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Detection, Classification, and Superposition

Resolution of Action Potentials in Multiunit

Single-Channel Recordings by an On-Line

Real-Time Neural Network
Rishi Chandra and Lance M. Optican*

Abstract—Determination of single-unit spike trains from mul-
tiunit recordings obtained during extracellular recording has
been the focus of many studies over the last two decades. In
multiunit recordings, superpositions can occur with high fre-
quency if the firing rates of the neurons are high or correlated,
making superposition resolution imperative for accurate spike
train determination. In this work, a connectionist neural net-
work (NN) was applied to the spike sorting challenge. A novel
training scheme was developed which enabled the NN to resolve
some superpositions using single-channel recordings. Simulated
multiunit spike trains were constructed from templates and noise
segments that were extracted from real extracellular recordings.
The simulations were used to determine the performances of the
NN and a simple matched template filter (MTF), which was used
as a basis for comparison. The network performed as well as the
MTF in identifying nonoverlapping spikes, and was significantly
better in resolving superpositions and rejecting noise. An on-line,
real-time implementation of the NN discriminator, using a high-
speed digital signal processor mounted inside an IBM-PC, is now
in use in six laboratories.

Index Terms— Multiunit spike sorting, neural networks, on-
line, real-time discrimination.

I. INTRODUCTION

T
HE analysis of simultaneous activity from several

neurons can lead to a better understanding of their

functional connectivity. Extracellular recordings with low-

impedance electrodes are capable of recording such activity

from several neurons near the tip of the electrode. The

shape manifested in the recording of an action potential,

or spike, emitted from a particular neuron is a function of

the position of that neuron relative to the electrode. Thus,

by sorting the different shapes in an extracellular recording,

the interleaved spike trains of the individual neurons can be

separated. There are two significant difficulties in analyzing

extracellular recordings: high levels of correlated neural noise

and superpositions of waveforms. Background noise consists

mainly of the activity of distant neurons. These noise levels

can be relatively high and since most neurons have similar

time constants for potential changes, the spectral contents
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of the noise and signal overlap considerably. Superpositions

occur when two neurons fire within 1 ms of each other,

resulting in the addition of their individual waveforms. In the

case where firing patterns are not correlated, the frequency of

superpositions is determined by the number of neurons and

their firing rates. If there are neurons, each firing with an

average frequency of Hz, and having a spike duration of

s, the average superposition rate is given by the expression

[1]. For example, if there are three neurons each

firing at 50 Hz, with waveforms of 1-ms duration, then the

average number of superpositions would be 15 s . Doubling

the common firing rate to 100 Hz causes the overlap rate to

increase fourfold to 60 s . Thus, superposition resolution is

an important consideration in spike sorting. When the firing

patterns are correlated to each other or a particular stimulus,

the rate of superpositions can be much higher. This paper

presents a fully automated system for sorting spikes and their

superpositions on-line in real-time.

Three criteria governed the development of our spike sorter,

1) good isolation of single units in multiunit single-channel

recordings; 2) an on-line system, because details of experi-

ments are often determined by the selectivity of the identified

neurons; and 3) resolution of superpositions, because many

neurons burst together when a stimulus is presented, which

results in many superpositions.

Many signal-processing techniques have been applied to

the challenge of sorting multiunit recordings (see the review

paper by Schmidt [2], and a comparison of various sorters

by Wheeler and Heetderks [3]). One of the most popular

methods is matched template filtering, commonly referred to

as template matching [4]–[13]. This technique uses templates

that represent the typical waveform shape of each neuron

to filter the data. Variants of template matching have been

implemented in the form of reduced feature sets, such as prin-

cipal component analysis or simple waveform characteristics

(e.g., spike height and width), to provide faster processing

[14]–[16]. A learning phase is required for the template

generation and determination of classification thresholds for

all these sorters. Some investigators have considered the

problem of superpositions [8], [13]. The general scheme

for superposition resolution in template matching relies on

iterative subtraction of all possible template combinations from

unidentified waveforms. This approach is computationally

U.S. Government work not protected by U.S. copyright.
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intensive, making on-line implementation difficult, especially

when the rate of superpositions is high.

Matched template filtering is a time domain technique;

frequency domain methods have also been applied to spike

sorting, the most common technique being optimal linear

filtering [17]–[21]. This approach is based on deriving optimal

filters that respond to one unique template and reject the

others and the background noise. The learning phase generates

templates which are then used to derive their respective

optimal linear filters. Although linear optimal filtering can

resolve linear superpositions, it is dependent on multichannel

recordings. Roberts and Hartline [17] stated that the number

of channels should be greater than or equal to the number

of units to be identified. The optimal filtering technique is

ideal for multichannel recordings where the units appear on

at least two of the channels. All the investigators using this

technique [17]–[21] concluded that the discrimination perfor-

mance would deteriorate rapidly if this condition were not met,

although this dependency may be reduced by adding nonlinear

properties to the filters, e.g., an iterative subtraction scheme

that removes the largest remaining units on each iteration.

An off-line Bayesian modeling scheme has been proposed

by Atiya [22] and Lewicki [23]. This method uses both

the waveform and firing rate information to minimize the

probability of error during classification. To resolve super-

positions, Atiya implements a comprehensive search of the

space of overlapping spike shapes and event times to find the

sequence of maximum probability. This is a very computa-

tionally demanding approach. Lewicki uses the same principle

but restricts the search by using a Poisson model for the

firing of the neurons, then uses data structures and dynamic

programming to efficiently sort the spikes. Lewicki’s technique

can be implemented in a pseudo-on-line system by processing

one set of data while collecting another. If results of the spike

classification are needed before the end of an experimental

trial, a true on-line system would still be needed.

Artificial neural networks (ANN’s) have been used for

the classification of units in a multiunit recording with

fully connected, feed-forward networks [24]–[26]. An

implementation of the adaptive resonance theory (ART)-2

neural network (NN) algorithm was also applied to this

problem [27]. Although these applications have been

successful in isolating single units and are better than template

matching [25], none were trained to recognize, or were tested

on, superpositions of waveforms. A Hopfield-type network

has been implemented in real-time to separate units and their

superpositions [28], although the investigators concluded that

template matching performed better than the Hopfield-type

network. A unique pseudo-unsupervised training method

based on network relaxation has been implemented off-line

[29], [30] that learns the template shapes. This application

was developed to resolve motor unit action potentials

(MUAP’s), which are significantly longer than neuronal

action potentials. Superposition resolution was possible when

the MUAP peaks were sufficiently separated in time.

An NN was used in the work presented here because

it combines linear filtering (by the weights from the input

layer to the hidden layer) with nonlinear classification (by

the nonlinear hidden units), which should enable it to resolve

superpositions of units in a multiunit single-channel recording.

Another advantage of using an NN for sorting is that in

multidimensional feature space, decision regions are hyper-

ellipses, because the background neural noise is colored-

Gaussian-type noise (if the noise were white, then the decision

regions would be hyper-spheres, i.e., equal variance in all

dimensions), and NN’s are capable of generating nonspherical

decision boundaries. The final advantage of using an NN lies

in the ability to implement it on high-speed digital processors,

allowing on-line real-time multiunit sorting with superposition

resolution. This paper presents a method for training an NN to

sort spikes and resolve superpositions. This training method

has three novel components. First, the training set consists

of both individual templates and superimposed templates.

Second, the training set includes simulated noise with the

same spectral characteristics as the neuronal noise. Third, the

NN is used as a nonrecursive [finite impulse response (FIR)]

digital filter, simultaneously accomplishing both detection

and classification of spikes. The performance of this NN is

compared to that of an MTF on simulated data sets with

different templates and signal-to-noise ratios (SNR’s).

The method developed here has four characteristic features:

automatic determination of a detection threshold based on

noise analysis, automatic clustering of waveforms to obtain

templates, supervised training of an NN, and operation of the

network as a simultaneous detector/classifier in real-time. This

method has been successfully implemented on a PC-host with

a digital signal processor (DSP) co-processor system.

II. METHODS

A. Data Collection and Spike Detection

Data were acquired during extracellular recording with

tungsten microelectrodes from the medial superior temporal

area in the cortex of a monkey during a visual experiment

with moving stimuli (see Duffy and Wurtz [31] for methods).

The system has also performed well on recordings from

primate superior colliculus. Data sets were collected from three

different recording sessions and stored on analog tape. From

each session, a section of the tape with low background noise

levels was selected and digitized at a rate of 24 KHz using

a 16-b analog–digital (A/D) converter (ADC-DBCS5339-50,

Communication Automation and Control, Allentown, PA).

The ADC utilizes a front end antialiasing filter, delta-sigma

modulation, 64-times oversampling, and a three-stage digital

FIR filter to achieve a 94-dB SNR.

Spikes were detected when the amplitude of the recorded

signal exceeded a positive or negative threshold. The threshold

was determined by breaking the record into pure neuronal

noise segments and setting the threshold at three standard de-

viations of that noise [32]. The neuronal noise was segmented

by an algorithm which separates signal from noise based

on the Gaussian characteristics of the noise [33]. Detected

spikes were clustered together to form noise-free templates

using a recently developed simultaneous clustering algorithm

[34]–[36]. This algorithm exploits the advantages of simul-
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Fig. 1. Artificial data sets based on three separate neurophysiological record-
ing sessions. Three templates that represented the most dense spike clusters
with high SNR were chosen from each recording session. The templates are
shown embedded in a short segment of their corresponding neural noise. The
SNR’s for each template in the three sets were: 1) 7.72, 3.46, and 3.26; 2)
7.51, 3.46, and 4.72; and 3) 2.98, 2.40, and 4.93.

taneous clustering and accounts for detection jitter when

segmenting waveforms from recordings. The algorithm is

described briefly in the Appendix. Three templates, which

represented dense spike clusters with high SNR’s, and the

segmented neural noise, were stored from each of the three

data sets. Each template consisted of 24 samples (1.0 ms in

duration at 24 KHz). Fig. 1 shows the templates embedded in

a short segment of their respective noise traces.

B. Discriminator Details

This study compares the spike discrimination performance

of a connectionist NN to that of an MTF. Fig. 2 illustrates the

structure of the two discriminators. The MTF [Fig. 2(a)] sets

circular decision regions [13] in multidimensional space. The

incoming data stream takes the form of vectors in this space,

i.e., values for each dimension (feature) are recorded over the

length of an analysis window. In our implementation, a 24-

sample window was used, where each sample in the window

constitutes one feature. The templates are represented in the

same manner and the sum squared difference between the

incoming data and the templates is calculated. If the error

is a local minima and less than threshold, then the incoming

pattern is said to match the template. Since the noise is colored,

the threshold was determined empirically from a pure noise

segment. This was done by building a histogram of the power

(sum of squared samples in a 24-sample window) of the noise

record. The threshold was set at a value that was greater

than 99.9% of the population. This method approximates the

squared Euclidean distance threshold for classification and

avoids the errors that can be caused by outliers.

(a)

(b)

Fig. 2. The structures of the discriminators. The input to each discriminator
is the digitized signal, which is shifted one sample at a time. In (a) the
MTF, the template is subtracted from the signal, the differences squared and
summed. The output of each template filter is compared to a threshold deter-
mined from the statistics of the noise. (b) The fully connected feed-forward
NN is used as a nonlinear FIR filter. The outputs are compared to a threshold
which is empirically determined. Input layer units have a linear function, the
hidden layer units have a Gaussian function, and the output layer units have
a sigmoid function.

The other discriminator [Fig. 2(b)] was an NN used as an

FIR filter [37], [38]. A fully connected, feed-forward, three-

layer NN was used. The network had twenty-four input units,

eight hidden units, and three output units. Linear activation

functions were used for the input nodes, Gaussian activation

functions for the hidden layer, and logistic activation functions

(range from zero to one) for the output layer. The last 24

samples of the incoming data formed the input to the network.

An event constituted a strong response ( 0.95) in any of the

output units. In simulations we tested different numbers of

hidden units. Below eight hidden units, the classification per-

formance dropped drastically. Although eight hidden units is

the maximum we could implement in the real-time system, we

tested networks with ten and twelve hidden units and no signif-

icant improvement in classification performance was observed.

The network was trained with a modification of the back-

propagation algorithm [39]. Modifications that were incorpo-
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rated in the training were an adaptive learning rate, weight

momentum, weight decay, and weight annealing. The training

for each test consisted of each template, with added noise, at all

possible shifts along the input buffer of the NN. The weighting

for the error at the output layer was an exponential function of

the shift. The training input–output set was defined as follows.

If is the total number of templates, is the number

of possible shifts ( , in this training set),

template ( ) stands for template with shift , and

represents the weighting of the output error, then, the inputs

are

template noise, for

and

the outputs are

for and

otherwise

and the weights for the error are

for

The training set with superpositions adds the following inputs:

template template noise,

for

and

the corresponding outputs and weights are

for ,

for all and

for ,

for and

otherwise.

for all

This input–output set trains the network to respond only when

a spike is placed exactly in the middle of the input buffer. Any

shifts cause the network to reject the waveform. In the case

of superpositions that are samples apart, ideally the network

would respond to the first spike and then respond again n

samples later to the second spike. Fig. 3 shows the output

of the two discriminators for a short sample of data. Data is

the input, is the corresponding output of the network, and

is the squared difference between the waveform and MTF

( ).

C. Simulations and Testing

Software simulations were used to determine the perfor-

mance of the MTF and NN discriminators. As a simple model

of the recording process, assume that when a neuron fires it al-

ways produces the same waveform shape in the recording, but

is corrupted by colored Gaussian noise. Then each template,

which is an average of many action potentials determined

to be from one neuron, represents the “noise-free” shape

Fig. 3. A 10-ms segment of a simulated spike train with five spikes, and
the corresponding outputs of the NN and MTF. The top trace shows the data,
which has an SNR for the three templates of 5.74, 3.61, and 2.65. The numbers
show the position of each template. The outputs of the two discriminators are
shown in the traces below. Ni is the ith output of the NN, Mi is the output of
the ith MTF. “C” represents a correct classification, “M” a missed detection,
and “F ” a false detection. The NN correctly classifies five out of the six
waveforms (it misses one of type 3) and has one false positive. The MTF
detects every waveform but also has two false positives. Note that the output
traces of the two detectors have been shifted forward by 12 samples to align
the outputs with the middle of the spikes for illustration purposes.

manifested in a recording by the respective neuron [1]. Thus

simulated multispike trains were constructed by embedding

the templates at various locations in extended noise traces.

Neural noise for each data set was modeled by generating

white Gaussian noise [40] and digitally filtering it with a

second-order recursive (IIR) filter with three nonrecursive

coefficients and two recursive coefficients to match the spectral

characteristics of the real neural noise. The coefficients of the

recursive filter were determined by fitting a single exponential

to the decay of the autocorrelation function [41].

Simulations allowed complete control of test data and exact

evaluation of each discriminator’s performance. For each

simulated spike train, the variables in the record that could

be manipulated were: 1) the firing rate of each neuron; 2)

superpositions of waveforms; and 3) the background noise

level. Three different types of simulated spike trains were

constructed for each data set; the first type had an approximate

firing rate of 120 Hz for each neuron with superpositions

occurring at a rate of 80 Hz, i.e., about 2/3 of the spikes present

were the superposition of two or three individual spikes. Fig. 4

shows two examples of superimposed waveforms from the

first type of simulations. The second type had a firing rate of

90 Hz for each neuron and no superpositions. For these two
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(a)

(b)

Fig. 4. Examples of the superpositions of (a) three and (b) two templates.
The bottom traces in each example show the superpositions of the templates
shown above with additive noise. The average SNR of the spike train these
segments were taken from was 5.0. In (a), the overlap is 0.71 ms between A
and B, 0.67 ms between B and C, and 0.38 ms between A and C. The NN
was able to resolve the earliest and largest (C) waveform and the matched
filter rejected all three. In (b), the overlap between A and B is 0.88 ms. The
NN was able to identify both constituent waveforms. The MTF rejected both.

simulation types, the SNR was varied from 1.5 to 10.0 by

simply scaling the background noise. It is important to note

that the noise had the same autocorrelation characteristics as

the real noise from the recording sessions, and only its variance

differed. At each SNR, 4 s of data were tested for each data

set. The third and last simulation type was designed to test the

performance of the two discriminators when the amplitude of

the spike changed, because spike amplitude commonly drops

during a high-frequency burst. The noise level was fixed to

give an average SNR of 5.0 (relative to the original template

sizes) and the magnitude of the template was varied between

0.5 and 2.0 times its original size. The original template sizes

were used for the matched filter and training of the NN to

test the robustness of the two discriminators in the presence

of amplitude variation.

D. Real-Time Implementation

The matched filter and NN discriminators were realized

using an 80-MHz AT&T DSP32C digital signal processor

(Communications Automation & Control) mounted inside an

IBM Pentium P5-133 MHz PC (Gateway). The DSP was fast

enough to run either discriminator in real-time. The maximum

size of the network that could be implemented with a 24-

sample input buffer and a 24-KHz sampling rate was eight

hidden units and three output units. The output of the chosen

TABLE I
A SAMPLE OF THE CLASSIFICATION SCHEME. AN ASTERISK INDICATES A

SUPERPOSITION, OR OVERLAP OF TWO TEMPLATES. THE LOCATIONS IN THE

TABLE ARE THE SAMPLE NUMBERS OF THE WAVEFORMS. WHEN SOMETHING IS

DETECTED, IT IS REGISTERED AS A CORRECT CLASSIFICATION IF THE LOCATION

IS EXACTLY RIGHT AND THE IDENTIFIED CLASS MATCHES THE TRUE CLASS.
ANY OTHER DETECTION IS CLASSIFIED AS A FALSE POSITIVE. ERRONEOUS

DETECTIONS OF NOISE AS UNITS ARE ALSO CLASSIFIED AS FALSE POSITIVES

discriminator was accumulated and relayed to the host PC

every millisecond for storage and on-line display. The learning

stage consisted of two phases, template generation, and NN

training. Fifteen seconds of data buffers were uploaded to

the PC for noise modeling, spike detection, and template

generation. The required processing time on an IBM P5-133 is

approximately 3–4 s. Network training was performed on the

DSP, with a typical training time of 60 s. Thus the total time

to acquire new data, generate templates, and train the network

is just under 2 min for this system. The code for the host PC

was written in the C programming language under MS-DOS;

the code for the DSP was written in assembly language.

III. RESULTS

The simulations described above were designed to compare

the discrimination performance of the NN to that of the MTF.

Two measures of performance were considered, the percent

correctly identified and the rate of false positives. A correct

identification means that the waveform was detected at the

correct location and was classified correctly. An incorrect

identification means either that the waveform was not detected

at all, or was detected at the correct location but was misclassi-

fied. A false positive is any detection where no waveform had

been placed. Table I gives a sample of the evaluation process.

In this scheme, correct classification of both constituent

waveforms in a superposition counts as two correct classifi-

cations and resolution of two superimposed waveforms. Thus,

a superposition resolution of 50% could mean that only one

waveform was resolved from every superposition, or that both

waveforms from half the superpositions were resolved, or a

combination of the two extreme cases. In the examples given

in Table I, the superposition resolution is 75%, as three out of

four waveforms were correctly resolved. The results presented

are the average performances of the two discriminators over

the three simulated data sets. The SNR’s quoted are the

average SNR’s of the spike trains. The SNR is defined as

the root mean square value of the waveform divided by the

standard deviation of the noise. The SNR’s for a data set are

simply the average SNR’s of their constituent templates.
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(a) (b)

(c) (d)

Fig. 5. The performances of the NN and MTF discriminators on simulated spike trains. The performances shown in (a), (b), and (c) are averages, and error
bars the standard deviations, over the three data sets. At every SNR, 4-s multiunit spike trains were analyzed for each data set. The SNR’s are the average
SNR’s of the templates. The first class of spike trains (a) had approximately 1440 spikes (a firing rate of 120 Hz for each of the three neurons) with 960
overlapping waveforms. The second class (b) had approximately 1000 spikes (approx. 90 Hz for each neuron) with no overlapping waveforms. The percent of
overlapping waveforms resolved for the first class are shown in (c). The percent of superpositions resolved with varying overlap for two particular waveforms
is shown in (d); at each overlap, approximately 300 superpositions were analyzed (600 waveforms). The templates used in this example were 2 and 3 from
template set two (see Fig. 1). The SNR of each of the constituent waveforms was 3.1 and 4.23, the plot shows the percent when at least one of the two
waveforms were resolved. Any performance over 50% means that at least in some instances, both waveforms were resolved.

A. Classification Performance

Fig. 5 shows the percent correctly detected by the MTF

and NN in spike trains when superpositions were present

[Fig. 5(a)] and in spike trains with no superpositions

[Fig. 5(b)]. Fig. 5(c) shows the percent of superpositions

resolved in the first case. With the exception of superposition

resolution for the matched filter, all the performances saturate

after an SNR of 5.0. At this SNR level and above, the

separability (defined as the Euclidean distance between cluster

centers divided by the standard deviation of noise) between

single spike cluster centers is greater than six standard

deviations of the noise (for our data sets), thus there is no

cluster overlap in multidimensional feature space. When there

are superpositions present, there is a significant difference in

the performances of the two discriminators [Fig. 5(a)]. The

performance of the NN saturates at a little over 70%, whereas

the MTF only attains a performance of approximately 40%.

The difference between the two is due to the inability of the

MTF to resolve superpositions. The matched filter also seems

to have relatively similar performance across the range of

tested SNR’s when superpositions are present. This is because

at high SNR’s superimposed waveforms are rejected and there

is limited resolution. At low SNR’s the distortion caused by

superpositions falls within the classification threshold and the

false positive rate also increases significantly as more noise

is accepted by the matched filter. The effect of superpositions

is confirmed by the next two graphs. When no superpositions

are present [Fig. 5(b)], both discriminators attain at least 80%

correct classification at SNR’s of 5.0 and above. This is

because of the good separability of the clusters at low noise

levels. It is important to note that the NN detects and classifies

single spikes almost as well as the MTF, showing that the

difference in Fig. 5(a) is due to classification of superpositions.
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(a) (b)

Fig. 6. The false positive rates for the NN and MTF discriminators on the two types of spike trains described in Fig. 4.

The third graph in the figure shows the difference in the

superposition resolution. The NN performance follows that

of the previous two graphs. The fact that the network cannot

completely resolve more than 50%–60% of all superpositions

explains why in Fig. 5(a) the performance of the network

only reaches 70%. In the spike trains with superpositions,

about 2/3 of the waveforms were superimposed, meaning

that if approximately half of those were resolved as shown

in Fig. 5(c), the best overall performance one can expect

is about 70% correct classification. It was observed that

the superposition resolution capabilities of the network

varied significantly depending upon the relative shift of

the constituent waveforms. For large shifts, generally both

waveforms could be classified, as the distortion of each is

low. For small shifts, the network was able to resolve some

of these superpositions, despite high distortions. Fig. 5(d)

shows one example of the superposition resolution for two

waveforms at an average SNR of 4.5.

In Fig. 5(c), the matched filter could only resolve super-

positions when the overlap was minimal, resulting in 10%

resolution at high SNR’s. Strangely the performance seems

to improve with decreasing SNR. This is caused by a high

number of false detections by the MTF discriminator as the

SNR drops, thus correct identifications are attained by chance.

Thus, it is important to compare the percent correct with the

rate of false detections in evaluating a discriminator.

The rate of false positives is shown in Fig. 6. The large

difference in the number of false positives between the two

discriminators is striking. There is also a large difference

between the false positive rate in the matched filter with

and without superpositions, but only a minimal difference

for the NN. Once again, the improvement in performance

for both discriminators saturates at an SNR of 5.0 when

no superpositions are present. At high SNR, when there

are superpositions present [Fig. 6(a)], the matched filter has

no false positives, whereas the network does have a few,

which arise from incorrect classification of waveforms in

superpositions. This is corroborated by Fig. 6(b), which shows

minimal false positives by either discriminator at SNR’s

greater than 5.0 and none at 10.0 in spike trains with single

units only. At low SNR’s, where the noise level is high relative

to the templates, there will be considerable overlap between

the spike clusters and the noise cluster in multidimensional

space. This is the cause of high false positives for the matched

filter. It is important to note that the number of false positives

for the matched filter can be reduced if an additional power

detection scheme is used prior to classification. However,

since this was a comparative study between the MTF and

NN, the discriminators were used for both detection and

classification. The network has a low false positive rate even

when superpositions are present, indicating that it is much

more selective than the MTF.

B. Amplitude Sensitivity

Fig. 7 shows the performance when the amplitude of the

templates change at a fixed noise level. This was examined

to see how the discriminators perform when the amplitude

changes, because a significant problem in real physiologi-

cal data is the fluctuation in spike amplitude during high-

frequency bursts. During such a burst, the electro-chemical

gradient that drives the spike drops, which causes the ampli-

tude to decrease. Naturally both discriminators perform best

when the scaling factor is 1.0. At scaling factors between 0.5

and 1.0, the percent correctly detected falls off at approxi-

mately the same rate for both discriminators. For values greater

than 1.0, the NN seems to be more robust in identifying the

neurons. When one examines the false positives [Fig. 7(b)],

the discriminators behave in opposite fashions. The matched

filter has an increasing number of false positives as the scaling

factor drops below 1.0, and the NN when the scaling factor

rises above 1.0. In the case of the MTF, the false positives

result from misclassification of a scaled down big unit as a

smaller template. Note that in the data sets used (shown in

Fig. 1), some of the units are similar in shape but different

in magnitude. The reason there are no false positives for the

matched filter when the scaling factor is 1.0 (one might
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(a) (b)

Fig. 7. The classification performance for the NN and MTF on simulated spike trains without superpositions when the magnitude of the spikes are varied
(by multiplying the waveform by a scalar, the magnitude scaling factor). The performance shown are the averages and the error bars the standard deviations
over the three data sets. At every point, 4 s of data were analyzed containing 900 waveforms (a firing rate of approximately 90 Hz for each of the three
neurons in every spike train). (a) shows the percent correctly classified and (b) the false positive rate.

expect a smaller spike to be identified as a larger template) is

because as the vectors in multidimensional space are extended,

the distance between them increases. The false positives for

the NN are due to the network confusing the larger waveforms

as superpositions. As a result, the percent classified correctly

does not drop as rapidly as the MTF does.

C. Asynchronous Sampling

The digitized waveform of a spike includes a variable offset

(between 0.5 sampling interval) because the spikes occur

randomly with respect to the periodic sampling, i.e., they are

not phase locked to the A/D conversion of the data. This

alignment problem can be overcome by sampling at a higher

rate, or by interpolating the waveform (provided the sampling

rate meets the Nyquist criterion). McGill and Dorfman [42]

presented an iterative algorithm which overcomes this problem

in the frequency domain. An iterative approach is not suitable

for on-line real-time implementations. Thus, we performed

tests to investigate the robustness of the NN’s ability to detect

and classify spikes with variable alignment. The effective

sampling rate of the data was increased by up to a factor

of ten by Nyquist interpolation (using the sinc function) [43].

The network was trained on the original templates (i.e., no

interpolation). The test data sets consisted of templates that

had been interpolated, shifted, and then subsampled (back to a

rate of 24 KHz) at different phases to simulate asynchronous

sampling. This models the real scenario, where one set of

templates is used to classify asynchronously sampled data.

Under these conditions, the network was tested with the

first two simulation types at an SNR of 5.0. The observed

performance dropped marginally because the network would

occasionally classify the event one sample before or after the

actual time of the event (an error of 1/24th of a ms). If we allow

for a one sample error, the classification remains unchanged as

the correct class was associated with every event, albeit with

a possible one sample error.

We also tested the system at higher sampling rates to

determine if a sampling rate of 24 KHz is sufficient to

overcome the problem of time quantization. The performance

of the network improved marginally ( 2.0%) for sampling

rate of 48 and 72 KHz. This shows that a sampling rate of

24 KHz is sufficient for the NN to overcome the problem of

asynchronous sampling. The performance actually deteriorated

for sampling rates higher than 72 KHz because with the

large increase in training set size, a network with eight

hidden units could not converge to a solution. A larger

network with more hidden units would be needed to utilize the

benefits of such a training set. If the sampling rate and buffer

size are simultaneously increased, the effect of asynchronous

sampling would be reduced and classification performance

should increase. However, only a marginal improvement in

performance would be expected for a major increase in the

training time and run time of the larger network.

IV. DISCUSSION

Many investigators have applied various signal processing

techniques to the challenge of multiunit spike sorting. How-

ever, accurate superposition resolution on-line has only been

addressed by a few investigators. Discrimination techniques

range from template matching to statistical descriptions of

multiunit activity. Generally, methods which aim to resolve

superpositions require multichannel recordings (linear optimal

filters) or are computationally intensive and would be difficult

to implement in an on-line real-time system without signif-

icant computational resources. Linear optimal filters provide

theoretically optimal methods for spike classification and

superposition resolution, but are dependent upon multichannel

recordings with each unit being active in at least two channels.

For superposition resolution from single channel recordings, a

nonlinear system is required. The method we present uses a

fully connected feed-forward network as a nonlinear FIR filter
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which was implemented in an on-line and real-time system.

This provides the significant benefit of providing immediate

feedback on unit activity to the experiment. Although this class

of ANN’s has been applied previously, all applications have

been used to isolate single units only. We have extended that

work to include superposition resolution.

In this method, a novel training scheme was implemented

so that the NN would be able to identify single spikes and

their superpositions in a multiunit single-channel extracellular

recording. The advantage of using an ANN lies in it’s ability

to generate nonlinear decision boundaries. The three novel

components in this implementation of an ANN were: 1)

weighted error training on single templates and superimposed

templates; 2) neural noise modeling to provide long segments

of pure noise; and 3) the use of the network to both detect and

classify spikes in real time.

The network was tested on three sets of simulated data

under various conditions and it’s performance was compared

to that of an MTF. The simulated data sets were constructed

using physiological components and signal and noise were

modeled to match the spectral characteristics of real data. The

effectiveness of the NN in classifying single units in a mul-

tiunit recording was comparable to the MTF and importantly,

the network also resolved most superpositions with overlap

less than 0.5 ms. This capability can prove to be especially

useful in discrimination during bursts of a population of

neurons, when determining correlations among neurons is

critical. Our simulations showed that the network was also

significantly better at rejecting false positives at low SNR,

which is imperative for accurate spike train determination.

With the use of a high-speed digital signal processor and

an IBM-PC, an automated real-time system based on the NN

was implemented without the need for off-line post-processing.

This approach satisfied our three criteria of single unit isola-

tion, superposition resolution and real-time processing. The

only off-line processing required for the system was template

generation and NN training. This typically is performed in

under 2 min. This system has already been installed in six

of our neurophysiological laboratories and the training time

has been acceptable. The DSP speed in this implementation

sets the limit on the sampling rate, network size and the

number of units that could be sorted in real time. With our

current hardware, the maximum sampling rate that can be

used without reducing the size of the network is 24 KHz. It is

anticipated that higher sampling rates with a larger input buffer

and a larger network will improve the performance of the

discriminator; to achieve this, faster processors are required.

A significant advantage of NN’s that can be exploited by

employing multiple DSP’s is their highly parallel architecture.

With distributed processing, the algorithm can be readily

scaled to identify more units from one electrode or to process

data from multiple electrodes.

A limitation in our system is that once trained, the network

is fixed. If the template shape changes significantly the network

must be retrained. Amplitude and shape variation is a problem

during high-frequency bursts and during discrimination for

extended periods of time. As shown in Fig. 7, the NN is not

a robust discriminator in the presence of amplitude variation.

Future work will be needed to find ways for the NN to track

amplitude changes, and to adapt to slowly changing template

shapes caused by electrode movement.

APPENDIX

The simultaneous clustering algorithm [34]–[36] used for

template generation first finds the best clusters around every

waveform, groups these initial clusters together and then

selects the best and final clusters. Since this is a simultaneous

technique, each detected waveform is a potential initiator

waveform for a cluster. Waveforms are clustered with the

initiator waveform based on the best alignment and Euclidean

distance. This results in clusters for waveforms detected

and naturally there is cluster overlap in multidimensional fea-

ture space. Clusters are automatically selected based on inter

cluster distance, cluster density and a cluster scatter measure

(mean squared Euclidean distance of waveforms around the

cluster centroid). The centroids of the selected clusters are

then the templates. The steps of the algorithm are as follows.

1) All waveforms whose peaks exceed three standard

deviations of noise (amplitude detection) are located and

are centered about their point of maximum slope in a

window of 24 samples.

2) Each waveform, is represented

by alternate segmentations,

, one sample apart, around the detection

location . Each alternate is used for clustering.

3) Each waveform initiates a cluster

containing other waveforms that satisfy

for

and, threshold

where is the Euclidean distance between vectors

and and the threshold is determined from a pure

noise segment.

4) The centroid and the mean squared scatter measure

of each cluster containing at least five waveforms

are computed ( ).

5) Cluster centroids are grouped together based on inter

cluster distance. Then one centroid is chosen from each

group by systematically rejecting the others. A centroid

is discarded if for all such that

threshold.

6) The centroids that are retained are

used as initial estimates of the templates. Each initial

template is updated by averaging with alternates

that did not contribute to generating any template if

threshold.
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