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Abstract – We outline a framework for collaborative signal processing in distributed sensor networks. The 
ideas are presented in the context of tracking multiple moving objects in a sensor field. The key steps involved in 
the tracking procedure include event detection, target classification, and estimation and prediction of target 
location. Algorithms for various tasks are discussed with an emphasis on classification. Results based on 
experiments with real data are reported which provide useful insights into the essential nature of the problems. 
Issues, challenges and directions for future research are identified. 
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1 Introduction 

Networks of small, densely distributed wireless sensor nodes are being envisioned and developed for a variety of 
applications involving monitoring and manipulation of the physical world in a tetherless fashion [1], [16], [17], 
[22], [23]. Typically, each individual node can sense in multiple modalities but has limited communication and 
computation capabilities. Many challenges must be overcome before the concept of sensor networks becomes a 
reality. In particular, there are two critical problems underlying successful operation of sensor networks: 
efficient methods for exchanging information between the nodes, and collaborative signal processing (CSP) 
between the nodes to gather useful information about the physical world. 

This paper describes the key ideas behind the CSP algorithms for distributed sensor networks being developed at 
the University of Wisconsin (UW). We also describe the basic ideas on how the CSP algorithms interface with 
the networking/routing algorithms being developed at Wisconsin (UW-API) [2]. We motivate the framework via 
the problem of detecting and tracking a single maneuvering target. This example illustrates the essential ideas 
behind the integration between UW-API and UW-CSP algorithms and also highlights the key aspects of 
detection and localization algorithms. We then build on these ideas to present our approach to tracking multiple 
targets that necessarily requires classification techniques. 

Tracking multiple targets via a wireless sensor network is a very challenging, multi-faceted problem and several 
research groups have tackled various aspects of it [3]-[8],[12],[13],[15],[18],[19],[21],[23],[25]. We consider the 
signal processing aspects of this problem under the constraints imposed by limited capabilities of the nodes as 
well as those associated with networking and routing. Consequently, in the present form, all our algorithms are 
based on processing a single sensing modality, such as seismic or acoustic. Furthermore, current detection and 
classification algorithms are based on single-node processing, whereas localization and tracking algorithms 
require collaboration between nodes. Our main emphasis in this paper is on target classification that is arguably 
the most challenging signal processing task in the context of sensor networks. We provide some numerical 
results based on real data that lend useful insights into the problem and help identify key issues and challenges. 
Finally, based on our findings we identify some promising directions for future research. 

In the following two subsections, we motivate the need for CSP in sensor networks and describe the notion of 
space-time cells for facilitating CSP. Section 2 discusses the overall framework for detecting and tracking a 
single target. Section 3 describes classification algorithms that we have investigated and reports our experiences 
with real data. Section 4 identifies some issues and challenges and Section 5 discusses some directions for future 
research. Section 6 provides some concluding remarks. 

 
1.1 Collaborative Signal Processing 
Power consumption is a critical consideration in a wireless sensor network.  The limited amount of energy stored 
at each node must support multiple functions, including sensor operations, on-board signal processing, and 
communication with neighboring  nodes.  Thus, one must consider power-efficient sensing modalities, low 
sampling rates, low-power signal processing algorithms, and efficient communication protocols to exchange 
information among  nodes. To facilitate monitoring of a sensor field, including detection, classification, 



identification, and tracking of targets, global information in both space and time must be collected and analyzed 
over a specified space-time region. However, individual nodes only provide spatially local information. 
Furthermore, due to power limitation, temporal processing is feasible only over limited time periods. This 
necessitates CSP --- collaboration between nodes to process the space-time signal.  A CSP algorithm can benefit 
from the following desirable features:  

Distributive processing – Raw signals are sampled and processed at individual nodes but are not directly 
communicated over the wireless channel. Instead, each node extracts relevant summary statistics from the raw 
signal, which are typically of smaller size. The summary statistics are stored locally in individual nodes and may 
be transmitted to other nodes upon request.  

Goal-oriented, on-demand processing – To conserve energy, each node only performs signal processing tasks 
that are relevant to the current query.  In the absence of a query, each node retreats into a standby mode to 
minimize energy consumption. Similarly, a sensor node does not automatically publish extracted information --- 
it forwards such information only when needed. 

Information fusion – To infer global information over a certain space-time region from local observations, CSP 
must facilitate efficient, hierarchical information fusion --- progressively lower bandwidth information must be 
shared between nodes over progressively large regions. For example, (high bandwidth) time series data may be 
exchanged between neighboring nodes for classification purposes. However, lower bandwidth CPA (closest 
point of approach) data may be exchanged between more distant nodes for tracking purposes.  

Multi-resolution processing – Depending on the nature of the query, some CSP tasks may require higher 
spatial resolution involving a finer sampling of sensor nodes, or higher temporal resolution involving higher 
sampling rates. For example, reliable detection may be achievable with a relatively coarse space-time resolution, 
whereas classification typically requires processing at a higher resolution. Multiresolution space-time processing 
using wavelets [24] may be fruitfully exploited in this context.  

1.2  Space-Time Sampling and Space-Time Cells 
 
Each object in a geographical region generates a time-varying space-time signature field that may be sensed in 
different modalities, such as acoustic, seismic or thermal. The  nodes sample the signature field spatially and the 
density of nodes should be commensurate with the rate of spatial variation in the field. Similarly, the time series 
from each sensor should be sampled at a rate commensurate with the required bandwidth. Thus, the rate of 
change of the space-time signature field and the nature of the query determines the required space-time sampling 
rate.  
 
 
 
 
 
 
 
 
 
 
 
 
                                     (a)                           (b)   
         
 
Figure 1: A schematic illustrating the notion of space-time cells. Vertical dimension depicts space and 
horizontal dimension depicts time. Different shades depict the variations in the space-time signature field. (a) 



Uniformly sized space-time cells. (b) Non-uniformly sized space-time cells to accommodate  variations in the 
space-time signature field. 
 
A moving object in a region corresponds to a peak in the spatial signal field that moves with time. Tracking an 
object corresponds to tracking the location of the spatial peak over time. To enable such tracking in a sensor 
network, the entire space-time region must be divided into space-time cells to facilitate local processing, as 
illustrated in Figure 1.  The size of a space-time cell depends on the velocity of the moving target and the decay 
exponent of the sensing modality. It should approximately correspond to a region over which the space-time 
signature field remains nearly constant. In principle, the size of space-time cells may be dynamically adjusted as 
new space-time regions are created based on predicted locations of targets. Space-time signal averaging may be 
done over nodes in each cell to improve the signal to noise ratio. We note that the assumption of constant 
signature field over a space-time cell is at best an approximation in practice due to several factors, including 
variations in terrain, foliage, temperature gradients and non-isotropic nature of source signal. However, such an 
approximation may be judiciously applied in some scenarios for the purpose of reducing intra-sensor 
communication as well to improve algorithm performance against noise.  

2 Detection and Tracking Framework 

In this section, we discuss detection and tracking of a single target in a distributed sensor network. The example 
illustrates the coordination between networking/routing protocols and CSP algorithms. One of the key premises 
behind the networking algorithms being developed at Wisconsin is that routing of information in a sensor 
network should be geographic-centric rather than node-centric [2]. In other words, from the viewpoint of 
information routing, the geographic locations of the nodes are the critical quantities rather than their arbitrary 
identities. In the spirit of space-time cells, the geographic region of interest is divided into smaller regions 
(spatial cells) that facilitate communication over the sensor network. Some of the nodes in each cell are 
designated as manager nodes for coordinating signal processing and communication in that cell. 
 

2.1 Single Target 
Figure 2 illustrates the basic idea of region-based CSP for detection and tracking of a single target. Under the 
assumption that a potential target may enter the monitored area via one of the four corners, four cells, A, B, C 
and D, are created by the UW-API protocols. Nodes in each of the four cells are activated to detect potential 
targets.  

 
Figure 2.  A schematic illustrating detection and tracking of a single target using UW-API and UW-CSP 
algorithms. 



Each activated  node runs an energy detection algorithm whose output is sampled at an a priori fixed rate 
depending on the characteristics of expected targets (see Section 2.3.1). Suppose a target enters Cell A. Tracking 
of the target consists of the following five steps: 

(a) Some and perhaps all of the nodes in Cell A detect the target. These nodes are the active nodes and Cell A is 
the active cell. The active nodes also yield CPA time information. The active nodes report their energy 
detector outputs to the manager nodes at N successive time instants.  

(b) At each time instant, the manager nodes determine the location of the target from the energy detector 
outputs of the active nodes. The simplest estimate of target location at an instant is the location of the node 
with the strongest signal at that instant. However, more sophisticated algorithms for target localization may 
be used (see Section 2.3.2). Such localization algorithms justify their higher complexity only if the accuracy 
of their location determination is finer than the  node spacing. 

(c) The manager nodes use locations of the target at the N successive time instants to predict the location of the 
target at M (< N) future time instants.  

(d) The predicted positions of the target are used by the UW-API protocols to create new cells that the target is 
likely to enter. This is illustrated in Figure 2 where the three dotted cells represent the regions that the target 
is likely to enter after the current active cell (Cell A in Figure 2). A subset of these cells is activated by the 
UW-API protocols for subsequent detection and tracking of the target.  

(e) Once the target is detected in one of the new cells, it is designated as the new active cell and the nodes in the 
original active cell (Cell A in Figure 1) may be put in the standby state to conserve energy. 

Steps (a) – (e) are repeated for the new active cell and this forms the basis of detecting and tracking a single 
target. For each detected target, an information field containing tracking information, such as the location of the 
target at certain past times, is usually passed from one active cell to the next one. This is particularly important 
in the case of multiple targets. Similar algorithms are being developed by other groups as well [3], [4]. 

2.2   Multiple Targets 
Figure 2 illustrates detection and tracking of a single target. If multiple targets are sufficiently separated in space 
or time, that is they occupy distinct space-time cells, essentially the same procedure as described in Section 2.1 
may be used: a different track is initiated and maintained for each target. Sufficient separation in time means that 
the energy detector output of a particular sensor exhibits distinguishable peaks corresponding to the CPAs of the 
two targets. Similarly, sufficient separation in space means that at a given instant the spatial target signatures 
exhibit distinguishable peaks corresponding to nodes that are closest to the targets at that instant. 

The assumption of sufficient separation in space and/or time may be too restrictive in general. In such cases, 
classification algorithms are needed that operate on spatio-temporal target signatures to classify them. This 
necessarily requires a priori statistical knowledge of typical signatures for different target classes. In this paper, 
we focus on single-node (no collaboration between nodes) classification based on temporal target signatures: a 
time series segment is generated for each detected event at a node and processed for classification. Some form of 
temporal processing, such as a fast Fourier transform (FFT), is performed and the transformed vector is fed to a 
bank of classifiers corresponding to different target classes. The outputs of the classifiers that detect the target, 
active classifiers, are reported to the manager nodes as opposed to the energy detector outputs.  Steps (a) – (e) in 
Section 2.1 are repeated for all the active classifier outputs to generate and maintain tracks for different 
classified targets. In some cases, both energy-based CPA information and classifier outputs may be needed. The 
ability to do spatially selective processing at each node via a small antenna array may also be needed in practice 
[13], [15]. 

2.3 Signal Processing Algorithms 
In this section, we briefly discuss the signal processing algorithms that underlie the tracking framework depicted 
in Figure 2. 



2.3.1 Detection 
Energy detection uses minimal a priori information about the target. The detector essentially computes a running 
average of the signal power over a window of pre-specified length. The output of the detector is sampled at a 
pre-specified rate. The window duration and sampling rate are determined by target characteristics, such as the 
signature bandwidth and the expected signature duration in the particular sensing modality. An event is detected 
when the detector output exceeds a threshold. Due to the inherent signal averaging, the noise component in the 
output of the detector may be modeled as a Gaussian random variable whose mean and variance can be 
determined from the statistics of the background noise. The threshold is dynamically adjusted according to the 
noise variance of detector output so that the detector maintains a constant false alarm rate (CFAR). If the 
detector output is below the current threshold, the signal is assumed to consist of noise only and these 
measurements are used to update the threshold. 

The output parameters from the energy detector that are communicated to the manager nodes consist of: 1) the 
onset time when the detector output exceeds the threshold, 2) the time of the maximum (CPA), 3) the detector 
output at CPA time, and 4) the offset time when the detector output falls below the threshold. For target 
localization purposes, the detector output at any desired instant within the offset and onset times may also be 
communicated. For classification purposes, the sensor time series for some fixed duration between the onset and 
offset times is used.  

2.3.2 Target Localization 
Determination of target locations at successive time instants is integral to tracking. Various algorithms, with 
varying levels of complexity, may be developed for this purpose [5], [6], [13], [14], [15]. Here, we briefly 
outline a simple algorithm for estimating target location at a particular instant by using energy measurements 
from multiple (4 or more) nodes.  Such an energy-based algorithm is a potentially attractive alternative for the 
following reasons:   

(a) A key requirement for accurate localization methods, such as those based on time-delay estimation is 
accurate synchronization among nodes [7]. However, accurate timing information comes at a rather high 
cost in wireless sensor networks --- synchronization afforded by relatively cheap hardware may not be 
accurate enough for such techniques. 

(b) Coherent localization methods, such as those using beamforming [6] also require additional assumptions, 
such as the plane wave (far field) approximation for the incoming wave. Such assumptions are often violated 
in sensor networks; for example, targets may be rather close to the nodes around CPA time.  Alternative 
methods that obviate such requirements may also be used, albeit at the cost of requiring more statistical 
information (see, e.g., [5],  [14], [15]). 

(c)  Exchange of time series data among nodes, as required by some algorithms, consumes too much energy to 
be feasible. 

Our energy-based target localization algorithm assumes an isotropic exponential attenuation for the target 
energy source: α−= ii )t(/)t(s)t(y rr , where yi(t) is the energy reading at the ith sensor, r(t) denotes  the 
unknown coordinates of the source with respect to a fixed reference, ri are the coordinates of ith sensor, s(t) is the 
unknown target signal energy, and α is the decay exponent which is assumed to be known (or estimated via 
experiments [20]). The algorithm first computes the ratios yi(t)/yj(t) for all pairs of sensors to eliminate the 
unknown variable s(t). Each ratio defines a circle on which r(t) may reside. In the absence of noise, it can be 
shown that for n sensor readings only n-1 of the total n(n-1)/2 ratios are independent, and all the corresponding 
circles intersect at a single point for 4 or more sensor readings. For noisy measurements, more than n-1 ratios 
may be used for robustness, and the unknown target location r(t) is estimated by solving a nonlinear least 
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with the ith ratio. A sample contour plot for the estimated target location determined by the algorithm is shown 



in Figure 3 for seismic time series. Accuracy of the position estimates depends on the accuracy with which the 
node locations and the attenuation exponent can be measured. A detailed sensitivity analysis is beyond the scope 
of this paper. 
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Figure 3. Illustration of energy based collaborative target localization using real seismic (noisy) data. Dots 
indicate node locations. Triangles indicate the 4 nodes being used in the position calculation. Dashed circles 
indicate loci of possible target locations based on the 6 ratios of sensor readings. Three different  points can be 
identified at which 3 of the 6 circles intersect, suggesting possible target locations.  Solid lines represent 
constant-value contours of the cost function. The center of the contour plots indicates estimated target location 
and is inside the region bounded by the 3 intersection points of  circles.   

2.3.3 Target Tracking 
Given target locations at time instants in the past, it is possible to fit the data samples into a dynamic model to 
predict future target locations [3], [4]. For a single moving target, sufficiently accurate tracking may be 
accomplished by fitting the data into a linear or polynomial model using a least square fit. Tracking is a 
complicated problem when multiple targets are present; targets tracks can cross paths resulting in the data-
association problem. Classification algorithms can provide a solution. 

2.3.4 Remarks  
We note that many of the assumptions made in the above sections may be violated in practice making the 
problem of target localization and tracking much more difficult. For example, the propagation decay constant 
may vary between sources of same modality. The signal strength may also be a function of direction depending 
on the location of the source within the target. Furthermore, there is interference between different targets in the 
case of multiple targets. Classification algorithms, in principle, should suppress interference from undesired 
sources. Small antenna arrays at each node to enable spatially selective processing could also be extremely 
beneficial. 

3 Target Classification 

As mentioned earlier, classification algorithms are needed in general for tracking multiple targets. Classification 
algorithms operate on time-series data associated with each detected event. Collaborative classification 
algorithms may operate on space-time signatures associated with each event over a number of nodes in a space-
time cell. Furthermore, space-time signatures corresponding to multiple modalities, such as, acoustic and 
seismic, may be combined for improved performance [8]. However, such collaborative classification puts a very 
significant burden on the network since time-series data from multiple nodes has to be transmitted to the 
manager nodes.  



In this paper, we focus on single-node classification algorithms that operate on time series segments associated 
with detected events. As we discuss in Section 4, the variability in temporal signatures from event to event for a 
particular target class poses a significant challenge in classifier design. In general, some a priori knowledge of 
the statistical characteristics of signatures for different target classes is required [8]. Some aspects of signature 
variability may be accounted for deterministically via nuisance parameters [11], [12], as briefly discussed in 
Section 5.3. While our focus is on single-node classification algorithms as a logical first step, collaborative 
processing may be necessary in practice for desired performance and we discuss such issues in Section 5.2. 

In this section, we explore the performance of three classification algorithms: k-nearest neighbor (kNN) 
classifier, maximum likelihood (ML) classifier using Gaussian data modeling, and Support Vector Machine 
(SVM) classifier. The emphasis is on results obtained from real seismic and acoustic data collected in SITEX00 
experiments performed in the DARPA SenseIT program. We report results for binary classification between 
wheeled and tracked vehicles. 
 

3.1 Spectral Features 
The choice of feature vectors on which the classifiers operate is critically important to their performance. The 
experiments with real data discussed in this section correspond to moving vehicles. Due to the dominant effect 
of rotating machinery (engine, gears, wheels, etc.) as well other periodic phenomena, such as tread-road impact, 
on acoustic and seismic signatures, spectra of time series suggest themselves as useful features. Our initial 
experimentation has shown that spectral characteristics of signatures vary significantly between target classes 
and hence may be fruitful for classification.  

We have explored two types of spectral features: 1) Non-parametric FFT-based power spectral density (PSD) 
estimates, and 2) Parametric PSD estimates using autoregressive (AR) modeling of time series. We explored AR 
modeling (with fewer parameters) primarily to improve the statistical reliability of the PSD estimates. However, 
due to space limitations, we report results based only on non-parametric PSD features. In our experiments to 
date, the performance with AR spectral features is slightly inferior. 

Figure 4 shows the seismic PSDs for three different vehicles (one tracked and two wheeled).  The sampling rate 
is 256Hz and the detected events consist of 3000, 2500, and 2000 samples for events 08020830, 08030800, and 
08040820, respectively. For each event, PSD estimates are based on averaging length 256 FFTs of 0.25 second 
(64 samples) zero-padded data segments, with an overlap of 32 samples between adjacent data segments. Only 
the positive 128 FFT points are plotted. As evident, the plots of the three vehicles show different dominant 
frequencies that may be exploited by classifiers. We note that additional time-averaging may be done to reduce 
the variance of PSD estimates by using shorter FFT segments, however this comes at the cost of smoothing 
spectral features (bias-variance tradeoff). 
 



 
Figure 4a: Seismic PSD of a wheeled vehicle (08020830 DW) 

        

 



 
                

Figure 4b: Seismic PSD of a tracked vehicle (08030800 AAV) 
 



 
Figure 4c: Seismic PSD of a wheeled vehicle (08040820 LAV) 

 
Figure 5 shows PSDs for the same three vehicles as in Figure 4 using wideband acoustic data collected by BAE 
and Xerox. The data is downsampled to 1024 Hz and the PSDs are generated by averaging length-1024 FFTs of 
0.25 second (256 samples) data segments. Only the positive 512 frequency points are plotted. It is worth noting 
that the spectra from the two data sets show different dominant spectral peaks for the wheeled vehicles (Figures 
5a and 5c), even though they supposedly correspond to the same event involving the same vehicle. This 
illustrates one of the challenges associated with classification --- variability in measurements --- discussed in 
more detail in Section 4. 
 
 



 
 

Figure 5a: Acoustic PSD of a wheeled vehicle (08020830 DW) 
 
 



 
 

Figure 5b: Acoustic PSD of a tracked vehicle (08030800 AAV) 
 
 



 
Figure 5c: Acoustic PSD of a wheeled vehicle (08040820 LAV) 

                        
 
 
 

3.2 Classification Algorithms 
 

In this section we briefly describe the three classifiers explored in this paper. Given a set of N-dimensional 
feature vectors {x; x ∈  ℜ N}, we assume that each of them is assigned a class label, ωc ∈  Ω ={ω1,ω2,…,ωm}, that 
belongs to a set of m elements. We denote by p(ωc) the prior probability that a feature vector  belongs to class 
ωc. Similarly, p(ωc|x) is the posterior probability for class ωc given that  x is observed.  

A minimum error classifier maps each vector x to an element in Ω such that the probability of misclassification -
-- the probability that the classifier label is different from the true label --- is minimized. To achieve this 
minimum error rate, the optimal classifier decides x has label ωi if p(ωi|x) > p(ωj|x) for all j ≠ i, ωi, ωj ∈  Ω. In 
practice, it is very difficult to evaluate the posterior probability in closed form.  Instead, one may use an 
appropriate discriminant function gi(x) that satisfies gi(x) > gj(x) if p(ωi|x) > p(ωj|x) for j ≠ i, for all  x. Then 
minimum error classification can be achieved as: decide x has label ωi if gi(x) > gj(x) for j ≠ i. The minimum 
probability of misclassification is also known as the Bayes error, and a minimum error classifier is also known 
as a Bayes classifier or a maximum a posterior probability (MAP) classifier.  Below, we briefly discuss three 
classifiers that approximate the optimal Bayes classifier.  



3.2.1 k-Nearest Neighbor (kNN) Classifier 
The kNN classifier uses all the training features as the set of prototypes {pk}.  During testing phase, the distance 
between each test vector and every prototype is calculated, and the k prototype vectors that are closest to the test 
vector are identified. The class labels of these k-nearest prototype vectors are then combined using majority vote 
or some other method to decide the class label of the test vector. When k=1, the kNN classifier is called the 
nearest neighbor classifier. It is well-known [9] that asymptotically (in the number of training vectors), the 
probability of misclassification of a nearest neighbor classifier approaches twice the (optimal) Bayes error. 
Hence the performance of a nearest neighbor classifier can be used as a baseline to gauge the performance of 
other classifiers. However, as the number of prototypes increases, a kNN classifier is not very suitable for actual 
implementation since it requires too much memory storage and processing power for testing.  

3.2.2 Maximum Likelihood Classifier Using Gaussian Mixture Density Model 
In this classifier, the distribution of training vectors from the same class is modeled as a mixture of Gaussian 
density functions.  That is, the likelihood function is modeled as 

    p(x|ωi) ∝  Gi(x|θθθθi) = ∑ 
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where θθθθi = [mi1, …, miP, ΛΛΛΛi1, …, ΛΛΛΛiP] are the mean and covariance matrix parameters of the P mixture densities 
corresponding to class ωi. These model parameters can be identified by applying an appropriate clustering 
algorithm, such as the k-means algorithm [9], or the Expectation-Maximization algorithm [28] to the training 
vectors of each class. The discriminant function is computed as gi(x) = Gi(x|θθθθi)p(ωi) where the prior probability 
p(ωi) is approximated by the relative number of training vectors in class i. In the numerical examples we model 
the data as Gaussian rather than a Gaussian mixture (P=1). Furthermore, we use the maximum likelihood (ML) 
classifier (uniform prior probabilities). 

3.2.3 Support Vector Machine (SVM) Classifier 
A support vector machine (SVM) is essentially a linear classifier operating in a higher dimensional space. 
Consider a binary classification problem without loss of generality. Let M

1ii )}({ =xϕ  be a set of nonlinear 
transformations mapping the N-dimensional input vector to an M-dimensional feature space (M > N). A linear 
classifier, characterized by the weights {w1,w2,…,wM}, operates in this higher dimensional feature space 
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kernel representing the SVM. In the numerical examples presented in this paper, we use a third degree 
polynomial kernel: 3

i
T

i )1(),(K += xxxx . In practice, the SVM discriminant function g(x) is computed using 
the kernel representation, bypassing the nonlinear transformation into the higher dimensional space [10]. The 
classifier design then corresponds to the choice of the kernel and the support vectors. By appropriately choosing 
the kernel, an SVM can realize a neural network classifier as well. Similar to neural networks, the training phase 
can take a long time. However, once the classifier is trained, its application is relatively easy. In general, a 
different SVM is trained for each class. The output of each SVM can then be regarded as an estimate of the 
posterior probability for that class and the MAP decision rule can be directly applied.  

3.3 Performance Assessment 



3.3.1 Cross Validation 
Performance assessment is a critical component of classifier design. In practice, the probability of 
misclassification must be evaluated empirically. The available feature vectors are divided into two sets: a 
training set that is used to train the classifier, and a testing set that is used to estimate its probability of 
misclassification. In the numerical results presented in the following sections, we use 3-way cross validation for 
performance assessment. The data is divided into three sets (F1, F2, F3) and three different sets of experiments 
are performed for performance assessment: 

 

A B C 
Training: F1 + F2; Testing: F3 Training: F2 + F3; Testing: F1 Training: F3 + F1; Testing: F2 

 

 The results are reported for binary classification between wheeled and tracked vehicles using both low-
bandwidth seismic and wideband acoustic data. 

3.3.2 Low Bandwidth Seismic Data 

We compare the performance of the three classifiers on low-bandwidth data from seismic sensors collected in 
the SITEX00 experiments. The sensor outputs were sampled at 256 Hz. The spectral feature vectors consist of 
the positive 64 samples of 128 length FFT corresponding to 0.5 second time series segments. There were two 
types of tracked vehicles and five types of wheeled vehicles in the data set. The three data sets for 3-way cross 
validation had the following numbers of  features in each: 

  
 F1 F2 F3 Total 
Tracked 73 73 74 220 
Wheeled 166 166 168 500 
Total 239 239 242 720 

 
 
The confusion matrices for the three classifiers are tabulated below. Vertical labels correspond to true labels 
whereas the horizontal labels correspond to the classifier labels. 
 
 
 
K-Nearest Neighbor (K = 1) 

 
 Tracked Wheeled 
Tracked 197 (89.55%) 23 (10.45%) 
Wheeled 24 (4.80%) 476 (95.2%) 

 
 

Maximum Likelihood (Gaussian Modeling) 
 

 Tracked Wheeled 
Tracked 203 (92.27%) 17 (7.73%) 
Wheeled 112 (22.4%) 388 (77.6%) 

 
SVM  

 
 

 Tracked Wheeled 



Tracked 207 (94.09%) 13 (5.91%) 
Wheeled 15 (3.0%) 485 (97.0%) 

 

As evident, the nearest neighbor and SVM classifiers perform quite well. The somewhat inferior performance of 
the ML classifier may be due to the fact that we do not account for prior class probabilities which are implicitly 
accounted for in the kNN and SVM classifiers. (Note that there are about twice as many wheeled feature vectors 
as tracked ones.) We note that similar performance has been reported by other researchers in related contexts 
using wavelet-based processing [18], [19]. 

3.3.3 Wideband Acoustic Data 
During SITEX00 experiments, research groups from BAE and Xerox PARC both recorded broadband acoustic 
data.  The BAE data was sampled at 10 KHz and the Xerox data was sampled at 20 or 40 KHz.  Both data sets 
were down-sampled to 5 KHz before applying the classification algorithms. Based on videotapes recorded 
during the experiment, each run (consisting of several events) was segmented into 5-second segments and each 
segment was manually labeled as tracked or wheeled (more accurate ground truth information was not 
available). 
 
For each labeled 5-second acoustic clip (sampled at 5 KHz), a 1000-point FFT is performed for each non-
overlapping segment of 1000 samples. This yields 25 1000-point FFT vectors for each 5-second segment. These 
vectors are then magnitude squared to yield PSD estimates at a resolution of 5 Hz per spectral bin.  Our study of 
the data indicated that most of the signal energy is confined to frequencies below 1 KHz. Thus, we used the 
Fourier coefficients corresponding to the first 200 positive spectral bins.  To further reduce the feature dimension 
and to improve statistical reliability, we extracted two types of spectral features from these non-parametric PSD 
estimates: 
 
Feature type 1. Non-overlapping sets of 4 adjacent spectral bins are averaged to yield a 50 by 1 feature vector 
with each entry representing the signal energy in a frequency band of 20 (5 × 4) Hz. 
 
Feature type 2. Non-overlapping sets of 10 adjacent spectral bins are averaged to yield a 20 by 1 feature vector 
with each entry representing the signal energy in a frequency band of 50 (5 × 10) Hz.  
 
Each feature vector is then level-shifted to make it average to zero and is normalized using the L∞ norm.  
 
The three data sets used in 3-way cross validation had the following number of features in each class: 

 
 F1 F2 F3 Total 

Tracked 324 306 329 959 
Wheeled 512 530 508 1550 

Total 836 836 837 2509 

The confusion matrices for the three classifiers are reported below.  
 
K-Nearest Neighbor (K = 1) 

 
 Tracked Wheeled 
Tracked 842 (87.80%) 117 (12.20%) 
Wheeled 89 (5.74%) 1461 (94.26%) 

 
Maximum Likelihood (Gaussian Modeling) 

 
 Tracked Wheeled 



Tracked 779 (81.23%) 180 (18.77%) 
Wheeled 171 (11.03%) 1379 (88.97%) 

 
SVM  

 Tracked Wheeled 
Tracked 887 (92.50%) 72 (7.5%) 
Wheeled 55 (3.55%) 1495 (96.45%) 

 

The SVM classifier again performs the best and ML classifier the worst. The performance of the ML classifier 
could be better if the prior class probabilities reflected the different number of vehicles in the two classes. 

4 Issues and Challenges 

Making CSP work in real sensor networks presents many hurdles. In this section, we describe some of the issues 
and challenges that we have encountered and identified in our experience with real data. In general the issues 
stem from some form of variability in measurements. We focus on three major sources of variability: 1) 
Uncertainty in space-time measurements, 2) Doppler effects due to motion, and 3) variability in experimental 
conditions. Such variability is particularly challenging in classification algorithms since they rely on statistical 
signal characteristics inferred from training data --- targets may exhibit significantly different characteristics 
during the test experiments as compared to the training phase.  Making the classifiers robust to such variability is 
critical for their successful application and is a very challenging task. 
 
4.1 Uncertainty in Temporal and Spatial Measurements 
 
Accurate timing synchronization between nodes and accurate estimates of their positions is critical to many CSP 
algorithms. For example, the accuracy of the target localization algorithm described in Section 2.3.2, and that of 
related algorithms for estimating target bearing [7], critically depends on such timing and location information. 
Similarly, relative locations of nodes are exploited for estimating time difference of arrival between nodes in 
bearing estimation and beamforming. Errors in node locations can lead to errors in timing information in such 
cases.  Sufficiently accurate timing and spatial information may not be available even when the sensor nodes are 
equipped with GPS receivers. Signal averaging within spatial cells may be used to improve the accuracy of 
timing and location information.  
 
4.2 Effect of Doppler on Spectral Signatures 
 An implicit assumption in the training of the classifiers discussed in Section 3 is that statistical characteristics of 
the target signatures do not change over the duration of the detected event. This assumption may not hold in 
practice. For example, gear shifts, acceleration and simply Doppler shifts due to motion can result in 
significantly varying spectral characteristics.  Doppler effects in acoustic and seismic signals are particularly 
significant due to relatively low speed of wave propagation.  

 

 



Figure 6.  A simple geometry for a moving source to illustrate Doppler effects. 

 

Consider the set up in Figure 6 to illustrate Doppler effects. A source emitting energy at frequency fo is moving 
at velocity ν parallel to the x-axis. The perpendicular distance between the source and the observer (sensor) is d.  
The sensor is located at a distance x along the axis. A simple calculation shows that the frequency perceived by 

the sensor is related to source frequency as 
α−

=
cos)v/v(1

f
f

0

0  where α is the angle between the x-axis and 

the line-of-sight between the source and the sensor.  
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Figure 7.  Plots of perceived frequency for acoustic signals as a function of source position for different values 

of d. 

Figure 7 plots the perceived frequency for acoustic data as a function of source position for different values of d. 
The source frequency is fo = 60 Hz, the sensor is located at 200=x m, and the source velocity is 20m/s. It is 
evident that the perceived frequency is equal to the source frequency at the CPA and variation in the perceived 
frequency gets sharper for smaller d. Similarly, the total frequency variation increases with speed. Actual data 
from experiments confirms similar spectral trends. Figures 8 and 9 show the short-time Fourier transform 
(STFT) plots of seismic and acoustic signals, respectively, for a vehicle moving past a node. The variation in 
perceived frequency, similar to that in Figure 7, is evident.  Note that the seismic signature is shorter in time due 
to faster signal decay with distance in ground. The perceived frequency variation in acoustic data could also be 
partly due to gear shifts. The important thing is that the changes in perceived frequency are significant at normal 
source speeds and thus must be taken into account. One possibility is to use the ratio of dominant frequencies as 
a feature to make classification algorithms robust to Doppler shifts. 
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Figure 8. STFT of a seismic signal due to a moving vehicle. 
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Figure 9. STFT of an acoustic signal due to a moving vehicle. 

 

4.3 Variability in Experimental Conditions  
 
Another, and more stringent, assumption in the classification algorithms discussed in Section 3 is that the signal 
characteristics for a particular target class are relatively consistent between different events involving the same 
target. This assumption is needed since data from prior experiments is used to train the classifiers for future 
experiments. However, many factors in practice violate this assumption, including varying conditions between 
different experiments, such as the node layout. For example, nodes closer to roads will experience sharper 
Doppler shifts than farther nodes, as illustrated in Figure 7. This variability may be the cause of differences in 
Xerox and BAE spectral signatures for the same vehicle, as illustrated in Figures 5a and 5c. The net effect of 
such variability is that each target class occupies more signal space dimensions, thereby requiring a sufficiently 
high dimensional signal representation for reliable classification. This may be another reason for the superior 
performance of the SVM classifier. Work by other researchers on the calibration of unattended sensors may be 
useful in attacking this problem [21]. 



5 Future Research 
We now briefly identify some avenues for future research in CSP for sensor networks based on our 
investigations and experiences with real data. Recall that of the algorithms discussed in this paper, only target 
localization and location prediction require collaborative processing. Detection and classification algorithms 
have been described for single-node processing. However, given the myriad of effects that can compromise the 
performance of signal processing algorithms in a sensor network, various forms of CSP may be necessary. As in 
all cases, there is a performance versus complexity tradeoff that is particularly acute in sensor networks since 
collaboration between nodes comes at the cost of exchanging information between them. 
 
5.1 Intra-sensor Collaboration: Modal Fusion 
 
One of the simplest and most feasible forms of CSP is to combine the information across different sensing 
modalities at each node. The information to be combined resides at one node and thus does not require 
communication over the network. For example, jointly processing acoustic and seismic signals may significantly 
enhance performance. Higher dimensional feature vectors obtained by concatenating the vectors for the two 
modalities may be used for classification. A lower complexity alternative may be to combine the decision 
statistics for different modalities.   
 
5.2 Inter-sensor Collaboration: Centralized Processing 
 
Another possibility for CSP is to effectively perform joint space-time processing across different nodes in a cell 
via manager nodes. Consider classification for illustration. All active nodes in a cell send the time series data 
corresponding to the detected event to the manager node. The manager node then jointly processes the time 
series data to classify the target. Temporally coherent processing would be possible when the relative timing of 
the different time series is known and exploited, such as in time-of-arrival based bearing estimation algorithms 
[7]. Similarly, spatially coherent processing may be possible if the relative locations of nodes are known and 
exploited. For example, distributed spatial beamforming may be effectively implemented in such cases to 
localize targets as well as to suppress interference from unwanted targets. Significant research in array 
processing and more recently in space-time processing for wireless communications could be fruitfully exploited 
in this context (see, e.g., [13],[26],[27]). 
 

5.3 Doppler Based Composite Hypothesis Testing 
Doppler shifts represent one important source of variability that can be explicitly modeled, at least for simple 
scenarios, as discussed in Section 4.2. We briefly discuss one approach based on a generalized likelihood ratio 
test (GLRT) [11]. In the presence of Doppler shifts, the target signature for the mth class can be modeled as a 
realization of a zero-mean wide-sense stationary process modulated by a time-varying instantaneous frequency, 

)(f mθ , parameterized by the vector, [ ]mmmm dvα=θ , corresponding to the scenario in Figure 6.   A GLRT 
classifier essentially operates as follows: First an ML estimate of the Doppler parameters, mθ̂ , is obtained for 
each hypothesis and then the posterior probability density functions corresponding to these estimates, 

)ˆ,|(p mm θxω , are used for deciding between the classes. Such a GLRT-based approach requires “alignment” of 
data to some fixed frequency during the training phase, which may be done in a variety of ways [25]. The 
aligned data may then be used to train any one of the three classifiers. Clearly, such algorithms require more 
computation and the performance-complexity tradeoff has to be carefully evaluated. 

6 Conclusions 

In this paper we have presented the basic ideas behind a CSP framework for tracking multiple targets in a 
distributed sensor network. The key components of the framework include event detection, estimation and 
prediction of target location, and target classification. Most of the existing work is for tracking a single target 
and is based on a single sensing modality, such as acoustic or seismic. Tracking of multiple targets in general 



requires classification algorithms. Based on experimentation with real data, we have argued that spectral target 
signatures may yield accurate classification. However, variations in spectral signatures due to a variety of 
effects, including Doppler shifts, presents a significant challenge. We have provided some promising 
preliminary results on classifying between wheeled and tracked vehicles. The SVM classifier seems to be the 
most promising based on our initial experiments. 

The algorithms discussed in this paper primarily represent a snapshot of the ongoing work at Wisconsin on the 
extremely challenging problem of tracking multiple targets in a sensor network and are by no means the best 
approach. We are also working on incorporating insights and results obtained by other researchers. Results from 
this ongoing project, including code for implementing various algorithms, will be posted on our website 
http://www.ece.wisc.edu/~sensit/.  

In closing, distributed sensor networks are emerging as a powerful technology for remotely instrumenting and 
monitoring the physical world. However, the technology is in its infancy and many challenges need to be 
overcome before it becomes practically feasible. Several research groups around the country are tackling 
important pieces of the puzzle. The results and findings have been very promising and are leading to new 
research activity to advance the theory and practice of sensor networks.  
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