
Detection,
Classification, and

Tracking of Targets

N
etworks of small, densely distributed wireless
sensor nodes are being envisioned and devel-
oped for a variety of applications involving
monitoring and manipulation of the physical

world in a tetherless fashion [1], [16], [17], [22], [23].
Typically, each individual node can sense in multiple mo-
dalities but has limited communication
and computation capabilities. Many
challenges must be overcome before
the concept of sensor networks be-
comes a reality. In particular, there are
two critical problems underlying suc-
cessful operation of sensor networks: 1) efficient methods
for exchanging information between the nodes and 2) col-
laborative signal processing (CSP) between the nodes to
gather useful information about the physical world.

This article describes the key ideas behind the CSP al-
gorithms for distributed sensor networks being developed
at the University of Wisconsin (UW). We also describe

the basic ideas on how the CSP algorithms interface with
the networking/routing algorithms being developed at
Wisconsin (UW-API) [2]. We motivate the framework
via the problem of detecting and tracking a single maneu-
vering target. This example illustrates the essential ideas
behind the integration between UW-API and UW-CSP

algorithms and also highlights the key
aspects of detection and localization al-
gorithms. We then build on these ideas
to present our approach to tracking
multiple targets that necessarily re-
quires classification techniques.

Tracking multiple targets via a wireless sensor network
is a very challenging, multifaceted problem and several re-
search groups have tackled various aspects of it [3]-[8],
[12], [13], [15], [18], [19], [21], [23], [25]. We consider
the signal processing aspects of this problem under the
constraints imposed by limited capabilities of the nodes as
well as those associated with networking and routing.
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Consequently, in the present form, all our algorithms are
based on processing a single sensing modality, such as
seismic or acoustic. Furthermore, current detection and
classification algorithms are based on single-node pro-
cessing, whereas localization and tracking algorithms re-
quire collaboration between nodes. Our main emphasis
in this article is on target classification, which is arguably
the most challenging signal processing task in the context
of sensor networks. We provide some numerical results
based on real data that lend useful insights into the prob-
lem and help identify key issues and challenges. Finally,
based on our findings we identify some promising direc-
tions for future research.

Collaborative Signal Processing

Power consumption is a critical consideration in a wire-
less sensor network. The limited amount of energy stored
at each node must support multiple functions, including
sensor operations, on-board signal processing, and com-
munication with neighboring nodes. Thus, one must
consider power-efficient sensing modalities, low sam-
pling rates, low-power signal processing algorithms, and
efficient communication protocols to exchange informa-
tion among nodes. To facilitate monitoring of a sensor
field, including detection, classification, identification,
and tracking of targets, global information in both space
and time must be collected and analyzed over a specified
space-time region. Individual nodes, however, only pro-
vide spatially local information. Furthermore, due to
power limitation, temporal processing is feasible only
over limited time periods. This necessitates CSP, collabo-
ration between nodes to process the space-time signal. A
CSP algorithm can benefit from the following desirable
features.

▲ Distributive processing: Raw signals are sampled and
processed at individual nodes but are not directly com-
municated over the wireless channel. Instead, each node
extracts relevant summary statistics from the raw signal,
which are typically of smaller size. The summary statistics
are stored locally in individual nodes and may be trans-
mitted to other nodes upon request.

▲ Goal-oriented, on-demand processing: To conserve en-
ergy, each node only performs signal processing tasks that
are relevant to the current query. In the absence of a

query, each node retreats into a standby mode to mini-
mize energy consumption. Similarly, a sensor node does
not automatically publish extracted information; it for-
wards such information only when needed.
▲ Information fusion: To infer global information over a
certain space-time region from local observations, CSP
must facilitate efficient, hierarchical information fusion;
progressively lower bandwidth information must be
shared between nodes over progressively large regions.
For example, (high bandwidth) time series data may be
exchanged between neighboring nodes for classification
purposes. However, lower bandwidth closest point of ap-
proach (CPA) data may be exchanged between more dis-
tant nodes for tracking purposes.
▲ Multiresolution processing: Depending on the nature of
the query, some CSP tasks may require higher spatial res-
olution involving a finer sampling of sensor nodes or
higher temporal resolution involving higher sampling
rates. For example, reliable detection may be achievable
with a relatively coarse space-time resolution, whereas
classification typically requires processing at a higher res-
olution. Multiresolution space-time processing using
wavelets [24] may be fruitfully exploited in this context.

Space-Time Sampling and Space-Time Cells
Each object in a geographical region generates a
time-varying, space-time signature field that may be
sensed in different modalities, such as acoustic, seismic,
or thermal. The nodes sample the signature field spa-
tially and the density of nodes should be commensurate
with the rate of spatial variation in the field. Similarly,
the time series from each sensor should be sampled at a
rate commensurate with the required bandwidth. Thus,
the rate of change of the space-time signature field and
the nature of the query determines the required space-
time sampling rate.

A moving object in a region corresponds to a peak in
the spatial signal field that moves with time. Tracking an
object corresponds to tracking the location of the spatial
peak over time. To enable such tracking in a sensor net-
work, the entire space-time region must be divided into
space-time cells to facilitate local processing, as illustrated
in Fig. 1. The size of a space-time cell depends on the ve-
locity of the moving target and the decay exponent of the
sensing modality. It should approximately correspond to
a region over which the space-time signature field re-
mains nearly constant. In principle, the size of space-time
cells may be dynamically adjusted as new space-time re-
gions are created based on predicted locations of targets.
Space-time signal averaging may be done over nodes in
each cell to improve the signal to noise ratio. We note that
the assumption of constant signature field over a
space-time cell is at best an approximation in practice due
to several factors, including variations in terrain, foliage,
temperature gradients, and nonisotropic nature of source
signal. However, such an approximation may be judi-
ciously applied in some scenarios for the purpose of re-
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The performance versus
complexity tradeoff is
particularly acute in sensor
networks since collaboration
between nodes comes at the cost
of exchanging information
between them.



ducing intrasensor communication as well to improve
algorithm performance against noise.

Detection and Tracking Framework

In this section, we discuss detection and tracking of a sin-
gle target in a distributed sensor network. The example il-
lustrates the coordination between networking/routing
protocols and CSP algorithms. One of the key premises
behind the networking algorithms being developed at
Wisconsin is that routing of information in a sensor net-
work should be geographic centric rather than node
centric [2]. In other words, from the viewpoint of infor-
mation routing, the geographic locations of the nodes are
the critical quantities rather than their arbitrary identities.
In the spirit of space-time cells, the geographic region of
interest is divided into smaller regions (spatial cells) that
facilitate communication over the sensor network. Some
of the nodes in each cell are designated as manager nodes
for coordinating signal processing and communication in
that cell.

Single Target

Fig. 2 illustrates the basic idea of region-based CSP for
the detection and tracking of a single target. Under the as-
sumption that a potential target may enter the monitored
area via one of the four corners, four cells, A, B, C and D,
are created by the UW-API protocols. Nodes in each of
the four cells are activated to detect potential targets.

Each activated node runs an energy detection algo-
rithm whose output is sampled at an a priori fixed rate de-
pending on the characteristics of expected targets.
Suppose a target enters Cell A. Tracking of the target con-
sists of the following five steps:

▲ a) Some and perhaps all of the nodes in Cell A detect the
target. These nodes are the active nodes, and Cell A is the
active cell. The active nodes also yield CPA time informa-
tion. The active nodes report their energy detector outputs
to the manager nodes at N successive time instants.

▲ b) At each time instant, the manager nodes determine
the location of the target from the energy detector out-
puts of the active nodes. The simplest estimate of target
location at an instant is the location of the node with the
strongest signal at that instant. However, more sophisti-
cated algorithms for target localization may be used. Such
localization algorithms justify their higher complexity
only if the accuracy of their location determination is finer
than the node spacing.

▲ c) The manager nodes use locations of the target at the
N successive time instants to predict the location of the
target at M (< N) future time instants.

▲ d) The predicted positions of the target are used by the
UW-API protocols to create new cells that the target is
likely to enter. This is illustrated in Fig. 2 where the three
dotted cells represent the regions that the target is likely
to enter after the current active cell (Cell A in Fig. 2). A

subset of these cells is activated by the UW-API protocols
for subsequent detection and tracking of the target.

▲ e) Once the target is detected in one of the new cells, it
is designated as the new active cell and the nodes in the
original active cell (Cell A in Fig. 1) may be put in the
standby state to conserve energy.

Steps a)-e) are repeated for the new active cell, and this
forms the basis of detecting and tracking a single target.
For each detected target, an information field containing
tracking information, such as the location of the target at
certain past times, is usually passed from one active cell to
the next one. This is particularly important in the case of
multiple targets. Similar algorithms are being developed
by other groups as well [3], [4].

Multiple Targets

Fig. 2 illustrates the detection and tracking of a single tar-
get. If multiple targets are sufficiently separated in space
or time, that is they occupy distinct space-time cells, es-
sentially the same procedure as described earlier may be
used: a different track is initiated and maintained for each
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(a)

(b)

▲ 1. A schematic illustrating the notion of space-time cells. Verti-

cal dimension depicts space and horizontal dimension depicts

time. Different shades depict the variations in the space-time

signature field. (a) Uniformly sized space-time cells. (b)

Nonuniformly sized space-time cells to accommodate varia-

tions in the space-time signature field.



target. Sufficient separation in time means that the energy
detector output of a particular sensor exhibits distin-
guishable peaks corresponding to the CPAs of the two
targets. Similarly, sufficient separation in space means

that at a given instant the spatial target signatures exhibit
distinguishable peaks corresponding to nodes that are
closest to the targets at that instant.

The assumption of sufficient separation in space
and/or time may be too restrictive in
general. In such cases, classification
algorithms are needed that operate
on spatio-temporal target signatures
to classify them. This necessarily re-
quires a priori statistical knowledge
of typical signatures for different tar-
get classes. In this article, we focus on
single-node (no collaboration be-
tween nodes) classification based on
temporal target signatures: a time se-
ries segment is generated for each de-
tected event at a node and processed
for classification. Some form of tem-
poral processing, such as a fast Fou-
rier transform (FFT), is performed
and the transformed vector is fed to a
bank of classifiers corresponding to
different target classes. The outputs
of the classifiers that detect the target
(active classifiers) are reported to the
manager nodes as opposed to the en-
ergy detector outputs. Steps a)-e) are
repeated for all the active classifier
outputs to generate and maintain
tracks for different classified targets.
In some cases, both energy-based
CPA information and classifier out-
puts may be needed. The ability to do
spatially selective processing at each
node via a small antenna array may
also be needed in practice [13], [15].

Signal Processing Algorithms
In this section, we briefly discuss the
signal processing algorithms that un-
derlie the tracking framework de-
picted in Fig. 2.

Detection

Energy detection uses minimal a pri-
ori information about the target. The
detector essentially computes a run-
ning average of the signal power over
a window of prespecified length. The
output of the detector is sampled at a
prespecified rate. The window dura-
tion and sampling rate are deter-
mined by target characteristics, such
as the signature bandwidth and the
expected signature duration in the
particular sensing modality. An event
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▲ 2. A schematic illustrating detection and tracking of a single target using UW-API and

UW-CSP algorithms.
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▲ 3. Illustration of energy-based collaborative target localization using real seismic

(noisy) data. Dots indicate node locations. Triangles indicate the four nodes being used

in the position calculation. Dashed circles indicate loci of possible target locations

based on the six ratios of sensor readings. Three different points can be identified at

which three of the six circles intersect, suggesting possible target locations. Solid lines

represent constant-value contours of the cost function. The center of the contour plots
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section points of circles.



is detected when the detector output exceeds a threshold.
Due to the inherent signal averaging, the noise compo-
nent in the output of the detector may be modeled as a
Gaussian random variable whose mean and variance can
be determined from the statistics of the background
noise. The threshold is dynamically adjusted according to
the noise variance of detector output so that the detector
maintains a constant false alarm rate (CFAR). If the de-
tector output is below the current threshold, the signal is
assumed to consist of noise only and these measurements
are used to update the threshold.

The output parameters from the energy detector that
are communicated to the manager nodes consist of: 1)
the onset time when the detector output exceeds the
threshold, 2) the time of the maximum (CPA), 3) the de-
tector output at CPA time, and 4) the offset time when
the detector output falls below the threshold. For target
localization purposes, the detector output at any desired
instant within the offset and onset times may also be com-
municated. For classification purposes, the sensor time
series for some fixed duration between the onset and off-
set times is used.

Target Localization

Determination of target locations at successive time in-
stants is integral to tracking. Various algorithms, with
varying levels of complexity, may be developed for this
purpose [5], [6], [13]-[15]. Here, we briefly outline a
simple algorithm for estimating target location at a par-
ticular instant by using energy measurements from multi-
ple (four or more) nodes. Such an energy-based
algorithm is a potentially attractive alternative for the fol-
lowing reasons:
▲ A key requirement for accurate localization methods,
such as those based on time-delay estimation, is accurate
synchronization among nodes [7]. However, accurate
timing information comes at a rather high cost in wireless
sensor networks—synchronization afforded by relatively
cheap hardware may not be accurate enough for such
techniques.
▲ Coherent localization methods, such as those using
beamforming [6], also require additional assumptions,
such as the plane wave (far field) approximation for the
incoming wave. Such assumptions are often violated in
sensor networks; for example, targets may be rather close
to the nodes around CPA time. Alternative methods that
obviate such requirements may also be used, albeit at the
cost of requiring more statistical information (see, e.g.,
[5], [14], and [15]).
▲ Exchange of time series data among nodes, as required
by some algorithms, consumes too much energy to be
feasible.

Our energy-based target localization algorithm as-
sumes an isotropic exponential attenuation for the target
energy source: y t s t t

i i
( ) ( ) / ( )= −r r

α

, where y t
i
( ) is the

energy reading at the ith sensor, r( )t denotes the unknown
coordinates of the source with respect to a fixed reference,

r
i

are the coordinates of ith sensor, s t( ) is the unknown
target signal energy, and α is the decay exponent which is
assumed to be known (or estimated via experiments
[20]). The algorithm first computes the ratios
y t y t

i j
( ) / ( ) for all pairs of sensors to eliminate the un-

known variable s t( ). Each ratio defines a circle on which
r( )t may reside. In the absence of noise, it can be shown
that for n sensor readings only n−1of the total n n( ) /−1 2
ratios are independent, and all the corresponding circles
intersect at a single point for four or more sensor read-
ings. For noisy measurements, more than n−1 ratios may
be used for robustness, and the unknown target location
r( )t is estimated by solving a nonlinear least squares prob-
lem of the form

J x y x o y o
i x i y ii

m
( , ) ( ) ( )

, ,
= − + − −

=∑ 2 2 2

1

2

ρ ,

where ( , )x y are the unknown coordinates of the target,
( , )

, ,
o o

i x i y
are the center coordinates, and ρ

i
the radius of

the circle associated with the ith ratio. A sample contour
plot for the estimated target location determined by the
algorithm is shown in Fig. 3 for seismic time series. Accu-
racy of the position estimates depends on the accuracy
with which the node locations and the attenuation expo-
nent can be measured. A detailed sensitivity analysis is be-
yond the scope of this article.

Target Tracking

Given target locations at time instants in the past, it is
possible to fit the data samples into a dynamic model to
predict future target locations [3], [4]. For a single mov-
ing target, sufficiently accurate tracking may be accom-
plished by fitting the data into a linear or polynomial
model using a least square fit. Tracking is a complicated
problem when multiple targets are present; targets tracks
can cross paths resulting in the data-association problem.
Classification algorithms can provide a solution.

Remarks

We note that many of the assumptions made earlier may
be violated in practice, making the problem of target lo-
calization and tracking much more difficult. For example,
the propagation decay constant may vary between
sources of same modality. The signal strength may also be
a function of direction depending on the location of the
source within the target. Furthermore, there is interfer-
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algorithms may operate on
space-time signatures associated
with each event over a number
of nodes in a space-time cell.



ence between different targets in the case of multiple tar-
gets. Classification algorithms, in principle, should
suppress interference from undesired sources. Small an-
tenna arrays at each node to enable spatially selective pro-
cessing could also be extremely beneficial.

Target Classification

As mentioned earlier, classification algorithms are needed
in general for tracking multiple targets. Classification al-
gorithms operate on time-series data associated with each
detected event. Collaborative classification algorithms
may operate on space-time signatures associated with
each event over a number of nodes in a space-time cell.
Furthermore, space-time signatures corresponding to
multiple modalities, such as acoustic and seismic, may be
combined for improved performance [8]. However, such
collaborative classification puts a very significant burden
on the network since time-series data from multiple
nodes has to be transmitted to the manager nodes.

In this article, we focus on single-node classification al-
gorithms that operate on time series segments associated
with detected events. As we discuss later, the variability in
temporal signatures from event to event for a particular
target class poses a significant challenge in classifier design.
In general, some a priori knowledge of the statistical char-
acteristics of signatures for different target classes is re-
quired [8]. Some aspects of signature variability may be
accounted for deterministically via nuisance parameters
[11], [12]. While our focus is on single-node classification
algorithms as a logical first step, collaborative processing
may be necessary in practice for desired performance.

In this section, we explore the performance of three
classification algorithms: k-nearest neighbor (kNN) clas-
sifier, maximum likelihood (ML) classifier using Gaussi-
an data modeling, and support vector machine (SVM)
classifier. The emphasis is on results obtained from real
seismic and acoustic data collected in SITEX00 experi-
ments performed in the DARPA SenseIT program. We
report results for binary classification between wheeled
and tracked vehicles.

Spectral Features
The choice of feature vectors on which the classifiers op-
erate is critically important to their performance. The ex-
periments with real data discussed in this section
correspond to moving vehicles. Due to the dominant ef-
fect of rotating machinery (engine, gears, wheels, etc.) as
well other periodic phenomena, such as tread-road im-
pact on acoustic and seismic signatures, spectra of time
series suggest themselves as useful features. Our initial ex-
perimentation has shown that spectral characteristics of
signatures vary significantly between target classes and
hence may be fruitful for classification.

We have explored two types of spectral features: 1)
nonparametric FFT-based power spectral density (PSD)
estimates and 2) parametric PSD estimates using
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▲ 4. (a) Seismic PSD of a wheeled vehicle (08020830 DW). (b)

Seismic PSD of a tracked vehicle (08030800 AAV). (c) Seismic

PSD of a wheeled vehicle (08040820 LAV).



autoregressive (AR) modeling of time series. We ex-
plored AR modeling (with fewer parameters) primarily
to improve the statistical reliability of the PSD estimates.
Due to space limitations, however, we report results
based only on nonparametric PSD features. In our experi-
ments to date, the performance with AR spectral features
is slightly inferior.

Fig. 4 shows the seismic PSDs for three different vehi-
cles (one tracked and two wheeled). The sampling rate is
256 Hz and the detected events consist of 3000, 2500,
and 2000 samples for events 08020830, 08030800, and
08040820, respectively, in the August 2000 (SITEX00)
data collected by the DARPA Senseit program. For each
event, PSD estimates are based on averaging length 256
FFTs of 0.25 s (64 samples) zero-padded data segments,
with an overlap of 32 samples between adjacent data seg-
ments. Only the positive 128 FFT points are plotted. As
evident, the plots of the three vehicles show different
dominant frequencies that may be exploited by classifiers.
We note that additional time-averaging may be done to
reduce the variance of PSD estimates by using shorter
FFT segments, however this comes at the cost of smooth-
ing spectral features (bias-variance trade-off).

Fig. 5 shows PSDs for the same three vehicles as in Fig.
4 using wideband acoustic data collected by BAE and
Xerox. The data is downsampled to 1024 Hz, and the
PSDs are generated by averaging length-1024 FFTs of
0.25 s (256 samples) data segments. Only the positive
512 frequency points are plotted. It is worth noting that
the spectra from the two data sets show different domi-
nant spectral peaks for the wheeled vehicles (Fig. 5(a) and
(c)), even though they supposedly correspond to the
same event involving the same vehicle. This illustrates one
of the challenges associated with classification, variability
in measurements, to be discussed in more detail.

Classification Algorithms

In this section we briefly describe the three classifiers ex-
plored in this article. Given a set of N-dimensional feature
vectors { ; }x x ∈R

N , we assume that each of them is as-
signed a class label, ω ω ω ωc m∈ =Ω { , , , }

1 2
K , that be-

longs to a set of m elements. We denote by p c( )ω the prior
probability that a feature vector belongs to classω c . Simi-
larly, p c( | )ω x is the posterior probability for class ω c

given that x is observed.

A minimum error classifier maps each vector x to an el-
ement in Ω such that the probability of misclassification,
the probability that the classifier label is different from the
true label, is minimized. To achieve this minimum error
rate, the optimal classifier decides x has label ω

i
if

p p
i j

( | ) ( | )ω ωx x> for all j i≠ , ω
i
, ω

j
∈Ω. In practice, it is

very difficult to evaluate the posterior probability in
closed form. Instead, one may use an appropriate
discriminant function g

i
( )x that satisfies g g

i j
( ) ( )x x> if

p p
i j

( | ) ( | )ω ωx x> for j i≠ , for all x. Then minimum error
classification can be achieved as: decide x has label ω

i
if
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g g
i j
( ) ( )x x> for j i≠ . The minimum probability of

misclassification is also known as the Bayes error, and a
minimum error classifier is also known as a Bayes classi-
fier or a maximum a posterior probability (MAP) classi-
fier. Below, we briefly discuss three classifiers that
approximate the optimal Bayes classifier.

k-Nearest Neighbor Classifier

The kNN classifier uses all the training features as the set
of prototypes{p }

k
. During testing phase, the distance be-

tween each test vector and every prototype is calculated,
and the k prototype vectors that are closest to the test vec-
tor are identified. The class labels of these k-nearest proto-
type vectors are then combined using majority vote or
some other method to decide the class label of the test vec-
tor. When k=1, the kNN classifier is called the nearest
neighbor classifier. It is well known [9] that asymptoti-
cally (in the number of training vectors), the probability
of misclassification of a nearest neighbor classifier ap-
proaches twice the (optimal) Bayes error. Hence the per-

formance of a nearest neighbor classifier can be used as a
baseline to gauge the performance of other classifiers. As
the number of prototypes increases, however, a kNN clas-
sifier is not very suitable for actual implementation since
it requires too much memory storage and processing
power for testing.

Maximum Likelihood Classifier

Using Gaussian Mixture Density Model

In this classifier, the distribution of training vectors from
the same class is modeled as a mixture of Gaussian density
functions. That is, the likelihood function is modeled as

p G
i i ik ik

N

k

ik

T

ik

( | ) ( | ) | |

exp ( ) (

/x x

x m

ω θ α= =

− −

−

−

∑ Λ

Λ

2

1
1

2
x m−


 




ik
)

where θ α , ,αι1i iP i iP i iP
=[ , ,..., , ,..., ]K m m

1 1
Λ Λ are the

mixture, mean, and covariance matrix parameters of the P
mixture densities corresponding to class ω

i
. These model

parameters can be identified by applying an appropriate
clustering algorithm, such as the k-means algorithm [9]
or the expectation-maximization algorithm [28], to the
training vectors of each class. The discriminant function is
computed as g G p

i i i i
( ) ( | ) ( )x x= θ ω where the prior prob-

ability p
i

( )ω is approximated by the relative number of
training vectors in class i. In the numerical examples we
model the data as Gaussian rather than a Gaussian mix-
ture ( )P =1 . Furthermore, we use the ML classifier (uni-
form prior probabilities).

Support Vector Machine Classifier

A support vector machine (SVM) is a linear classifier op-
erating in a higher dimensional space. Consider a binary
classification problem without loss of generality. Let
{ ( )}ϕ =i i

Mx
1

be a set of nonlinear transformations mapping
the N-dimensional input vector to an M-dimensional fea-
ture space ( )M N> . A linear classifier, characterized by
the weights { , ,..., }w w w

M1 2
, operates in this higher di-

mensional feature space g w b
j jj

M
( ) ( )x x= ϕ +=∑ 1

, where b

is the bias parameter of the classifier [10]. The optimal
weight vectors for this classifier can be represented in
terms of a subset of training vectors, termed the support
vectors w

j i j ii

Q
= ϕ=∑ α ( )x

1
, j M=1 2, ,..., . Using the above

representation for the weight vectors, the linear classifier
can be expressed as g K b

i ii

Q
( ) ( , )x x x= +=∑ α

1
, where

K
i j j ij

M
( , ) ( ) ( )x x x x= ϕ ϕ=∑ 1

is the symmetric kernel rep-

resenting the SVM. In the numerical examples presented
in this article, we use a third-degree polynomial kernel:
K

i

T

i
( , ) ( )x x x x= +1 3 . In practice, the SVM discriminant

function g x( ) is computed using the kernel representa-
tion, bypassing the nonlinear transformation into the
higher dimensional space [10]. The classifier design
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Table 1. The Number of Seismic Feature Vectors for
Each Target Class in the Data Sets Used for

Three-Way Cross Validation.

F1 F2 F3 Total

Tracked 73 73 74 220

Wheeled 166 166 168 500

Total 239 239 242 720

Table 2. Confusion Matrices Summarizing the
Performance of the Three Classifiers for Low

Bandwidth Seismic Data. The Vertical Labels Are the
True Labels, and the Horizontal Labels Are the

Classifier Labels.

Tracked Wheeled

K-Nearest Neighbor (K = 1)

Tracked 197 (89.55%) 23 (10.45%)

Wheeled 24 (4.80%) 476 (95.2%)

Maximum Likelihood (Gaussian Modeling)

Tracked 203 (92.27%) 17 (7.73%)

Wheeled 112 (22.4%) 388 (77.6%)

SVM

Tracked 207 (94.09%) 13 (5.91%)

Wheeled 15 (3.0%) 485 (97.0%)



then corresponds to the choice of the kernel and the
support vectors. By appropriately choosing the kernel,
an SVM can realize a neural network classifier as well.
Similar to neural networks, the training phase can take
a long time. Once the classifier is trained, however, its
application is relatively easy. In general, a different
SVM is trained for each class. The output of each SVM
can then be regarded as an estimate of the posterior
probability for that class and the MAP decision rule can
be directly applied.

Performance Assessment

Cross Validation

Performance assessment is a critical component of classi-
fier design. In practice, the probability of misclassifica-
tion must be evaluated empirically. The available feature
vectors are divided into two sets: a training set that is used
to train the classifier and a testing set that is used to esti-
mate its probability of misclassification. In the numerical
results presented in the following sections, we use
three-way cross validation for performance assessment.
The data is divided into three sets (F1, F2, F3) and three
different sets of experiments are performed for perfor-
mance assessment:

A) Training: F1 + F2; Testing: F3
B) Training: F2 + F3; Testing: F1
C) Training: F3 + F1; Testing: F2

The results are reported for binary classification be-
tween wheeled and tracked vehicles using both
low-bandwidth seismic and wideband acoustic data.

Low Bandwidth Seismic Data

We compare the performance of the three classifiers on
low-bandwidth data from seismic sensors collected in the
SITEX00 experiments. The sensor outputs were sampled
at 256 Hz. The spectral feature vectors consist of the posi-
tive 64 samples of 128 length FFT corresponding to 0.5
-s time series segments. There were two types of tracked
vehicles and five types of wheeled vehicles in the data set.
See Table 1 for the number of features in the three data
sets for three-way cross validation.

The confusion matrices for the three classifiers can be
found in Table 2. Vertical labels correspond to true la-
bels whereas the horizontal labels correspond to the clas-
sifier labels. As evident, the nearest neighbor and SVM
classifiers perform quite well. The somewhat inferior
performance of the ML classifier may be due to the fact
that we do not account for prior class probabilities
which are implicitly accounted for in the kNN and SVM
classifiers. (Note that there are about twice as many
wheeled feature vectors as tracked ones.) We note that
similar performance has been reported by other re-
searchers in related contexts using wavelet-based pro-
cessing [18], [19].

Wideband Acoustic Data

During SITEX00 experiments, research groups from
BAE and Xerox PARC both recorded broadband acous-
tic data. The BAE data was sampled at 10 kHz and the
Xerox data was sampled at 20 or 40 kHz. Both data sets
were downsampled to 5 kHz before applying the classifi-
cation algorithms. Based on videotapes recorded during
the experiment, each run (consisting of several events)
was segmented into 5-s segments and each segment was
manually labeled as tracked or wheeled (more accurate
ground truth information was not available).

For each labeled 5-s acoustic clip (sampled at 5 kHz), a
1000-point FFT is performed for each nonoverlapping
segment of 1000 samples. This yields 25 1000-point FFT
vectors for each 5-s segment. These vectors are then mag-
nitude squared to yield PSD estimates at a resolution of 5
Hz per spectral bin. Our study of the data indicated that
most of the signal energy is confined to frequencies below
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Table 3. The Number of Acoustic Feature Vectors for
Each Target Class in the Data Sets Used for

Three-Way Cross Validation.

F1 F2 F3 Total

Tracked 324 306 329 959

Wheeled 512 530 508 1550

Table 4. Confusion Matrices Summarizing
the Performance of the Three Classifiers for

Wideband Acoustic Data. The Vertical Labels
Are the True Labels, and the Horizontal

Labels Are the Classifier Labels.

Tracked Wheeled

K-Nearest Neighbor (K = 1)

Tracked 842 (87.80%) 117 (12.20%)

Wheeled 89 (5.74%) 1461 (94.26%)

Maximum Likelihood (Gaussian Modeling)

Tracked 779 (81.23%) 180 (18.77%)

Wheeled 171 (11.03%) 1379 (88.97%)

SVM

Tracked 887 (92.50%) 72 (7.5%)

Wheeled 55 (3.55%) 1495 (96.45%)



1 kHz. Thus, we used the Fourier coefficients corre-
sponding to the first 200 positive spectral bins. To further
reduce the feature dimension and to improve statistical
reliability, we extracted two types of spectral features
from these nonparametric PSD estimates:

▲ Feature type 1: Nonoverlapping sets of four adjacent
spectral bins are averaged to yield a 50 by 1 feature vector
with each entry representing the signal energy in a fre-
quency band of 20 (5 × 4) Hz.

▲ Feature type 2: Nonoverlapping sets of ten adjacent
spectral bins are averaged to yield a 20 by 1 feature vector
with each entry representing the signal energy in a fre-
quency band of 50 (5 × 10) Hz.

Each feature vector is then level-shifted to make it av-
erage to zero and is normalized using the L∞ norm.

Table 3 shows the number of features in each class in
the three data sets used in three-way cross validation.
The confusion matrices for the three classifiers are re-
ported in Table 4. The SVM classifier again performs
the best and ML classifier the worst. The performance
of the ML classifier could be better if the prior class
probabilities reflected the different number of vehicles
in the two classes.

Issues and Challenges

Making CSP work in real sensor networks presents many
hurdles. In this section, we describe some of the issues
and challenges that we have encountered and identified in
our experience with real data. In general the issues stem
from some form of variability in measurements. We focus
on three major sources of variability: 1) uncertainty in
space-time measurements, 2) Doppler effects due to mo-
tion, and 3) variability in experimental conditions. Such
variability is particularly challenging in classification al-
gorithms since they rely on statistical signal characteris-
tics inferred from training data—targets may exhibit
significantly different characteristics during the test ex-
periments as compared to the training phase. Making the
classifiers robust to such variability is critical for their suc-
cessful application and is a very challenging task.

Uncertainty in Temporal and
Spatial Measurements
Accurate timing synchronization between nodes and ac-
curate estimates of their positions is critical to many CSP
algorithms. For example, the accuracy of the target local-
ization algorithm, and that of related algorithms for esti-
mating target bearing [7], critically depends on such
timing and location information. Similarly, relative loca-
tions of nodes are exploited for estimating time difference
of arrival between nodes in bearing estimation and
beamforming. Errors in node locations can lead to errors
in timing information in such cases. Sufficiently accurate
timing and spatial information may not be available even
when the sensor nodes are equipped with GPS receivers.
Signal averaging within spatial cells may be used to im-
prove the accuracy of timing and location information.

Effect of Doppler on Spectral Signatures
An implicit assumption in the training of the classifiers is
that statistical characteristics of the target signatures do
not change over the duration of the detected event. This
assumption may not hold in practice. For example, gear
shifts, acceleration, and simply Doppler shifts due to mo-
tion can result in significantly varying spectral character-
istics. Doppler effects in acoustic and seismic signals are
particularly significant due to relatively low speed of wave
propagation.

Consider the setup in Fig. 6 to illustrate Doppler ef-
fects. A source emitting energy at frequency f

0
is mov-

ing at velocity ν parallel to the x-axis. The per-
pendicular distance between the source and the ob-
server (sensor) is d. The sensor is located at a distance x
along the axis. A simple calculation shows that the fre-
quency perceived by the sensor is related to source fre-
quency as f f v v= −

0 0
1/ ( / )cosα where α is the angle

between the x-axis and the line-of-sight between the
source and the sensor.

Fig. 7 plots the perceived frequency for acoustic data as
a function of source position for different values of d. The
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▲ 6. A simple geometry for a moving source to illustrate Doppler

effects.
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source frequency is f
0

60= Hz, the sensor is located at
x=200 m, and the source velocity is 20 m/s. It is evident
that the perceived frequency is equal to the source fre-
quency at the CPA and variation in the perceived fre-
quency gets sharper for smaller d. Similarly, the total
frequency variation increases with speed. Actual data
from experiments confirms similar spectral trends. Figs. 8
and 9 show the short-time Fourier transform (STFT)
plots of seismic and acoustic signals, respectively, for a ve-
hicle moving past a node. The variation in perceived fre-
quency, similar to that in Fig. 7, is evident. Note that the
seismic signature is shorter in time due to faster signal de-
cay with distance in ground. The perceived frequency
variation in acoustic data could also be partly due to gear
shifts. The important thing is that the changes in per-
ceived frequency are significant at normal source speeds
and thus must be taken into account. One possibility is to
use the ratio of dominant frequencies as a feature to make
classification algorithms robust to Doppler shifts.

Variability in Experimental Conditions

Another, and more stringent, assumption in the classifi-
cation algorithms is that the signal characteristics for a
particular target class are relatively consistent between
different events involving the same target. This assump-
tion is needed since data from prior experiments is used to
train the classifiers for future experiments. However,
many factors in practice violate this assumption, includ-
ing varying conditions between different experiments,
such as the node layout. For example, nodes closer to
roads will experience sharper Doppler shifts than farther
nodes, as illustrated in Fig. 7. This variability may be the
cause of differences in Xerox and BAE spectral signatures
for the same vehicle, as illustrated in Fig. 5(a) and (c). The
net effect of such variability is that each target class occu-
pies more signal space dimensions, thereby requiring a
sufficiently high dimensional signal representation for re-
liable classification. This may be another reason for the
superior performance of the SVM classifier. Work by
other researchers on the calibration of unattended sensors
may be useful in attacking this problem [21].

Future Research

We now briefly identify some avenues for future research
in CSP for sensor networks based on our investigations
and experiences with real data. Recall that of the algo-
rithms discussed in this article, only target localization
and location prediction require collaborative processing.
Detection and classification algorithms have been de-
scribed for single-node processing. However, given the
myriad of effects that can compromise the performance of
signal processing algorithms in a sensor network, various
forms of CSP may be necessary. As in all cases, there is a
performance versus complexity trade-off that is particu-
larly acute in sensor networks since collaboration be-

tween nodes comes at the cost of exchanging information
between them.

Intrasensor Collaboration: Modal Fusion
One of the simplest and most feasible forms of CSP is to
combine the information across different sensing modali-
ties at each node. The information to be combined resides
at one node and thus does not require communication
over the network. For example, jointly processing acous-
tic and seismic signals may significantly enhance perfor-
mance. Higher dimensional feature vectors obtained by
concatenating the vectors for the two modalities may be
used for classification. A lower complexity alternative
may be to combine the decision statistics for different
modalities.

Intersensor Collaboration:
Centralized Processing
Another possibility for CSP is to effectively perform joint
space-time processing across different nodes in a cell via
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manager nodes. Consider classification for illustration.
All active nodes in a cell send the time series data corre-
sponding to the detected event to the manager node. The
manager node then jointly processes the time series data
to classify the target. Temporally coherent processing
would be possible when the relative timing of the differ-
ent time series is known and exploited, such as in
time-of-arrival based bearing estimation algorithms [7].
Similarly, spatially coherent processing may be possible if
the relative locations of nodes are known and exploited.
For example, distributed spatial beamforming may be ef-
fectively implemented in such cases to localize targets as
well as to suppress interference from unwanted targets.
Significant research in array processing and more recently
in space-time processing for wireless communications
could be fruitfully exploited in this context (see, e.g.,
[13], [26], and [27]).

Doppler Based Composite Hypothesis Testing
Doppler shifts represent one important source of variabil-
ity that can be explicitly modeled, at least for simple sce-
narios. We briefly discuss one approach based on a
generalized likelihood ratio test (GLRT) [11]. In the
presence of Doppler shifts, the target signature for the
mth class can be modeled as a realization of a zero-mean
wide-sense stationary process modulated by a time-vary-
ing instantaneous frequency, f m( )θ , parameterized by the
vector, θ αm m m mv d=[ ], corresponding to the scenario
in Fig. 6. A GLRT classifier essentially operates as fol-
lows: First an ML estimate of the Doppler parameters,
$
θm , is obtained for each hypothesis and then the posterior
probability density functions corresponding to these esti-
mates, p m m( | , $ )ω θx , are used for deciding between the
classes. Such a GLRT-based approach requires “align-
ment” of data to some fixed frequency during the training
phase, which may be done in a variety of ways [25]. The
aligned data may then be used to train any one of the three
classifiers. Clearly, such algorithms require more compu-
tation and the performance-complexity trade-off has to
be carefully evaluated.

Conclusions

In this article we have presented the basic ideas behind a
CSP framework for tracking multiple targets in a distrib-
uted sensor network. The key components of the frame-
work include event detection, estimation and prediction
of target location, and target classification. Most of the
existing work is for tracking a single target and is based on
a single sensing modality, such as acoustic or seismic.
Tracking of multiple targets in general requires classifica-
tion algorithms. Based on experimentation with real data,
we have argued that spectral target signatures may yield
accurate classification. However, variations in spectral
signatures due to a variety of effects, including Doppler
shifts, presents a significant challenge. We have provided
some promising preliminary results on classifying be-

tween wheeled and tracked vehicles. The SVM classifier
seems to be the most promising based on our initial ex-
periments.

The algorithms discussed in this article primarily rep-
resent a snapshot of the ongoing work at Wisconsin on
the extremely challenging problem of tracking multiple
targets in a sensor network and are by no means the best
approach. We are also working on incorporating insights
and results obtained by other researchers. Results from
this ongoing project, including code for implementing
various algorithms, will be posted on our website
http://www.ece.wisc.edu/~sensit/.

In closing, distributed sensor networks are emerging
as a powerful technology for remotely instrumenting and
monitoring the physical world. However, the technology
is in its infancy and many challenges need to be overcome
before it becomes practically feasible. Several research
groups around the country are tackling important pieces
of the puzzle. The results and findings have been very
promising and are leading to new research activity to ad-
vance the theory and practice of sensor networks.
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