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Abstract

This paper presents a computationally simple and accurate method to compute the error probabilities

in decentralized detection in sensor networks. The cost of the direct computation of these probabilities—

e.g., the probability of false alarm, the probability of a miss, or the average error probability—is

combinatorial in the number of sensors and becomes infeasible even with small size networks. The

method is based on the theory of large deviations, in particular, the saddlepoint approximation and

applies to generic parallel fusion sensor networks, including networks with non-identical sensors, non-

identical observations, and unreliable communication links. The paper demonstrates with parallel fusion

sensor network problems the accuracy of the saddlepoint methodology: (1) computing the detection

performance for a variety of small and large sensor network scenarios; and (2) designing the local

detection thresholds. Elsewhere, we have used the saddlepoint approximation to study tradeoffs among

parameters for networks of arbitrary size.

EDICS: SEN-DIST, SEN-FUSE, SSP-DETC.

Index Terms

Sensor networks, sensor fusion, decentralized detection, parallel fusion, quantization, Saddlepoint

approximation, Lugannani-Rice approximation.

I. INTRODUCTION

The potential for large-scale sensor networks is attracting great interest in many applications in recent

years due to emerging technological advancements. Increasing levels of electronics and RF circuits

integration lend themselves to the deployment of affordable, yet reliable sensing systems, which are

envisioned as networks of autonomous densely distributed sensor nodes [2]. Individually, each sensor

node may not accomplish much, but, working cooperatively, they have, for example, the potential to

monitor large areas, detect the presence or absence of targets, or track moving objects.

The design and analysis of sensor networks for detection applications has received considerable

attention in the past decade [3]–[5]. A major difficulty usually encountered in such applications is the high
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computational cost associated with evaluating the detection error probabilities of the network, which is a

combinatorial problem in the numberN of sensors. Direct evaluation of these probabilities is possible only

for rather small networks. In this paper, we develop a computationally fast and accurate methodology to

evaluate the error, detection, and false alarm probabilities for networks of arbitrary size—small, medium,

or large number of sensors. Our method is based on large deviation theory approximations to these

probabilities, in particular, the saddlepoint approximation.

We illustrate the saddlepoint based methodology by considering a binary hypothesis detection problem

in which the environment assumes one of two possible states (e.g., a target is present or absent). We

focus on a parallel network architecture in which the sensors make local decisions based on their own

measurements and then deliver these local decisions to a fusion center. The local measurements are

quantized to b bits, so the local detectors can be thought of as b-bit local quantizers.

In this particular architecture, called parallel fusion (see Fig. 1), there is no communication among

the local sensors and the fusion center does not sense the physical phenomenon. Fundamental results on

distributed detection with a parallel architecture date back to the early work of Tenney and Sandell [6].

For an introduction and overview of the area of decentralized detection, interested readers are referred

to [3] and [5].

Designing the network detector and evaluating the global performance probabilities is a complicated

task requiring high computational costs that grow as N2
b
−1, where N is the number of sensors and b

is the number of bits per local detector. This renders their direct evaluation infeasible, except when the

number of sensors N or the number of bits b per sensor is small [7], [8]. The literature usually avoids

the direct computation of the performance probabilities by evaluating their asymptotic exponential decay

rate, e.g., given by the the Chernoff and Kullback-Leibler (KL) distances, [9]–[12]. These are in certain

cases simple to compute, but, we emphasize, such measures estimate the asymptotic exponential decay

rate of the performance probabilities, not the probabilities themselves. Chernoff and KL distances do not

help with evaluating the receiver operating characteristics (ROC), or designing the fusion rule, say under

the Neyman-Pearson criterion, since both require the actual detection and false alarm probabilities and

not their decay rates. To evaluate the detection performance probabilities, some authors use the normal

approximation [13]–[15]. The normal approximation can handle many practical problems, but fails often

to provide acceptable accuracy, especially when the points to be approximated are in the tail regions and
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far from the mean of the decision variable. Simulations show that the normal approximation performs

better with smaller networks but its accuracy deteriorates rapidly as the network size increases.

We take in this paper a different approach that enables the analysis and design of networks of arbitrary

size (small or large) by considering a large deviation theory based approximation to the error probabilities

that is both simple to compute and accurate. We adopt the saddlepoint approximation [16], which has been

used in many applications such as optical detection, bootstrapping, and queuing analysis. It could also be

related to the method of stationary phase, which is used widely in Physics. Although based on asymptotic

expansions, the saddlepoint approximation is highly accurate even for networks with a few number

of sensors. In addition, remarkably, the computational complexity of the saddlepoint approximation is

independent of the number of sensors. We provide numerical comparisons to illustrate the advantage of

the saddlepoint approximation over other approximation methods under different conditions. We show that

the saddlepoint formulas are an accurate approximation in practical scenarios involving identical or non-

identical observations, identical or non-identical local detectors, and reliable or unreliable communication

links between the sensors and the fusion center.

The organization of the paper is as follows. In section II, we present the parallel fusion network

and state the problem. At this stage, we take a simplifying approach, assuming independent, identically

distributed (i.i.d.) measurements, identical local quantizers, and noiseless communications channel. In

section III, we address the difficulty of evaluating the global performance probabilities, and we explain two

commonly used methods for approximating it—the normal approximation and the asymptotic exponential

decay rate based analysis. In section IV, we present the saddlepoint approximation for densities and

distributions, and we discuss its complexity and theoretical accuracy. In section V, several numerical

studies illustrate the advantage of the saddlepoint approximation over other techniques by: (1) comparing

the error probabilities; (2) the fusion threshold; and local detectors’ thresholds. In all cases, the sad-

dlepoint approximation computed quantities compare much more favorably with the true values than

the corresponding quantities computed with other methods. In section VI, we extend the saddlepoint

approximation to sensor networks with non-identical measurements, non-identical local detectors, and

noisy channels. Finally, concluding comments are in section VII.
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II. MODEL AND PROBLEM STATEMENT

We consider the binary detection problem of deciding between H0 or H1 with a network of N parallel

sensors. The network acquires N measurements, one per sensor, yn, n = 1, 2, . . . , N , makes a local b-bit

decision un, i.e., quantizes each sensor measurement into b-bits, delivers all N local decisions un, n =

1, 2, . . . , N , through a multiple access channel to a single fusion center. This fusion center makes the final

determination ̂H , see Fig. 1. In this particular model, the local sensors have no means of communicating

their local decisions, except to a single fusion center, and the fusion center does not acquire independent

measurements. Conditioned on H , the observations yn are assumed to be independent. The quantization

performed locally in each sensor is according to local decision rules γn, n = 1, 2, . . . , N , which can be

considered as mappings from the continuous observation space R to the discrete classification space U,

i.e., γn : R −→ U, where U = {1, 2, . . . ,M}, and M is the number of quantization levels. Upon receiving

the N local decisions, the fusion center fuses them together according to a fusion rule γ0 : U
N −→ {0, 1}

to reach the final decision ̂H .

We consider likelihood ratio (LR) based fusion rules, i.e., rules that rely on the LR of the local decisions

LRu(u) =
Pr(u|H1)

Pr(u|H0)
,

where u = (u1, . . . , uN ) is the vector of all quantized local decisions received at the fusion center.

Of particular interest are Bayesian and Neyman-Pearson (NP) detectors for which optimal fusion relies

on the LR statistic. In Bayesian detection problems, the fusion center minimizes the global average

probability of error

Pe = π0P0 + π1P1

at the fusion center, where Pj is the probability of error Pr( ̂H �= H|Hj) under Hj , and πj = Pr(Hj),

j = 0, 1 are the prior probabilities. In Neyman-Pearson detection, the fusion center minimizes the miss

probability (Pm = P1) subject to a constraint on the false alarm probability (Pf = P0), i.e., minP1

subject to P0 ≤ α, where α is called the size of the test.

We address the problem of evaluating, for example, the error probabilities

P0 = Pr(u0 = 1|H0) : and : P1 = Pr(u0 = 0|H1)

at the fusion center, where u0 is the global decision at the output of the fusion center, where u0 = j, j =

0, 1 corresponds to a global decision of ̂H = Hj . These ‘global’ probabilities are the relevant quantities
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for detection in sensor networks. They are important to various studies such as performance assessments

(e.g., false alarm and detection probabilities, Bayesian cost, receiver operating characteristics) and sensor

network optimization with respect to the global detection performance (e.g., finding simultaneously all

the optimal local decision rules γn and the fusion rule γ0, optimal in a Bayes or Neyman-Pearson sense).

Initially, we assume that the measurements yn have identical conditional distributions. We also restrict

the local decision rules γn, n = 1, 2, . . . , N , to be identical. It was shown in [17] that the performance loss

due to this restriction of identical rules is negligible when the number of sensors is large. In section VI,

we extend our proposed techniques to cases involving non-identical measurements and non-identical local

detection rules. The assumptions of i.i.d. measurements and identical detectors result in local decisions

un that are also i.i.d. The conditional probabilities of the local decisions un are assumed to be known

(or computable given the measurement statistics and the local decision rules) and they are denoted by

Qn
mi = Pr(un = m|Hi), : n = 1, 2, . . . , N, : m = 1, . . . ,M, : i = 0, 1.

In the sequel, we suppress the n superscript and adopt the simplified notation

Qmi = Pr(u = m|Hi)

to denote the conditional probability of any of the n local decisions under hypothesis Hi.

In section V, for simplicity, though not required by our methodology, we test the saddlepoint approx-

imation with particular observation models and local quantization rules, not necessarily optimal. We pay

special emphasis to local likelihood ratio detectors or quantizers (LRQ), for which the local decision of

each sensor is done based on the measurement likelihood ratio

LRy(yn) = f1(yn)/f0(yn),

where fi(y) = f(y|Hi), i = 0, 1, are the conditional probability density functions (pdf) of the mea-

surements. These rules may or may not be optimal, but will be used based on practical considerations;

still, the method we develop applies in either case to compute the detection error probabilities. We recall

that, for binary sensors (b = 1 bit per sensor), the optimality of likelihood ratio detectors with respect

to Bayesian and the Neyman-Pearson criteria has been established in [18] and [19]. For the general

case (b ≥ 1 bits per sensor), Tsitsiklis in [20] showed that the likelihood ratio detector is optimal with
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Fig. 1. Parallel fusion network

respect to Ali-Silvey distances (including Chernoff and Kullback-Leibler distances), which implies the

asymptotic optimality (as N → ∞) of such tests under the Neyman-Pearson and Bayesian criteria.

When the local measurements have monotonic likelihood ratios, quantizing the likelihood ratios LRy(yn)

is equivalent to direct quantization of the measurements yn, in which case the local detectors reduce to

un = i if λi−1 < yn ≤ λi, (1)

where λ = (λ1, λ2, . . . , λM−1) are the local detectors thresholds, and λ0 = −∞, λM = +∞. In section V,

we will consider specific instantiations of these conditional probability densities.

III. PRELIMINARIES

A. Likelihood Ratio Fusion

Given the independence of the sensor observations, the likelihood ratio fusion rule is of the form

s =
N∑

n=1

�n
1
≷
0
v, : where : �n = log

Pr(un|H1)

Pr(un|H0)
(2)

is the log likelihood ratio (LLR) of the decision of the nth sensor, and v is the fusion threshold. In this

paper, we are not necessarily concerned with the optimality of (2). However, we discuss briefly when

to expect it to be optimal. Reference [5] shows that this fusion rule optimizes both the Bayesian and
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the Neyman-Pearson criteria for independent observations. For both, the Bayesian and Neyman-Pearson

problems, we can consider non-randomized tests of the LLR statistic s even though it is discrete. It was

shown in [21] that the optimal fusion rule does not randomize as long as the unquantized measurements

yn are independent and their likelihood ratios LRy(yn) contain no point-masses of probability, i.e.,

Pr[LRy(yn) = x] = 0 for all x ∈ R.

In Bayesian detection, the fusion threshold v can be computed directly given the priors π0 and π1 and

the cost associated with the different decisions as follows

v = log

(
π0(c10 − c00)

π1(c01 − c11)

)
, (3)

where cij , i, j ∈ {0, 1} is the cost associated with making a global decision u0 = i when Hj is present.

For the minimum probability of error detector (c10 = c01 = 1 and c00 = c11 = 0), the threshold reduces to

v = log(π0/π1). For Neyman-Pearson detection, on the other hand, the fusion threshold v is determined

by solving

Pf (v) ≤ α, (4)

for a given size α, where the false alarm probability is Pf (v) = Pr(u0 = 1|H0) = Pr(s > v|H0).

The local LLRs �n, n = 1, . . . , N , are discrete random variables that take values in {L1, . . . , LM},
where

Lm = log

(
Qm1

Qm0

)
, m = 1, . . . ,M (5)

is the value of the LLR whenever a local decision in favor of m is made. By grouping the local decisions,

the fusion rule in (2) can also be written as a weighted majority rule

s =
M∑

m=1

nmLm

1
≷
0
v, (6)

where nm ∈ {0, 1, . . . , N},
M∑

m=1
nm = N , is the number of sensors making a un = m decision and

Lm is the LLR value of that local decision as defined in (5). Unlike the LLR variables �n, which are

independent, the discrete variables nm, m = 1, 2, . . . ,M are dependent with joint multinomial probability

mass function (pmf) given by

Pr(n1, n2, . . . , nM |Hi) = (n1, n2, . . . , nM)!
M∏

m=1

(Qmi)
nm ,
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when
M∑

m=1
nm = N and Pr(n1, n2, . . . , nM |Hi) = 0 otherwise. The multinomial coefficient in the above

equation is given by

(n1, n2, . . . , nM)! =
N !

n1!n2! · · ·nM !
.

Although (6) involves a sum of only M random variables, analyzing the distribution of s through (2) is

easier due to the independence of the LLR variables �n, n = 1, . . . ,N .

The local decision probabilities Qmi, m = 1, . . . ,M , i = 0, 1, are assumed to be known or computable

given the statistics of the observations and the local detection rules. For example, when the local decision

at the sensors is done according to (1), the local decision probabilities can be computed given the

conditional pdfs fi(y) of the unquantized measurements as follows

Qmi = Pr (u = m|Hi) = Pr (� = Lm|Hi) =

∫ λm

λm−1

fi(y)dy, (7)

under hypothesis Hi. This local decision rule is used later in section V, but, as mentioned before, the

saddlepoint formulas derived in section IV approximating the global error probability are not limited to

this particular quantization rule.

B. Exact Computation of the Error Probability

The global error probabilities P0 and P1 at the fusion center can be computed from the right and left

tails of the global LLR s as follows

P0 = Pr (s > v|H0) and P1 = Pr (s < v|H1) .

This can be accomplished by going through all MN possible outcomes (u1, u2, . . . , uN ) of the N local

detectors, considering only those combinations for which the global LLR s satisfies the particular tail

condition (s > v for P0, and s < v for P1), then summing up their probabilities, where

Pr (u1 = k1, . . . , uN = kN |Hj) =
N∏

n=1

Qknj.

Alternatively, one may use the i.i.d. and the identical detectors assumption to simplify this computation

by noting that the fusion center only cares about the counts of distinct decisions as in (6). Hence, the

probability of error under Hi is given by

Pi =
∑

n1,...,nM

[
(n1, n2, . . . , nM)!

M∏
m=1

(Qmi)
nm

]
, s.t.

M∑
m=1

nm = N and

M∑
m=1

nmLm

if i=0
≷

if i=1
v. (8)
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The sum in the last equation considers all possible ways of selecting M integers such that their sum is

equal to N . The number of such combinations is equal to the number of ways of arranging N identical

balls into M distinct buckets, which is given by(
N +M − 1

N

)
�

√
M

2π

( e

M

)M
NM−1,

where we used Stirling’s approximation when N is large. We see that the number of terms in (8)

is O(NM−1) = O
(
N2b−1

)
, which is too large for values of N and/or b of interest. Therefore, the

direct evaluation of the error probability is not appropriate for practical use except when M and N are

considerably low. For instance, computing the error probability in a network of N = 100 sensors where

the local decisions are quantized into b = 3 bits requires evaluating about 2.6×1010 terms. The difficulties

become even more prominent when embedding such exact expressions in an optimization algorithm that

adapts the network parameters with the goal of minimizing the error probabilities. In section IV, we

introduce a method that avoids this large computational burden.

C. Normal Approximation

Instead of computing directly the probability of error, one can approximate it to avoid the associated

high computational costs. Since s is a sum of N i.i.d. random variables, we may use the central limit

theorem (CLT) to approximate the true distribution. Under Hi, i = 0, 1, the mean and variance of the

local LLR � are given by

µ�,i = E(�|Hi) =
M∑

m=1

QmiLm,

σ2
�,i = Var(�|Hi) = −µ2

�,i +
M∑

m=1

QmiL
2
m,

where E(·) and Var(·) denote the expectation and variance, respectively. The mean and variance of the

global LLR s are given by

µs,i = Nµ�,i and σ2
s,i = Nσ2

�,i,

respectively. From the central limit theorem, the distribution of global LLR s converges to that of a

Gaussian random variable, i.e.,

Pr(s > v|H0)
N→∞−→ Φ(v0) and Pr(s < v|H1)

N→∞−→ 1− Φ(v1),
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where, Φ(x) =
∫∞
x ϕ(y)dy is the right normal tail integral, ϕ(x) = e−x2/2/

√
2π is the normal pdf, and

vi, i = 0, 1, is given by

vi �
v/N − µ�,i

σ�,i

√
N. (9)

When using the normal approximation, we have to be careful about its convergence speed. For instance,

assuming v0 is fixed, the absolute difference between the true distribution P0 = Pr(s > v|H0) and its

normal approximation Φ(v0) can be bounded using the Berry-Esseen theorem [22, sec. 2.5]

|P0 − Φ(v0)| < cρ3√
N

, (10)

where ρ3 is the third moment of s0 =
(
s− µ�,0

)
/σ�,0 and c is a constant independent of the distribution

of s. However, this only bounds the absolute difference; it does not quantify the relative difference

|P0 −Φ(v0)| /P0. For example, if the true probability P0 is 10−4 at N = 100, then, unless ρ3 is very

small, the O(1/
√
N) bound in (10) is not of much help since it is much larger than the true probability P0,

[16]. Notice that vi, i = 0, 1, in (9) grows as
√
N and the true distribution (also its normal approximation)

decays at an exponential rate with respect to N , which is faster than the N−1/2 decay rate of the absolute

difference. The normal approximation is inappropriate when the absolute difference |P0 − Φ(v0)| becomes

larger (or comparable) to the approximated value P0. We see that, when N is large, the central limit

theorem in many cases fails to provide adequate accuracy.

D. Asymptotic Decay Rate

As the number of sensors N grows, the probability of error at the fusion center decays exponentially

fast. In Bayesian problems, the decay rate of the average probability of error is defined by

C = − lim
N→∞

1

N
logPe(N). (11)

where Pe(N) = π0P0(N) + π1P1(N) is the average probability of error when the number of sensors is

N . In the asymptotic regime (N → ∞), the best rate of decay C is given by the Chernoff distance [12]

C = max
a∈[0,1]

− log
M∑

m=1

[Qm0]
a [Qm1]

1−a . (12)

The decay rate in Neyman-Pearson detection can also be estimated. Let β(N,α) be the minimum miss

probability such that the false alarm probability is less than α when the number of sensors is N , i.e,

β(N,α) = min
v

P1 subject to P0 < α.



10

Then, as N → ∞ and α → 0, the probability of miss decays exponentially fast with a rate D defined by

D = lim
α→0

lim
N→∞

1

N
log β(N,α).

From Stein’s lemma, the exponential decay rate D is given by the Kullback-Leibler (KL) distance [12]

D =
M∑

m=1

Qm0 log
Qm0

Qm1
. (13)

The Chernoff and KL distances provide the decay rates of the probability of error and miss probability,

i.e., rough estimates of these probabilities in the form of Pe ≈ e−NC and P1 ≈ e−ND, respectively. In

contradistinction to these, in this paper, we are interested in more precise and direct estimates of the

error probability and miss probability for particular finite values of N, v, and α.

IV. SADDLEPOINT APPROXIMATION

Saddlepoint techniques are powerful tools to derive accurate approximations to densities and tail

probabilities of sums of independent random variables. In the context of the current problem, we use

these techniques to approximate the tail probabilities of the global LLR s =
N∑

n=1
�n. The evaluation point

(in this case, it is the fusion threshold v) is usually bounded away from the mean of s and, hence, the

normal approximation may fail to provide adequate accuracy. Saddlepoint techniques avoid this problem

by relating the original density of s to a new so-called tilted density. The tilted density is chosen such that

it is centered at the evaluation point v. An accurate approximation can then be obtained using the normal

approximation. In many cases, the saddlepoint approximation of discrete random variables is similar

to that of continuous random variables [23]. In what follows, we highlight results from the continuous

saddlepoint theory that are relevant to the problem at hand. Accuracy differences resulting from applying

continuous-based saddlepoint approximations to our discrete problem will be discussed afterwards. For

more details on saddlepoint approximations refer to [16].

A. Saddlepoint Approximation of Densities

Denote the density of s under Hi by fs,i(x) = fs(x|Hi), i = 0, 1. The normal approximation may fail

when x is far from the mean µs,i. In saddlepoint techniques, the original density fs,i(x) is embedded in

a conjugate exponential family

fŝ,i(x, θ̂i) = exθ̂i−Ki(θ̂i)fs,i(x), (14)
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where ŝ is the transformed random variable, θ̂i is a fixed parameter, and Ki(θ) is the cumulant generating

function (CGF) of s, which, for our detection problem, is given by

Ki(θ) = N logGi(θ), (15)

where Gi(θ) is the moment generating function (MGF) of � under Hi defined by

Gi(θ) = E
(
eθ�|Hi

)
=

M∑
m=1

Qmie
θLm . (16)

The transformation performed in (14) is often called exponential tilting. The objective here is to shift

the mean of the transformed variable ŝ so that it becomes close to x. The normal approximation can

then be applied safely to estimate the density of ŝ at x. To do this, notice that the cumulant generating

function of ŝ under Hi is Kŝ,i(θ) = Ki

(
θ + θ̂i

)
+Ki

(
θ̂i

)
. Taking the first derivative with respect to θ

and evaluating it at θ = 0, we get the mean of the transformed variable, i.e., µŝ,i = E (ŝ|Hi) = K ′
i

(
θ̂i

)
,

where K ′
i(θ) is the first derivative of the cumulant generating function of s given by

K ′
i(θ) = ∂Ki(θ)/∂θ = NW1,i(θ)/Gi

(θ), (17)

where Wk,i(θ) =
M∑

m=1

Qmie
θLm(Lm)k.

The mean µŝ,i of the transformed variable can be made precisely equal to x if we find θ̂i such that

µŝ,i = K ′
i(θ̂i) = x. (18)

The variance of ŝ is obtained from the second cumulant, which is equal to the second derivative of Ki(θ)

at θ = 0, i.e.,

σ2
ŝ,i = K ′′

i (θ̂i),

where

K ′′
i (θ) = ∂2Ki(θ)/∂θ

2 = N
[
Gi(θ)W2,i(θ)−W1,i(θ)

2
]
/Gi(θ)

2. (19)

Since we set x = µŝ,i, the density of ŝ at x can be accurately approximated using the normal approxi-

mation as follows

fŝ,i(x, θ̂i) = 1/

√
2πK ′′

i (θ̂i).
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Dividing by exθ̂i−Ki(θ̂i), we carry out the reverse transformation in (14) to get the density of the original

variable s at x

fs,i(x) � f̃s,i(x) =
eKi[θ̂i(x)]−xθ̂i(x)√
2πK ′′

i

[
θ̂i(x)

] . (20)

This is the saddlepoint approximation for densities, and, under Hi, θ̂i(x) is the saddlepoint at x, which

can be found by solving (18). It can be shown that the relative error in (20) is O(N−1) [24]. Using

Edgeworth expansion, a correction term may be added to (20) to further reduce the relative error to

O(N−2), [25]. To ensure that f̃s,i(x) in (20) is a valid density, it should be normalized such that
∫∞
−∞

f̃s,i(x)dx = 1.

The saddlepoint approximation in (20) can also be written in terms of the Gaussian pdf as follows

f̃s,i(x) =
θ̂i(x)

gi

[
θ̂i(x)

]ϕ{
ri

[
θ̂i(x)

]}
,

where

ri(θ) = Sgn(θ)
√
2 [θK ′

i(θ)−Ki(θ)], (21)

gi(θ) = θ
√
K ′′

i (θ), (22)

where Sgn(·) denotes the sign operator. The saddlepoint θ̂i(x) at x is the solution of K ′
i(θ̂i) = x.

B. Saddlepoint Approximation of Tail Probabilities

The left and right tail probabilities can be approximated by direct integration of the saddlepoint density

approximation. Here, we highlight the main steps involved in deriving the right tail probability P0 =

Pr(s > v|H0). For details on the relative error, as well as other derivation techniques, interested readers

are referred to [16, sec. 3.3] and [26].

We find the probability of false alarm P0 = Pr(u0 = 1|H0) by integrating the approximate density

f̃s,0(x), i.e.,

P0 = Pr(s > v|H0) �
∫ ∞

v
f̃s,0(x)dx

�
∫ ∞

v

eK0[θ̂0(x)]−xθ̂0(x)√
2πK ′′

0

[
θ̂0(x)

]dx. (23)
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A change of variables is performed by using the saddlepoint equation x = K ′
0(θ̂0). Since dx =

K ′′
0 (θ̂0)dθ̂0, P0 can be written as

P0 �
∫ ∞

θ̂0(v)

1√
2π

√
K ′′

0 (θ)e
K0(θ)−θK′

0
(θ)dθ,

where θ̂0(v) is the saddlepoint at v obtained by solving K ′
0(θ̂0) = v. We add and subtract 1/r0(θ)

followed by a change of variables using (21) and r0dr0 = θK ′′
0 (θ)dθ, from which we can write

P0 �
∫ ∞

θ̂0(v)

1√
2π

θK ′′
0 (θ)

[
1

r0(θ)
− 1

r0(θ)
+

1

θ
√
K ′′

0 (θ)

]
e−r0(θ)2/2dθ (24)

�
∫ ∞

r0[θ̂0(v)]

e−r2/2

√
2π

dr +

∫ ∞

θ̂0(v)

1√
2π

[
1

g0(θ)
− 1

r0(θ)

]
θK ′′

0 (θ)e
−r0(θ)2/2dθ, (25)

where g0(θ) is defined in (22). The first integration is the normal right tail probability Φ
{
r0

[
θ̂0(v)

]}
while the second term in (25) can be integrated by parts by letting dV = θK ′′

0 (θ)e
−r0(θ)2/2dθ and

U = 1/g0(θ)− 1/r0(θ). Since V = −e−r0(θ)2/2, and neglecting the small error term (see [26] for details

on its magnitude) that results from the second integration, the simplified approximation formulas are

P0(v) = Pr(s > v|H0) � Φ
{
r0

[
θ̂0(v)

]}
+ ϕ

{
r0

[
θ̂0(v)

]}⎡
⎣ 1

g0

[
θ̂0(v)

] − 1

r0

[
θ̂0(v)

]
⎤
⎦ ,

P1(v) = Pr(s < v|H1) � Φ
{
−r1

[
θ̂1(v)

]}
− ϕ

{
r1

[
θ̂1(v)

]}⎡
⎣ 1

g1

[
θ̂1(v)

] − 1

r1

[
θ̂1(v)

]
⎤
⎦ , (26)

where the second formula is obtained by following the same procedure as above to approximate the left

tail integral. Equation (26) is often called the Lugannani-Rice formula, and it is one of the most popular

and easy forms of the saddlepoint approximation of distributions. In summary, the approximation starts

by solving the saddlepoint equation

K ′
i(θ̂i) = v

to find the saddlepoint θ̂i. Then ri and gi are computed from (21) and (22) given the saddlepoint θ̂i.

Finally the left and right tail probabilities are approximated through (26).

C. Existence and Uniqueness of the Saddlepoint

The saddlepoint is obtained by solving the saddlepoint equation K ′
i(θ̂) = x, under Hi, i = 0, 1. The

function K ′
i(θ̂) is strictly increasing in θ̂ since its derivative K ′′

i (θ̂) > 0 is a variance. To verify this for
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the current problem, notice that the denominator in (19) is positive while the numerator can be written

as (
M∑

m=1

χmi

)(
M∑

m=1

χmiL
2
m

)
−
(

M∑
m=1

χmiLm

)2

,

where χmi = Qmie
θ̂Lm > 0, m = 1, . . .M . This can be simplified to

M−1∑
j=1

M∑
k=j

χjiχki(Lj − Lk)
2,

which is positive since χji, χki > 0 and, hence, K ′′
i (θ̂) > 0, and K ′

i(θ̂) is strictly increasing in θ̂.

Therefore, if a solution to the saddlepoint equation exists then it is unique.

Existence of the saddlepoint approximation depends on the interval on which the cumulant generating

function Ki(θ) is defined, and on the form of the interval for the support of fs,i(x), [22]. For the

decentralized detection problem at hand, the global LLR s takes values in [NLmin,NLmax], where Lmin

and Lmax are the minimum and maximum of Lm, m = 1, . . .M . The CGF Ki(θ), on the other hand, is

defined in (−∞,∞). From (17), the limits of K ′
i(θ) are given by

lim
θ→−∞

K ′
i(θ) = NLmin and lim

θ→+∞
K ′

i(θ) = NLmax.

Therefore, a solution for the saddlepoint equation exists for any x ∈ (NLmin, NLmax). Further, since

K ′
i(θ) is strictly increasing, the solution is unique and can be found numerically using the Newton-

Raphson method.

D. Accuracy of the Saddlepoint Approximation

The form presented in (26), (21), and (22) is often used to approximate the tail probabilities of sums

of continuous random variables. For this reason, we refer to it as LR-Cont (i.e., the continuous form

of the Lugannani-Rice approximation). However, the problem that we are considering involves the sum

of discrete random variables �n. So, the question is: is it still a good approximation when the random

variables are discrete? Applying the same approximation above for discrete random variables has been

justified by Booth et al., [23], by showing that the relative error of the approximation decays rapidly as

the number of samples N grows. It is shown in [23] that, in almost all cases, the relative error is o(N−1)

or O(N−3/2) when M = 5, 6, or M > 6, respectively. We use the notation A(N) = o(B(N)) to mean

that A(N)/B(N) → 0 when N → ∞, and the notation A(N) = O(B(N)) to mean that A(N)/B(N) is
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bounded when N → ∞). Recall that the sensor nodes produce M-ary local decisions, where M = 2b and

b is the number of bits per sensor. The cases M = 3, 4 (corresponding to ternary and quaternary sensor

nodes, respectively) are not considered in [23], although numerical results show that the approximation

performs well for these cases too. The case of M = 2 (binary sensor nodes) is a little different, since

the distribution of � becomes always lattice valued as we explain next.

The log likelihood ratio random variable � is lattice distributed when every possible value of it

(Lm, m = 1, . . . ,M) is in the form Lm = δo + δ∆(m− 1), where m = 1, . . . ,M , and δo, δ∆ �= 0 are,

respectively, the offset and span of the lattice. When M = 2 (binary sensors), it is easy to see that � is

always lattice, regardless of the values of L1 and L2. When M > 2, the distribution of � can also be

lattice, but only under specific conditions on the noise distribution and the local detection rules.

We raise the issue of lattice versus non-lattice conditions for two reasons. First, it can be shown that,

when � is lattice, the fusion rule in (2) can be replaced with a simpler form of the majority rule, which

makes its decisions based on the integer sum of the received local classifications un ∈ {1, 2, . . . ,M} as

follows
N∑

n=1

un
1
≷
0

v −Nδo
δ∆

. (27)

This simplifies further the structure of the detector, which may be necessary for power and complexity

constrained sensors nodes. Second, when the random variable � is lattice-valued, there are other forms

of the saddlepoint approximation that are specific for lattice-valued variables. One such approximation

is obtained by using the same equations as before ((26) and (21)) but where g is replaced now with

gi(θ) =
1

δ∆
(1− e−δ∆θ)

√
K ′′

i (θ), (28)

where δ∆ is the lattice span. This particular form has a relative error of O(N−3/2) for any M provided

that � is lattice distributed, [16]. We refer to this approximation as LR-Latt (i.e., the lattice form of

the Lugannani-Rice approximation). This approximation is valid only at the lattice edges. When the

evaluation point falls in between, the approximation should be computed at the nearest right or left lattice

edge depending on whether it is desired to compute the right or the left tail probability, respectively.

E. Complexity of the Saddlepoint Approximation

In addition to its high accuracy, the saddlepoint approximation is much more economical to compute

than the direct approach. Evaluating the probability of error for a given local quantization rule requires
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computing few simple expressions in addition to finding the saddlepoint θ̂. The saddlepoint can be ob-

tained using numerical univariate techniques (e.g., Newton-Raphson), a much simpler task than the exact

evaluation in (8), which has a computational complexity of order N2b−1. To solve for the saddlepoint, the

computation of K ′
i(θ) and K ′′

i (θ) at each step of the Newton-Raphson algorithm requires at most M +1

additions, M +3 multiplications, 3 divisions, and M exponentiations. For example, in a network of 100

sensors with b = 3 bits/sensor local detectors (M = 8), the LLR computation requires a combined total

of roughly 500 operations to reach the saddlepoint. Compare this with the exact computation, which,

for the same example, requires roughly 2.6 × 1010 additions, 1.8 × 1011 multiplications, 1.8 × 1011

exponentiations, and 2.6× 1010 binomial coefficients.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate experimentally the accuracy and usefulness of the saddlepoint formulas

derived in section IV by calculating in subsection V-B the detection performance, i.e., the receiver oper-

ating characteristic, of a given network detector, not necessarily optimal, by computing in subsection V-C

the average error probability, the metric of interest in Bayes detection, by evaluating in subsection V-D

the probability of false alarm and the probability of a miss, quantities of interest in Neyman-Pearson

detection, and in subsection V-E the thresholds for the local detectors. We start in subsection V-A by

clarifying the difference between the lattice and the non-lattice saddlepoint conditions.

Shift in mean model: The measurements are modeled by an additive noise, shift-in-mean observation

model where

under Hi : y = µi + ξ, (29)

where µi is the signal mean under Hi and ξ is an additive noise of known distribution with zero mean

and variance σ2. In the study, we focus on three noise distributions including the Gaussian, Laplacian,

and the logistic distributions where, respectively, the pdfs of the last two are given by

fLaplace(y) =
1

2ϑ
e−|y−µ|/ϑ, ϑ =

1√
2
σ, (30)

fLogistic(y) =
e−(y−µ)/ρ

ρ[1 + e−(y−µ)/ρ]2
, ρ =

√
3

π
σ. (31)

While the use of the Gaussian and the Laplacian models is justified in many practical scenarios [4],

the logistic distribution is included here for illustration purposes. These assumptions are introduced
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to facilitate the numerical studies but are in no way necessary for the proposed approximation. The

approximation technique presented in this paper can be applied to other types of local detectors and

other observation models.

We adopt the quantization rule in (1) and assume that the observations follow the shift in mean model

described by (29). Unless otherwise specified, we assume µ1 = −µ0 = µ = 1 while the variance σ2 of

the measurement noise depends on SNR= 10 log10 µ
2/σ2.

A. Lattice versus non-lattice conditions

Here, we demonstrate the difference between lattice and non-lattice conditions and evaluate the accuracy

of both forms of the saddlepoint approximation. We work with the shift-in-mean model of (29) and

assume that the noise is Laplacian and the signal to noise ratio (SNR) is −10 dB. We consider a network

of N = 100 quaternary sensors (b = 2 bits/sensor) with a symmetric local decision threshold vector

λ = (−λ, 0, λ). The value of λ changes in the range from 0 to 1 in order to produce examples where

� becomes lattice distributed. In implementing the LR-Latt approximation using gi(θ) given by (28), we

take the span of the lattice to be δ∆ = L2 − L1. Fig. 2 (a) compares the relative error of the LR-Cont

and LR-Latt approximations. The figure demonstrates the high accuracy of the LR-Cont approximation

for most of the range, where the relative error is below 1 %, often about .01 %, except around λ = 0.65.

When λ = 0.65, the relative error for the LR-Latt approximation dips well below the relative error for the

LR-Cont approximation. This is because for λ = .65 the values of Lm,m = 1, . . . ,M belong to a lattice

with span δ∆ � 0.58. This is further illustrated in Fig. 2 (b), where the exact probability Pr(s > v|H0)

is plotted for two values of the local detection threshold: λ � 0.65 (corresponding to the lattice case);

and λ = 0.5. The network size is still fixed at N = 100 while the fusion threshold v is varied from −2 to

2. The plot clearly illustrates the regular wide jumps for the lattice case. In contrast, when λ = 0.5, the

jumps become irregular and closely spaced. As the number of sensors N is increased the jumps become

even closer (not shown here due to space limitation).

B. Receiver Operating Characteristics (ROC)

We now illustrate the use of the saddlepoint approximation to compute the receiver operating char-

acteristic (ROC). In this case we need to compute the probability of false alarm and the probability of

detection, not their asymptotic exponential decay rates. We consider a network of N sensors, where each
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Fig. 2. (a) Accuracy of the LR-Cont and the LR-Latt approximations at different local quantization thresholds. The fusion

threshold is fixed at v = 0, (b) Exact false alarm probability P0 at different fusion thresholds under lattice (λ = 0.65) and
non-lattice (λ = 0.5) conditions.

sensor has a b = 3 bit local detector, i.e., M = 8 quantization levels. The local detection thresholds are

fixed arbitrarily at λ = (−2,−1, 0, 1, 2). The noise is assumed to be logistic and the SNR = −5 dB.

Fig. 3 shows the ROC of two networks of N = 20 and N = 50 sensors obtained by computing P0

and P1 at different fusion thresholds v. The error probabilities are computed using the exact, the normal

approximation, and the saddlepoint approximation. Asymptotic measures can not be used here since they

do not compute the error probabilities P0 and P1, which are necessary for computing the ROC curve.

We discuss first the normal approximation. There is a significant relative difference between the normal

approximation and the exact ROC curves, which approaches one order of magnitude for the N = 50

sensor network. This difference is smaller for theN = 20 network, an observation which will be examined

further in the following subsection. On the other hand, Fig. 3 shows a nearly perfect agreement between

the exact ROC curves and the saddlepoint approximation for both networks N = 50 and N = 20. We

emphasize that, for example, when N = 50, evaluating each point of the direct ROC curve requires

computing a sum of about 2.6× 108 terms, while the saddlepoint approximation requires roughly a total

of 500 operations regardless of N .

C. Bayesian Detection

We now illustrate how the saddlepoint approximation can be used to compute the average probability

of error, which is the metric of interest in Bayes detection. We consider a setup similar to that described
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Fig. 3. ROC for networks of N = 20 and N = 50 sensors at SNR= −5 dB.

in Sec. V-B, with equal priors π0 = π1 = 1/2. To design the minPe detector or study its performance,

we need a speedy and accurate way of computing the probability of error Pe. The average probability of

error Pe = π0P0 + π1P1 is approximated using different approximation methods and compared with the

exact value as the number of sensors N grows. The saddlepoint approximation agrees with the exact Pe,

the corresponding plots fall on top of each other, as seen in Fig. 4 (a), while the normal approximation

gets worse for higher values of N . The relative differences (| ˜Pe−Pe|/Pe× 100) between the probability

of error computed by the saddlepoint formulas, or the normal approximation, and the exact value of

the probability of error are shown in Fig. 4 (b). While the saddlepoint approximation leads to relative

errors that rapidly fall below 0.1 %, the relative errors in the normal approximation approach 100 %.

The accuracy of the normal approximation becomes worse as the number of sensors is increased. On

the contrary, the accuracy of the saddlepoint approximation improves when the number of sensors is

increased and it performs well even for small networks.

Also, included in Fig. 4 (a) is the e−CN dashed line representing the Chernoff estimate of the error

probability, where C = 0.1621 is the Chernoff distance computed from (12). There is about one order of

magnitude difference between the Chernoff bound e−CN and the exact error probability Pe. The slope of

the exact Pe curve approaches that of the Chernoff bound when N → ∞. This issue is further investigated

in Fig. 5 where we compute the "true" exponential decay rate of Pe(N) and compare it to the asymptotic

Chernoff rate in (12). Fig. 5 shows the relative difference between the "true" decay rate Ctrue(N) and the

asymptotic Chernoff rate CChern (i.e., |Ctrue(N)−CChern| /Ctrue(N)× 100) at three different SNR values.
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Fig. 4. (a) Average probability of error for a network of N sensors with 3-bit quantizers. (b) Relative differences between the

exact and approximate values of Pe (i.e., | ˜Pe − Pe|/Pe × 100).

The true decay rate Ctrue(N) is obtained through numerical differentiation of log(Pe(N)), where Pe(N)

is computed using both, the exact formula (circle markers; up to N = 100 only, due to complexity issues)

and the saddlepoint approximation (solid line; for the whole N range since complexity is independent

of N ). From Fig. 5, it is clear that the convergence speed of the true decay rate towards the Chernoff

asymptotic rate depends on the SNR. For higher SNR values, the Chernoff rate can accurately estimate

the true decay rate even for networks with ten’s of sensors. For low SNRs, however, the Chernoff rate

is an accurate estimate of the true decay rate only for large networks with hundreds or even thousands

of sensors. Moreover, while the Chernoff distance in (12) is known to be an asymptotically (N → ∞)

tight bound on the exponential decay rate of Pe, it fails to provide a reasonable approximation to the

probability of error Pe itself as can be seen from Fig. 4 (a).

D. Neyman-Pearson Detection

In this subsection we illustrate the application of the saddlepoint approximation to computing the

probability of false alarm, P0, and the probability of a miss, P1, quantities of interest in designing

Neyman-Pearson detectors. Consider the setup described in Sec. V-B where we do not have knowledge

of the priors (π0 and π1), and we want to solve the Neyman-Pearson detection problem for a given

size α and a given number of sensors N . By using numerical root finding techniques, we solve for the

fusion threshold v such that P0(v) = α. The root finding algorithm is run multiple times with different

initial values of v to find the global solution. We remark that, in all of the considered cases, for fixed α
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and N , the algorithm converges to the same solution. Fig. 6 (a) shows the Neyman-Pearson thresholds

v as a function of the number of sensors N under two false alarm probabilities, 10−3 and 10−7. For

each false alarm probability, the three curves in Fig. 6 (a) represent the solution of the Neyman-Pearson

problem using the exact, normal approximation, and saddlepoint approximation. The exact solution is

only provided up to N = 27 due to complexity issues (In the numerical algorithm, P0 needs to be

computed about 100 times to reach the solution v. At N = 27, each exact evaluation of P0 requires

computing 5× 106 terms). The complexity of the saddlepoint and normal approximations is independent

of N and, hence, they can be used for larger values of N . In Fig. 6 (a) there is a significant difference

between the threshold v obtained by using the exact error probabilities and values computed using the

normal approximation, especially for lower values of the false alarm probability. On the other hand, the

threshold obtained using the saddlepoint approximation coincides almost perfectly with the true optimum

thresholds.

The corresponding minimum miss probability P1 is shown in Fig. 6 (b) where we also include a

dashed line representing e−DN , where D = 0.6285 is the KL distance computed from (13). The KL

distance provides the asymptotic exponential rate of decay of P1 when N → ∞ and the false alarm

probability α → 0. Fig. 6 (b) illustrates the high accuracy of the saddlepoint approximation in the

context of Neyman-Pearson problems.
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Fig. 6. (a) Fusion threshold v for the Neyman-Pearson detection problem under different number of sensors N and false alarm

constraints P0 < α, α ∈ {10−3, 10−7}. (b)The corresponding minimum probability of miss (P1).

E. Optimizing the Local Detectors Thresholds

In previous examples, the local detectors thresholds at the sensors are fixed arbitrarily. Now, we consider

optimizing these thresholds with respect to the error probability. This problem have been considered in

the past in a variety of contexts using different optimization criteria (see, e.g., [27] and [5, Sec. 3.4]).

Here we optimize the thresholds with respect to the saddlepoint approximation of the error performance.

We consider a Neyman-Pearson problem with a probability of false alarm Pf = 10−6. The measurement

noise is assumed to be Gaussian and the SNR= −10 dB. Notice that even though the measurements

are Gaussian, the decisions of the local detectors, which are used in the global fusion, are not Gaussian.

These quantized measurements are discrete and, hence, approximating the distribution of their LLR sum

is not a trivial task as it might appear at first sight.

Binary sensors. We first consider a network of binary (b = 1) sensors with a common quantization

threshold λ. The quantization threshold λ and the fusion threshold v are optimized numerically to

minimize the miss probability P1 subject to the constraint that P0 < 10−6 using the exact method

of computing the miss probability as well as its normal and saddlepoint approximations. In optimizing

the approximate miss probability, we run the algorithm multiple times with different initial conditions

to find the global optimum. In all of the cases that we considered, the algorithm converges to the same

solution. On the other hand, in addition to the linear complexity growth with N , the exact error probability

is discrete and, hence, it is much more difficult to optimize than its continuous approximations. In this
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Fig. 7. (a) The local quantization threshold optimized with respect to the miss probability when the sensors are binary (b = 1),

and (b) when the sensors use M = 8-ary detectors (b=3, 7-thresholds)

case, we evaluate the exact error probability at fine displacements (∆λ = 0.001) to find the threshold

that yields the lowest miss probability. Fig. 7 (a) shows the optimization results; it is clear from these

that the saddlepoint-optimized thresholds are very close to those optimized using the exact method. On

the other hand, thresholds obtained by optimizing the normal approximation are considerably different

from the optimal thresholds. It can also be seen that the saddlepoint-optimized thresholds approach the

KL-optimized threshold as N → ∞ (dashed line in Fig. 7 (a): λKL � −0.586); they come within 20%

of the asymptotic threshold when the number of sensors N is larger than 7000.

b = 3-bit Sensors. In Fig. 7 (b), we consider a similar example as in the previous paragraph, but with

M = 8-ary (b = 3 bits/sensor) local detectors; we assume that these local detectors all have common

thresholds λ = (λ1, . . . , λ7). The thresholds are optimized with respect to the saddlepoint approximation

of the miss probability and are shown in Fig. 7 (b). The dashed lines represent the values of the 7

thresholds when optimized using the asymptotic KL distance. Note that, in this case where M = 8,

optimization could not be carried out with respect to the exact miss probability due to its extremely high

computational complexity.

The examples in Fig. 7 show that the local detectors designed using the normal approximation may

be significantly different from the optimal ones. Also, designing the local detectors using the asymptotic

decay rate may require a very large number of sensors, in the examples provided N > 7000, to yield

the correct threshold values. In contrast, the thresholds designed using the saddlepoint approximation are
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indistinguishable from the correct ones.

VI. EXTENSIONS

A. Non-identical measurements and non-identical local detectors

So far, we have only considered scenarios where the measurements are identically distributed across

sensors and we assumed identical local detectors. Here, we demonstrate the application of the saddlepoint

approximation to approximate error probabilities when the observations are non-identically distributed

and the local detectors are non-identical. Consider a network of J groups of sensors. Sensors within

the same group use identical local detectors and their measurements are identically distributed. But

across groups, the number of sensors Nj , the measurement conditional densities fyj
(y|Hi), the local

detectors, and the number of quantization levels Mj , j = 1, · · · , J , are possibly different. The sensors

from all J groups communicate their local decisions to a single fusion center, which makes the final

binary decision as in Fig. 1. Saddlepoint techniques can be applied to compute the error probabilities

accurately. The key point is to use the saddlepoint approximation of densities (20) to approximate the

density fsj ,i(x) = fsj(x|Hi), of the LLR sum sj =
Nj∑
n=1

�j,n, j = 1, . . . , J , of each group under Hi,

i = 0, 1, where �j,n ∈ {Lj,1, . . . , Lj,Mj
} is the LLR of the decision of the nth sensor of the jth group.

The values of the local LLRs at the jth group are given by Lj,m = log [Qj,m1/Qj,m0], where Qj,mi is

the probability of m-decisions at the output of sensors of the jth group under Hi. The density fs,i(x)

of the global LLR s =
J∑

j=1
sj is estimated by convolving all the J densities f̃sj ,i(x), j = 1, . . . , J . The

probability of error is finally approximated by integrating the tails of the approximate density.

We illustrate the technique by computing the global false alarm probability P0 = Pr(s > v|H0) in

a network composed of J = 2 groups, where s = s1 + s2 is the global LLR sum at the fusion center.

Applying the independence assumption, we evaluate the following double integration numerically

P0 �
∫ b2+x

max{v,a2+x}

∫ b1

a1

f̃s1,0

[
x, θ̂1,0(x)

]
f̃s2,0

[
z − x, θ̂2,0(z − x)

]
dxdz, (32)

where

f̃sj ,i(x, θ) =
eKj,i(θ)−xθ√
2πK ′′

j,i(θ)
,

and Kj,i(θ) is the cumulant generating function of sj under Hi, i.e.,

Kj,i(θ) = N log

Mj∑
m=1

Qj,mie
θLj,m ,
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and θ̂j,i(x) is the saddlepoint obtained by solving K ′
j,i(θ̂j,i) = x. The limits of integration rely on the

support intervals of s1 and s2 and are given by aj = NjL
(j)
min and bj = NjL

(j)
max, where L

(j)
min = min

m
(Lj,m)

and L
(j)
max = max

m
(Lj,m).

At each step of the numerical integration in (32), one has to solve for two saddlepoints θ̂1,0(x) and

θ̂2,0(z − x). This can be simplified by performing a change of variables x = K ′
1,0(θ). Since dx =

K ′′
1,0(θ)dθ, (32) can be rewritten as

P0 �
∫ b2+K′

1,0(θ)

max{v,a2+K′

1,0(θ)}

∫ ∞

−∞
K ′′

1,0(θ)f̃s1,0 (x, θ) f̃s2,0
(
z −K ′

1,0(θ), θ̂2,0
[
z −K ′

1,0(θ)
])

dθdz, (33)

which requires computing only one saddlepoint θ̂2,0 (by solving K ′
2,0(θ̂2,0) = z − K ′

1,0(θ) ) at each

integration step.

We demonstrate the accuracy of the saddlepoint point method through the following example. We

consider two groups of sensors with the following parameters:

Group 1: N = 20 quaternary sensors, i.e., with b = 2 bit local detectors at each sensor, λ = (−1, 0, 1),

Gaussian noise, µ1 = −µ0 = 0.1, σ2 = 1.

Group 2: N = 40 binary sensors, i.e., with b = 1 bit local detectors at each sensor, λ = (0), Laplacian

noise, µ1 = −µ0 = 0.05, σ2 = 1.

All sensors in each group send their b-bit local decision to a single fusion center that computes the global

LLR s and then makes the final decision u0 by comparing s against the fusion threshold v. Using the

saddlepoint approximation in (33), we compute the global error probabilities P0 and P1 for different

values of the fusion threshold v, from which we get the ROC in Fig. 8. Fig. 8 also includes the ROC

curve obtained with 106 Monte-Carlo runs. The two plots show a very good agreement of the ROC curve

derived by Monte Carlo and its estimate provided by the saddlepoint approximation.

B. Imperfect Communication Channels

Up to this point, we have assumed that the communication links between the sensors and the fusion

center are noiseless, so that the local decisions are delivered to the fusion center without errors. Now,

we extend the saddlepoint techniques to practical cases involving noisy communication links between

the sensors and the fusion center. We model the communication links between the sensors and the fusion

center as independent discrete memoryless channels (DMC). The DMC is characterized by a stochastic

channel transition matrix [hij], where hij, i, j = 1, . . . ,M is the probability that a local decision un = j
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Fig. 8. ROC of a network of non-identical sensors with non-identically distributed measurements.

of one of the sensors is received incorrectly as wn = i at the fusion center, i.e., hij = Pr(wn = i|un = j).

The fusion center makes its decision based on the received noisy M-ary messages wn ∈ {1, . . . ,M},
n = 1, . . . , N . The communication links of all sensors are assumed to be identical and independent of

each other.

Saddlepoint techniques can be easily extended to this case since the noisy decisions wn received at

the fusion center are i.i.d. The probability of receiving a message wn = m under hypothesis Hi is given

by

Q̃mi = Pr(wn = m|Hi) =
M∑
k=1

Pr(wn = m|un = k) Pr(un = k|Hi)

=
M∑
k=1

hmkQki,

where Qki = Pr(un = k|Hi). The LLR of the noisy message wn of the nth sensor is

�̃n = log [Pr(wn|H1)/Pr(wn|H0)] ∈ {L̃1, . . . , L̃M},

where L̃m = log(Q̃m1/Q̃m0), m = 1, . . . ,M . The fusion center makes its decision based on the global

LLR statistic

s =
N∑

n=1

�̃n
1
≷
0
v.

It is straightforward to see that the same saddlepoint approximation formulas for densities and distributions

presented in section IV can be used here too, except that the conditional probabilities Qmi,m = 1, . . . ,M,
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i = 0, 1, of the "error-free" local decisions un and the LLR values Lm should now be replaced by their

"noisy" counterparts Q̃mi and L̃m.

To illustrate the application of the saddlepoint approximation under noisy communication channels, we

consider a Bayesian detection problem where the priors are assumed equal, i.e., π0 = π1 = 1/2 (v = 0).

A network of 50 binary sensors collects noisy measurements corrupted with Laplacian noise. Note that

this distribution describes the measurement noise, not the communication links. The local detectors all use

the same threshold λ = (0). The local binary decisions un ∈ {0, 1} are transmitted through independent

binary symmetric channels (BSC) with transition probabilities hij = Pr(wn = i|un = j) = ε if i �= j

and hij = 1− ε if i = j, where ε represents the error rate of the communication links. Fig. 9 shows the

probability of error Pe at the fusion center computed using the saddlepoint approximation compared to

that obtained by exact evaluation. Notice that, in this example, where b = 1 (M = 2), the computational

complexity of the exact method grows linearly with the number of sensors N . The exact method becomes

much more complicated when b > 1. The complexity of the saddlepoint approximation is independent of

N regardless of the number of quantization bits b. We address the simple case of b = 1 here to get insight

on the effect of communication bit-errors on the global decision fusion. As expected, the reliability of

the global decisions at the fusion center deteriorates when the bit error rate of the communication links

between the sensors and the fusion center increases. More interestingly, Fig. 9 shows that the fusion

performance under unreliable communication links can be close to that under error-free communication

links even when the bit-error-rate of the communication links is relatively high. For instance, when

SNR= −2 dB, the fusion probability of error is about 10−8 under error-free communication links. It can

be seen from Fig. 9 that the fusion performance remains close to 10−8 even when the bit error rate of

the communication links is as high as 10−3. This may be attributed to the inherent coding capabilities

resulting from the fusion of multiple independent decisions. This issue is the subject of a future study.

The main emphasis here is to illustrate the application of the saddlepoint approximation under unreliable

communication links. Fig. 9 illustrates the good agreement between the values of the probability of error

calculated by the saddlepoint approximation and their exact values.

VII. CONCLUSIONS

The paper presents a large deviation theory method, the saddlepoint approximation, to compute the

detection probabilities—e.g., average probability of error, probability of false alarm, and probability of
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Fig. 9. Probability of decision error at the fusion center Pr( ̂H �= H) when the local decisions of the sensors are sent to the

fusion center through a binary symmetric channel with a bit-transition rate of ε.

detection—in distributed detection in sensor networks. The saddlepoint technique is highly accurate and

simple to compute, providing an efficient method to perform various design and performance assessment

tasks such as computing ROCs, designing fusion rules and local detectors thresholds, and computing

error probabilities, regardless of the network size. In all experimental studies, the results obtained with

the saddlepoint approximation practically coincide with the exact ones (when available), in contrast with

the corresponding results obtained with the normal approximation or using the asymptotic exponential

decay rate of the error probabilities. We demonstrated the application of the saddlepoint approximation

in practical situations when the observations and local detectors are different from sensor to sensor and

when the communication among sensors and the fusion center is through imperfect, noisy communication

links.
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