.

Running time. The RGB-D Mapping algorithm [18] used

for scene reconstruction runs in real-time for our Kinect

videos, which were collected at 15-20 Hz. We evaluate object

detectors on every 10th frame, or every 0.5 seconds. Our

current single-threaded MATLAB implementation is not yet

real-time, requiring 4 seconds to process each frame. Vox-

elization and graph cut inference take negligible time. The

overwhelming majority of computation is spent on feature

extraction and sliding window classification, each taking

around 1.8 seconds. Given that both of these procedures

are highly parallelizable, we believe that a more optimized,

multi-threaded implementation will run in real-time. When

we run detection on every 80th frame, i.e. in real-time for

our current implementation, the system only suffers slight

performance degradation: precision= 83.6%, recall=79.5%,

micro f-score=81.5%, macro f-score=81.0%. Due to the

speed at which the camera is moved, there can be large

viewpoint changes between 80 frames in the RGB-D Scenes

Dataset. Slowing down camera movement would narrow the

performance gap.

C. Refining Image-based Object Detection

After labeling a 3D scene, it is possible to use it to

validate bounding box proposals from the constituent video

frames. We do this by running the object detectors with a low

threshold and pruning out bounding box candidates whose

labels do not agree with the majority label of points in a

central region of the bounding box. Fig. 8 shows precision-

recall curves obtained from both the individual frame-by-

frame object detections (red) and detections validated by

our 3D scene labeling (blue). Each point along the curve

is generated by ranking detections from all five category

detectors together and thresholding on the detection score.

It is clear that 3D scene labeling can significantly reduce

false positives by aggregating evidence across the entire

video sequence. While the precision of the frame-by-frame

detection approach rapidly decreases beyond 60% recall for

all eight scenes, using 3D scene labeling it is possible to

obtain 80% recall and 80% precision in a majority of them.

D. 3D Scene Labeling using ImageNet

Up until now we have focused on evaluating object de-

tectors trained with images and depth maps captured with

an RGB-D camera. Though we can collect such training



Technique Precision/Recall

Bowl Cap Cereal Box Coffee Mug Soda Can Background Overall

DetOnly 46.9/90.7 54.1/90.5 76.1/90.7 42.7/74.1 51.6/87.4 98.8/93.9 61.7/87.9

PottsMRF 84.4/90.7 74.8/91.8 88.8/94.1 87.2/73.4 87.6/81.9 99.0/98.3 86.9/88.4

ColMRF 93.7/86.9 81.3/92.2 91.2/89.0 88.3/73.6 83.5/86.5 98.7/98.8 89.4/87.8

Det3DMRF 91.5/85.1 90.5/91.4 93.6/94.9 90.0/75.1 81.5/87.4 99.0/99.1 91.0/88.8

Fig. 5. Per-category and overall (macro-averaged across categories) precisions and recalls for the proposed detection-based 3D scene labeling approach
and its variants. Our approach works very well for all object categories in the RGB-D Scene Dataset.

Fig. 6. Close-up of a scene containing a cap (green), a cereal box (blue), and a soda can (cyan). From left to right, the 3D scene; Detection-only leaves
patches of false positives; Potts MRF removes isolated patches but cannot cleanly segment objects from the table; Color MRF includes part of the table
with the cap because it is similar in color due to shadows; the proposed detection-based scene labeling obtains clean segmentations. Best viewed in color.

Fig. 7. 3D scene labeling results for three complex scenes in the RGB-D Scenes Dataset. 3D reconstruction (top), our detection-based scene labeling
(bottom). Objects colored by their category: bowl is red, cap is green, cereal box is blue, coffee mug is yellow, and soda can is cyan. Best viewed in color.

Fig. 8. Precision-recall curves comparing the performance of labeling
images with bounding boxes of detected objects. Each plot shows results on
one of the eight video sequences in the RGB-D Scenes Dataset, aggregated
over all five category detectors. Frame-by-frame object detection is drawn
in red, while 3D scene labeling (our approach) is drawn in blue.

data using the approach proposed in [19], it is still time-

consuming to get enough data to train good object detectors.

Given that large labeled image collections are available

online now [6], in this experiment we try to train object

detectors using an existing image dataset (here we use

ImageNet) and use the resulting detector responses in our

system to perform scene labeling. This can be done in exactly

the same framework, except that now the probability map is

obtained from detectors that use only HOG features extracted

from the RGB image. Since only the detectors need to

be changed, we can still use the depth map to refine the

probability map and perform 3D scene reconstruction.

We retrieve the coffee mug category from ImageNet and



obtain 2200 images containing coffee mugs. We generate

around 200 positive examples by cropping the coffee mug

windows from images where ground truth bounding boxes

were provided and resizing them to a 104×96 window. The

negative examples are exactly the same background dataset

used to train object detectors in our previous experiments.

We train the coffee mug detector using linear SVMs with

the same hard negative mining procedure. In our evaluation,

all coffee mugs in the eight scenes from the RGB-D Scenes

Dataset were correctly detected by this detector. We show

two example scenes in Fig. 9.

Fig. 9. Labeling coffee mugs in 3D scenes using a sliding window detector
trained with ImageNet data using only visual HOG features.

V. DISCUSSION

RGB-D mapping techniques have made it feasible to

capture and reconstruct 3D indoor scenes from RGB-D

videos. In this work we pursue an object-centric view of

scene labeling, utilizing view-based object detectors to find

objects in frames, project detections into 3D and integrate

them in a voxel-based MRF. We show that our detection-

based approach, reasoning about whole objects on the source

RGB-D frames (instead of 3D point clouds), leads to very

accurate labelings of objects and can be used to makes object

detection in still images much more robust.

Labeling objects in indoor scenes is very challenging,

partly because there exists a huge range of objects, scene

types, and scales. One needs to utilize the full resolution

of sensor data and detailed object knowledge. We see a

promising direction forward by focusing on objects and their

learning. There exists a large amount of object data, such as

in ImageNet [6] and Google 3D Warehouse [13]. We have

shown an example where we reliably label objects in 3D

scenes using only ImageNet for training. There are many

such opportunities where object knowledge may be acquired

and applied to scene understanding.
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