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Abstract. In this paper we intend to give a comprehensive description of the

current understanding of the detection mechanism in superconducting nanowire single-

photon detectors. We will review key experimental results related to the detection

mechanism, e.g. the variations of the detection probability as a function of bias current,

temperature or magnetic field. Commonly used detection models will be introduced

and we will analyze their predictions in view of the experimental observations.

Although none of the proposed detection models is able to describe all experimental

data, it is becoming increasingly clear that vortices are essential for the formation of

the initial normal-conducting domain that triggers a detection event.
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1. Introduction

Superconducting nanowire single-photon detectors (SNSPDs or SSPDs) have attracted

a lot of interest since they were introduced [1] and this interest is still growing. Their

unique combination of speed, both in terms of high count rates and low timing jitter,

high detection efficiencies, and low dark count rates makes them detectors of choice for a

wide variety of very demanding applications as discussed in other articles in this Special

Issue, see also [2–4].
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On the other hand, these detectors are also interesting from a more fundamental

point of view. Geometrically, the superconducting nanowire is for most of theH–T phase

diagram best described as a two-dimensional (2D) system. The thickness d is typically

about the same as the superconducting Ginzburg-Landau coherence length ξGL, whereas

the width w is most often a factor of 10 or more larger. Only very close to the critical

temperature Tc or for a few devices that were fabricated with extremely narrow strips

does the width become comparable to the coherence length, and one might see the

emergence of one-dimensional (1D) effects [5, 6]. In recent years many experimental

studies have investigated the physics of the detection process in SNSPDs and several

theoretical models have been proposed to describe the microscopic detection mechanism.

Although currently no single model can reproduce all experimental results, the goal of

this review will be to give a comprehensive summary of the current understanding of

the detection mechanism in these detectors.

A detailed understanding of the detection mechanism is not only of fundamental

interest. On a phenomenological level it is known that a reduction of the cross-section

of the nanowire increases the sensitivity of the detector for low-energy photons, but at

the same time results in a higher dark count rate. In recent years, a growing number

of superconducting materials have been suggested with differing material parameters

such as critical temperature or electronic density of states. Depending on the detection

mechanism, these and other material parameters can have a profound influence on the

detector performance. Without a sound understanding of the detection mechanism

and how the material parameters influence the detector properties, it is a tedious task

to find the best possible superconducting material for a specific application. A better

understanding of microscopic processes involved in the detection of a photon may also aid

in finding even better suited superconductors. Moreover, a fundamental understanding

of the detection mechanism will make it possible to determine the ultimate limits of

SNSPD performance, and thereby the feasibility of advanced applications.

It is becoming more and more evident that one has to include magnetic vortices

in order to understand at least certain aspects of SNSPD, potentially they are even

essential. In extended 2D superconductors magnetic vortices are the basic topological

excitations and they have been studied in great detail and will not be discussed

further, since a decent coverage of this topic would go way beyond the current

work. It is important to remember though that vortices and anti-vortices (vortices

with opposite orientation of the associated magnetic field) are present even in zero

magnetic field, particularly in dirty, strongly type-II superconductors [7, 8], to which

the superconducting materials belong that are typically used for SNSPD. A vortex-

free state may again be realized in narrow superconducting strips or bridges with

w . Λ = 2λ2
L/d, where Λ is the Pearl length or effective magnetic penetration depth in

films with d ≪ λL and λL the bulk London penetration depth [9], with some interesting

consequences. The vortex-free Meissner state can be stable up to much higher fields than

Hc1 in bulk superconductors [10–12] and the critical-current density becomes width-

dependent [13, 14], for example.
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In SNSPD we have a special situation. The geometry of the superconducting

structures is characterized by ξGL, d ≪ w ≪ Λ and their length L ≫ w. They are usually

operated in zero or ambient magnetic fields, therefore one can expect that there are no

static vortices present in the superconducting structures. On the other hand, they are

operated at bias currents Ib close to the experimental critical current Ic. The high bias

current is necessary to achieve single-photon sensitivity, but makes the detectors also

sensitive to fluctuations and dynamic vortex excitations. The situation becomes even

more complicated in real devices by the typical meander structure. The sharp corners

and turn-arounds disrupt the homogeneous current flow in the straight sections. It is

therefore no surprise that it took many years to come from a simple, phenomenological

description of the physics in these devices to a better, more microscopic understanding

of the processes that are responsible for their remarkable detector characteristics.

The complete single-photon detection process can be split into several consecutive

stages. It starts with the absorption of the photon in the superconducting structure

and is mainly determined by the optical properties of the superconducting material

and possibly surrounding dielectric and metallic layers [15, 16]. The superconducting

structure can, for example, be imbedded into an optical cavity to increase the probability

for photon absorption in the superconducting structure for a particular wavelength

range [4, 17–19]. The absorption of the photon results in one electron being excited

into an unoccupied state in the conduction band ‡. This excitation will relax and

result in a local disturbance of the superconducting equilibrium state and the formation

of an initial normal-conducting domain. A better understanding of the processes

leading to the formation of this normal-conducting domain is the main topic of this

review. The stages following the formation of the initial normal-conducting domain are

again well understood [20, 21] and will not be treated in detail. In short, an electro-

thermal feedback mechanism lets the normal-conducting domain grow rapidly due to

self-heating by the bias current. Eventually the high resistance of the normal-conducting

domain results in a significant reduction of the bias current through the superconductor.

Superconductivity can then be recovered, the bias current returns to its original value

and the detector is ready to detect the next photon.

We can now give a precise definition of the problem we want to address: what is

the microscopic mechanism that leads to the formation of the initial normal-conducting

domain that is the trigger for the voltage signal that can be registered. Presented

experimental data have been obtained with different geometries of the nanostructures,

see figure 1. Besides the traditional meander structures of practical detectors, bridge

geometries (with and without bends) and so-called nanodetectors or bow-tie structures

have been used as well. We will generally ignore details of the relaxation process of the

first excited electron, instead a stationary disturbance will be postulated or a simplified

phenomenological description will be used. In order to achieve our objective—to give a

detailed review of the detection mechanism in SNSPD—we need a good understanding

‡ In general, SNSPDs have been used to detect visible and near-infrared photons with photon energies

less than the work function of the superconducting material.
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Figure 1. Schematic drawings of the three main structures, which have been used in

experimental work (not to scale). Here we also introduce the coordinate system used

in this review and give the definitions of the most important geometric parameters.

For the nanodetector the width and length are comparable L . w, where as for the

bridge and meander geometry we have w ≪ L. The red shaded areas identify the

active areas. The fill factor of the meander is given by FF ≈ w/(w + s).

of the stationary state of the superconducting nanowire before the photon absorption.

This will be developed in the next section 2 followed in section 3 by a review of our

understanding of dark counts in SNSPD. The main part of this paper will be sections 4

and 5. First we will give a review of the most important experimental observations that

any detection model needs to be able to explain. This is followed by a presentation of

proposed detection models and a thorough analysis of the models’ results in view of the

experimental data. We will conclude with a summary and a discussion of open issues.

2. Stationary state of SNSPD

The detection efficiency of an SNSPD grows when the operation current Ib increases

[22]. A higher bias current corresponds to a larger cut-off wavelength or a lower

minimum photon energy Emin [23] and also a smaller jitter [24]. The limit for Ib
is an experimentally measured Ic which in turn cannot exceed the depairing critical

current Ic,dep. It has been shown experimentally that Emin decreases with an increase

of the ratio of Ic/Ic,dep, which has been adjusted by a variation of the stoichiometry

of thin NbN films [25]. Therefore, the knowledge of the nature of the experimentally

measured critical current is essential for device optimization. Although the two-fluid

type of the temperature dependence of the critical current was often observed in earlier

experiments [26,27], this fact alone does not justify that the depairing current has been

realized. Even if the linewidth remains unchanged, any deviation from the straight-

line geometry reduces the measurable critical current due to current crowding and a

corresponding local increase in the current density near bends or curves. In order to fill

an area larger than the optical wavelength, the nanowire in SNSPD is usually patterned

as a meander with sharp 180◦ turns. As stated above, the thickness d and the width w

of typical SNSPD nanowires satisfy the conditions d . ξGL and w ≪ Λ. Therefore, the

current density remains uniform over the wire cross section in the straight portions of
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Figure 2. Computed current density (color coded and normalized to the homogeneous

current density far from the turn) and stream lines (gray) in a 100 nm wide strip with

a semicircular 180◦-turn with radius r = 75 nm in the limit ξGL ≪ w.

the meandering nanowire. The uniformity is disrupted at the turns, where the current

crowds at the inner edges. The crowding increases the local current density above the

mean current density in the straight portions of the wire, see figure 2. Therefore, the

potential barrier for the vortex entry first disappears near the turns and this decreases

the measurable critical current in comparison to the straight wire of the same cross

section. Another consequence of the current crowding near turns is that the practically

achievable ratio of the operation current to the depairing current in the straight portions

remains less than it could be in a wire without turns. This makes straight portions less

effective in detecting photons. Hence, decreasing the strength of current crowding near

turns would greatly improve the spectral range of these detectors.

As predicted in [28], the current crowding effect in asymmetric superconducting

structures with thickness d . ξGL and width w ≪ Λ results in the suppression of the

measured critical-current Ic with respect to the depairing critical current Ic,dep, which

is characterized by the current reduction factor R = Ic/Ic,dep. The strength of the

suppression is dependent on the particular geometry of the superconducting structure

as well as on the angle and the radius r of the bend and the ratio of the coherence

length to the width of the strip ξGL/w. Several experiments by different groups [29–31]

have confirmed the predictions of [28]. It has been shown that the current crowding is

stronger for wider superconducting strips but becomes weaker with an increase of the

radius of the bend.

In figure 3(a) it is seen that jc of 500 nm wide strips, which were made from a 4.5 nm

thick TaN film on sapphire substrate, measured at zero magnetic field and T = 4.2 K

decreases with an increase of bending angle α. This decrease of jc is in good qualitative

agreement with theoretical predictions for strips with α ≤ 90◦ [28]. A further increase

of the angle to 180◦ did not result in a further decrease of jc as expected. The critical

current densities of 90◦ and 180◦ bent bridges at zero magnetic field were almost the

same, see figure 3(a). The latter phenomenon is due to the fact that in real structures

the bend is not sharp § which leads to the weakening of the current crowding at the

bend, once again, in qualitative agreement with the theory. The independence of the

§ The radius is usually larger than ξGL, determined by the resolution of the patterning technology.
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Figure 3. (a) Dependence of the critical current density on an applied magnetic field

of 540 nm wide bridges of a 4.5 nm thick TaN film. Angles of the bends are indicated

in the legend. Solid lines are least-square fits of vortex and anti-vortex branches of

the curves to (1) and (2). (b) Dependence of the critical-current density of the TaN

bridge without bend, 0◦ in (a), on a magnetic field applied perpendicular to the film

surface over a much larger range compared to (a). Solid lines are the least-square fits

of (1) to the experimental data. The dashed-dotted line shows the jc(B)-dependence

at B > |Bstop| calculated as jc(B) = 0.5jc(0)Bstop/B as it is expected for a pure edge

pinning mechanism. The dashed line is the best fit ∝ B0.5 to the experimental data

at B > |Bstop| for the depinning critical current density as described in the main text.

Inset : SEM image of a typical straight bridge. The white lines are reflections from

the surface of the sapphire substrate. The black background is the superconducting

film. (Reprinted figures with permission from [32]. c© 2014 by the American Physical

Society.)

critical current reduction factor R for angles α ≥ 90◦ has been experimentally observed

in strips of different superconductors (Nb, NbN, TaN) which were made from films with

different thickness (see figure 1 in [32]).

There exists an optimal bending structure, which can be approximated by a

semicircle with ropt ≈ w, which should allow one to reach the critical current of the

straight sections. However, an increase of the bending radius to the optimal values will

lead to a decrease of the filling factor FF of a meander structure to FF ≤ 33%, which

limits the absorption ABS ∝ FF [33] and thereby the detection efficiency of the detector

DE = IDE × ABS, with IDE being the intrinsic detection efficiency or detection

probability and the assumption that no other parameter is changed. A reduction

of the critical current with increasing FF has been observed experimentally [34] in

line with the theoretical predictions [28]. This limitation may be overcome, if the

particular application allows one to optimize the optical absorption for a narrow spectral

bandwidth [35].

In contrast to the bias current, the Meissner currents, which are generated by

externally applied magnetic fields, have opposite directions at opposite edges of a

superconducting strip. Therefore, in straight strips subject to a bias current and an

external magnetic field, the effective current density at one edge of the strip is higher

than at the opposite edge. Thereby, the critical-current density corresponding to vortex

penetration will be reached at smaller Ib independent of the direction of the magnetic
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field, see figure 3(b). The jc(B)-dependence is symmetric with a sharp maximum at

B = 0 T and linear decrease for B < Bstop. Bstop demarcates the Meissner (vortex free)

and the mixed states of a superconducting strip [10] and evaluates in the London limit

to Bstop(T ) = Φ0/(2πeξGL(T )w) [36]. Therefore, it is dependent on the material (ξGL)

and the geometry (w) of devices. In the Meissner state the critical current density is

then

jc(B) = jc(0)

(

1− B

2Bstop

)

, (1)

which has been experimentally confirmed [32], solid lines in figure 3(b).

At magnetic fields B > Bstop the critical currents are no longer described by (1).

The dash-dotted line describes the expected behaviour, if vortices are pinned only by

the edge, given by jc(B) = 0.5jc(0)Bstop/B [36]. However, the experimental data are

better described by the dashed line ∝ B0.5 as it may result from weak pinning in the

superconducting film [37,38].

However, in asymmetric structures the magnetic field can compensate the current

crowding by the generation of a Meissner current with direction opposite to Ib at the

inner radius of the bend. Of course, at the opposite edge of the strip the current density

will be increased. However, the measured Ic will be increased up to a magnetic field

Bmax, for which the current densities at both edges become equal. Further increase of B

above Bmax will lead to a decrease of the measured Ic, compare to figure 3(a). This effect

of a reduction of the current crowding effect by an externally applied magnetic field has

been predicted theoretically [36] and confirmed experimentally in Al microstrips near

Tc [39] and in Nb, NbN and TaN sub-micrometer bent strips at T ≪ Tc [32]. The increase

of jc with increasing B is not described by (1) anymore, but follows the dependence [36]

jc(B) = jc(0)R

(

1− δ

R

B

2Bstop

)

, (2)

where R is the already discussed factor of reduction of the critical current due to the

current-crowding effect and δ is the field slope parameter (as it is defined in [36]). The

latter factor describes a crowding effect for Meissner currents generated by an external

magnetic field, therefore, δ is different from R. Both factors depend on the particular

geometry of a sample; they are smaller than one and decrease with the increase of the

bending angle. The critical current increases according to (2) until the intersection

with the decreasing jc(B) according to (1) at the magnetic field Bmax. It is remarkable

that for B > Bmax the jc(B)-dependencies of bent bridges coincide with each other and

follow the jc(B)-curve of a straight bridge. At these magnetic fields vortices enter at the

straight part of the bridge opposite to the inner corner of the bend and thus independent

of the angle α [36].

3. Dark counts

Dark counts are a significant noise source of single-photon detectors. The noise-

equivalent power is proportional to the square-root of the number of dark counts during
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the sampling period. Therefore, high-sensitivity detectors need to have a dark count rate

(DCR) as small as possible. Already very early publications on SNSPD demonstrated

exceptionally low DCR compared with other single-photon detectors [40]. The most

general definition of dark counts includes all events that are not caused by the absorption

of a photon to be counted. This may include background photons from black body

radiation or high energy quanta from cosmic rays, but also electronic noise due to

unstable bias currents or electromagnetic interference. These extrinsic sources of dark

counts have to be reduced as much as possible by appropriate filters and an optimized

setup, for example, to a level that the DCR is given by intrinsic dark counts, only. From

a practical point of view, the intrinsic DCR is the lower limit for a particular detector.

On the other hand, it allows one to study the mechanisms that lead to intrinsic dark

counts.

The first systematic measurements of DCR revealed two important characteristics

of intrinsic dark counts: the DCR increases exponentially upon approaching the

experimental critical current and decreases with decreasing operation temperature of

the detector. This behaviour suggests that thermally activated fluctuations cause the

formation of a resistive cross-section of the nanowire [41]. At sufficiently low bias

currents one can often observe a cross-over to a constant or very slowly varying dark-

count rate. Those dark-counts are usually attributed to electronic noise or a low level of

background photons. Various mechanisms have been suggested to explain the observed

exponential increase of the DCR: fluctuations of the order parameter [42,43], thermally

activated and quantum phase slips [44,45] and vortex excitations [46–48]. The thermally

activated phase slips (TAPS) are the basic excitations of 1D superconducting wires and

they can be successfully described by the LAMH-theory [49, 50], see [51] for an early

review. It describes the temporary suppression of the superconducting order parameter

in a minimal volume AξGL, A being the cross-section of the wire, which leads to a phase

change of 2π, also known as Little’s phase slips [52]. At high bias currents, phase slips

and the resulting dark counts occur at a rate ∝ exp (−∆F/kBT ) exp
(

Ib/Ĩ
)

, with kB

the Boltzman constant and Ĩ a characteristic current scale [44, 51]. In this expression

∆F ∝ H2
cAξGL is the saddle-point energy separating two meta-stable states, with Hc

being the thermodynamic critical field. The thermally activated transition from one

state to the other is accompanied by a phase slip of 2π, which is registered as a voltage

pulse. Although this theory was developed for 1D wires with A . ξ2GL, it can easily be

extended to the case of thin superconducting strips by the appropriate expression for

the cross-section A = wd. However, the saddle point energy for such phase slip lines

(PSL) is proportional to the strip width, and that results in an exponentially decreasing

rate of phase slips for increasing strip width.

As soon as the strip width exceeds about 4.4 ξGL magnetic vortices can exist

inside the strip [53]. These can be single vortices due to an external magnetic field

or the magnetic self-field generated by the bias current. They can also appear as

vortex-antivortex pairs (VAP) as the topological excitations of a 2D superconducting
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Figure 4. (a) Normalized dark-count rates for meanders of different strip width as

indicated fabricated from a 6 nm thick NbN film. Fitting the analytical expression for

VPS results in ξGL and Λ values consistent with parameters derived from resistivity

measurements. Except for the widest structure for which the parameters differ by

roughly a factor 1.5. Data are taken from [60]. (b) Magnetic field dependence of dark

counts measured for a meander made from a 4.9 nm thick TaN film. Blue data points

are results for one current direction, red data points for the reversed current direction.

If one also reverses H-axes for the red data points, the two data sets coincide despite

the obvious asymmetry with respect to the magnetic field. This behaviour can be

understood and modelled assuming one turn-around with a reduced critical current,

symbolized by the red section of the schematic inset. A detailed discussion can be

found in [61].

film [54–57]. Such structures are comprised of closed magnetic flux loops and

require a finite activation energy. Thus, at any non-zero temperature VAPs occur as

thermodynamic fluctuations. These excitations are particularly frequent in strongly

type-II superconducting thin films. In either case, one has to bear in mind that the

vortices are distinct from free vortices inside an extended 2D film, because of the

boundary conditions imposed by the edges of the strip. These boundary conditions result

in an edge barrier that prevents vortex entry and/or exit in narrow superconducting

strips [10–12, 58, 59]. It was argued in section 2 that the current for which the edge

barrier for vortex entry vanishes limits the critical current. For lower bias currents

vortices can overcome the finite edge barrier by thermal activation, and once they have

overcome this barrier, the bias current exerts a Lorentz force that moves them across

the strip. Such a vortex induced phase slip (VPS) can also be registered as a dark

count event. A similar mechanism can lead to dark count events in the presence of

VAP. Although the bias current does not exert a net force on a VAP, it results in a

torque that orients the pair axis perpendicular to the current and lowers the binding

energy [57]. Thermal activation can break up the pair and then the unbound vortex and

antivortex move towards opposite edges of the strip and cause a dark count event [46].

Systematic theoretical and experimental investigations have found strong support

for single vortices overcoming the edge barrier as the dominating mechanism leading

to dark counts in SNSPD. In [62] numerical methods have been used to compare PSL

and VPS. The key finding of this analysis is a critical width wc ≈ (4.4 ± 0.1)ξGL that
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coincides with the Likharev-criterion [53]. For strips with a width w ≤ wc PSL are the

only fluctuation mode leading to phase slips. For wider strips with w > wc phase slips

caused by crossing vortices are also possible and with increasing w their free-energy

barrier ∆FVPS increases much slower than ∆FPSL, particularly for the most relevant

situation of high bias currents. The short coherence length in NbN implies a critical

width wc . 20 nm, such that in most devices studied to date, crossing vortices are

expected to be far more frequent than PSL. A similar result, clearly favoring a vortex-

based scenario over PSL, was obtained in an experimental study comparing dark count

rates as a function of the reduced bias current of SNSPDs with different strip widths [60].

Analytical expressions have been derived for the three fluctuation modes for the

specific case of SNSPD structures with ξGL ≪ w ≪ Λ and high applied bias currents [63].

These results suggest the VPS scenario as the most likely one to occur based on a

comparison of the necessary activation energies to overcome the respective saddle-points.

However, there is some controversy about the validity of this approach [64, 65]. First,

the London-model was used for the description of vortices, which is known to fail when

vortices are too close to the edge of the strip. Second, the energy associated with the

vortex core has been neglected. Nevertheless, they fit their analytical formula for VPS to

the data of [60] and obtain very consistent fit parameters except for the widest meander

line with w ≈ 170 nm, see also figure 4(a). As discussed in [62], there may be a cross-over

from the VPS dominated fluctuations to VAP as the strip width is increased. The rate

of single vortices entering the strip is proportional to the length of the wire, whereas the

rate of VAP break-up is proportional to the area of the superconducting film. Therefore,

the ratio of VAP to VPS events is proportional to the strip width w and one can expect

that VAP events start to dominate the dark count events for strips wider than a given

cross-over width. However, this has never been systematically investigated.

The problem of dark counts and which mechanism is responsible for the break-down

of superconductivity in SNSPDs has also been investigated using the Ginzburg-Landau

(GL) equation and a numerical relaxation method to find stationary states [65]. It is

found that for strips typical for SNSPDs and Ib/Ic,dep . 0.6 the results of the London-

model are reproduced. At higher currents this approach comes to slightly different

results, it even results in PSL requiring the lowest activation energy for bias currents

very close to Ic,dep. The current-crowding effect in the bends of the typical meander

structure is also reproduced which favors dark counts to occur near bends.

If single vortices are responsible for the observed intrinsic fluctuations in SNSPD,

one would expect a distinct magnetic-field dependence of the dark-count rate, whereas

the dark-count rate caused by VAP should be independent of the magnetic field. In a

follow-up publication Bulaevskii et al. extended their model to include the influence of an

external magnetic field [66]. For small applied fields H < H∗, with H∗ the vortex-entry

field at I = 0, they predict the following simple relation:

RDC(I,H) = 2RDC(I, 0) cosh (H/H1) , (3)

where I and H are the applied current and magnetic field, respectively, and H1 is the
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characteristic field scale of a few mT for a typical SNSPD meander. This functional

dependence of the dark-count rate RDC has been confirmed in TaN and NbN SNSPD

up to ∼ 100 mT [61,67], as shown in figure 4(b). Furthermore, these studies have found

evidence that the dark counts originate in the turnarounds of the meander structure.

This is a consequence of the current-crowding in sharp bends as discussed in section 2,

which leads to a reduced vortex-entry barrier at the inner bends of the turnarounds as

compared to the energy barrier along the straight sections of the meander.

Thus, a consistent picture has emerged that single vortices which overcome the

edge barrier are the dominating mechanism leading to dark-count events in SNSPD, at

least at temperatures of around 4 K, for which most of the experimental investigations

were done‖. Most experiments and theoretical models are consistent with dark counts

originating near a weak point. Naturally, these are the bends in the typical meander

structures of SNSPDs. However, some open questions and interesting observations

remain to be clarified. A temperature-dependent study [69] revealed a growing

inconsistency between theory and experiment at temperatures below ≈ 2.5 K¶. Very
recently, the switching current distributions as a function of temperature in typical

meander structures as used for SNSPD have been measured [70]. A detailed statistical

analysis suggests that at temperatures T . 2 K dark counts may not be thermally

activated, but caused by quantum-mechanical tunneling events, so called QPS. Quantum

tunneling of vortices through the edge barrier was claimed previously [71] and certainly

deserves further investigations. A possible dependence of the dark-count rate on the

thermal coupling of SNSPDs to the thermal bath has been observed by Hofherr et

al. [72]. It appears that the attempt rate depends on the thermal coupling and that it

can be significantly reduced by better thermal contact of the SNSPD to its mechanical

support and thermal bath. This effect cannot be understood within the current models.

4. Photon counts

What are the processes after the absorption of a photon that lead to a detection event

in SNSPD is the key question, which we are going to address in the following. There

exists a large amount of experimental observations that a good detection model must be

able to explain. In order to set the stage, we will first review the most important results

of “classical” experiments. Very distinct results have been obtained with quantum

detector tomography (QDT), which we will discuss in a separate section, before we will

give an account of recent experiments on the temperature, position, and magnetic-field

dependence of photon counts in SNSPDs.

‖ This role of vortices for the generation of dark counts has been further strengthened in a very recent

publication [68] that became available after the first submission of this paper, in which a significant

reduction of the dark-count rate in ferromagnet-superconductor bilayers is reported.
¶ Contrary to the conclusions of the authors of [69], their data can be successfully fitted to the VPS

model of [63], with very reasonable fitting parameters for T ≥ 2.5 K. These fitting parameters become

increasingly unrealistic at lower temperatures.
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Figure 5. Two examples of early measurements of the count-rate dependence. In (a)

the detection efficiency was measured as a function of reduced bias current for different

photon wavelengths from 560 to 1260 nm (Reproduced with permission from [73]. c©
2002, AIP Publishing LLC.) and in (b) the normalized detection efficiency vs. photon

wavelength is shown for reduced bias currents Ib/Ic from 0.6 to 0.89 (Reproduced with

permission from [74]. c© 2005, Springer Verlag). In both graphs lines are drawn for

the different detection regimes above and below the threshold and arrows mark the

thresholds.

4.1. Detection threshold in SNSPDs

The typical characterization of an SNSPD is done in either of two ways. One measures

the photon-count rate at a fixed photon wavelength and a varying bias current or vice

versa with a fixed bias current while one changes the wavelengths of the photons, see

examples in figure 5. These measurements are complementary to each other. The first

one has the advantage that the absorptance is constant and that it is easier to control the

photon rate and keep it constant, particularly when changing the temperature or when

comparing different devices. It is possible to extract minimum photon-energy (Emin)

threshold-current (Ith) pairs from these experiments. For higher bias currents and/or

photon energies the photon-count rate is approximately constant (plateau) and below

the threshold the photon-count rate is rapidly decreasing following an approximately

exponential relation. The exact mathematical relation between Emin and Ith will be an

important test of the detection models. The generally observed behaviour shows that

one needs a lower Ith to detect a higher energy photon and vice versa.

When comparing the threshold current with theoretical models, at different

temperatures or between different devices, the most convenient and practical quantity is

not the absolute Ith, but instead the reduced Ith/Ic,dep, which is scaled by the depairing

critical current. It can lead to confusions and make comparisons difficult, if Ith is scaled

by the experimental critical current. As we have seen in section 2, the experimental

critical current Ic is generally device-dependent, given by the geometry and possibly

microscopic defects or variations of the cross-sectional area of the strip, for example.

Therefore, it is advisable to always use the depairing critical current Ic,dep as the most

relevant current scale.

There is always some rounding near the threshold and the plateau may not be

characterized by a truly constant count rate. Both of these non-ideal behaviours
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may be at least partly explained by device inhomogeneities, such as small strip width

and thickness variations [75] or locally varying superconducting gap [76]. However,

the rounding near the threshold persists even for the most homogeneous devices,

characterized by an almost perfectly constant count rate above the threshold. In the

plateau region, it appears to be possible that the detection efficiency is only limited by

the absorptance of photons in the thin superconducting film, i.e. every absorbed photon

is detected, in other words IDE = 1 [77,78].

The threshold itself depends on several material and device parameters. Emin and

Ith are expected to increase with an increase in width or thickness of the superconducting

meander [23,77–80], based on the fact that the volume that is needed to switch into the

normal-conducting state for triggering a detection event increases with increasing cross-

section. For simplicity, we will call a change of the threshold to higher Emin or higher

Ith/Ic,dep an up-shift of the threshold and correspondingly a change in the opposite

direction a down-shift. The investigation of the influence of material parameters on the

detection threshold is experimentally more difficult. Generally, several possibly relevant

parameters change for different materials such as Tc, the density of states N(0), or

the electron diffusion constant D. The dependence on Tc seems obvious. A lower Tc,

and thus a lower superconducting gap energy ∆, results in a larger number of quasi-

particle excitations. This should result in a down-shift of the threshold. Comparing the

characteristics of a growing number of SNSPDs made from different materials confirms

this expected trend [81–87].

A more quantitative comparison is very difficult, since the device parameters and

experimental setups are not comparable, although in some studies [83, 84] a direct

comparison between at least two materials was attempted. In an early experiment

[74], Nb and NbN SNSPD were compared with each other. For that study the NbN

film was deliberately fabricated with a non-stoichiometric composition to achieve a Tc

comparable to the thin Nb film. This study revealed the importance of additional

material parameters such as N(0) and D. In order to achieve a low Emin threshold

for a given bias current, available experimental data suggest to not only use a low-Tc

material, but also a superconductor with a low N(0) and a low D. This combination

of material parameters results in a large number of excess quasi-particles (Tc), a low

density of Cooper pairs and thus also a low density of quasi-particles required to suppress

superconductivity (Tc andN(0)), and a small diffusion length that maximizes the density

of quasi-particles near the absorption site (D).

The maximum number of excess quasi-particles and their local density as a function

of time is also influenced by characteristic time scales of the superconducting material.

These parameters are relatively well known for NbN and Nb [74,88] but much less well

known for the other materials, and no systematic studies of these time scales on the

threshold have been published so far. Depending on the detection mechanism there may

be additional influences on the threshold through the superconducting coherence length

ξGL and magnetic penetration depth λL. However, these parameters are microscopically

linked to Tc, N(0), D and the electron mean free path l (see e.g. [60] and references
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therein), therefore they cannot be varied independently.

Detailed information about detection threshold can be experimentally obtained

using QDT. The technique and important results obtained with it will be discussed in

the following section.

4.2. Linear energy-current relation from QDT

QDT [89, 90] is a powerful tool which has proven to be invaluable for the investigation

of the detection mechanism in SNSPDs. It is an experimental procedure to measure the

detection statistics of a photon detector whose response is unknown. The goal is to find

the response of the detector in the number state (Fock) basis, i.e. to find the probability

of a detection event pn, if the detector were to receive exactly n photons as an input. A

brief review of the technique, its foundation and prerequisites are given in the appendix.

In the following we will discuss the experimental results in relation to SNSPDs.

In [91], a tomography protocol which compensates for external optical losses (see

section Appendix A.4) was applied to a 150 nm wide NbN nanodetector [92], for a

wavelength of 1500 nm. Figure 6(a) shows the results, which were obtained. The key

result in this figure is the almost constant value of the linear efficiency η. This parameter

varies by a factor 1.5, in the bias current range from 11 to 20 µA, while the count rate

changes by many orders of magnitude. This confirms that the separation between pn
and η is robust. Moreover, the value of the linear efficiency is consistent with the optical

cross-section of the device.

This leads to the following interpretation: the linear efficiency η contains the optical

losses outside the detector (i.e. before photon absorption) whereas the nonlinear effects

(which occur after photon absorption) are contained in the pn. It should be noted that

there can also be linear loss effects inside the detector. For the samples discussed here,

they are not observed, but they have been seen in other samples [93].

In [94], the experiment discussed above was repeated for wavelengths of 1300 and

1000 nm. This data was combined with the original data from [91] at 1500 nm. The

result of this is shown in figure 6(b).

In figure 7, the results presented in figure 6(b) are scaled by a linear relation

pn(E, Ib) = pn(Ib + γE). (4)

It should be noted that the results superimpose. This demonstrates that there is a

universal curve for NbN detectors: once the detection probability as function of bias

current for one wavelength is known, it can be predicted for other wavelengths by using

the scaling relation. Furthermore, the curves superimpose regardless of the photon

number involved in the excitation. This demonstrates that only the total amount of

energy in the excitation matters, and not the photon number, i.e. the way in which the

energy is distributed over several photons.

The scaling relation (4) suggests a linear relation between the photon-energy and

the threshold current necessary to achieve a given detection probability pn ≤ 1. In order

to confirm this observation and to increase the energy range, an experiment on a slightly
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Figure 6. (a) Quantum detector tomography on a 150 nm wide nanodetector with

a wavelength of 1500 nm. Both the linear efficiency and the nonlinear detection

probabilities are shown (Reproduced with permission from J. J. Renema et al.,

Opt. Express, 20, 2806, 2012.). (b) Quantum detector tomography on the same

detector with the additional wavelengths of 1000 and 1300 nm. The detection

probability is shown for up to 4 photons for 1300 nm and 1500 nm, and for up to

3 photons for 1000 nm (Reproduced with permission from [94]. c© 2013, American

Physical Society.).

Figure 7. Demonstration of the scaling behaviour of the detection probability curves.

The data of figure 6 have been scaled according to (4). They superimpose and describe

the universal response curve for the nanodetector (Reproduced with permission from

[94]. c© 2013, American Physical Society.).

wider (220 nm) nanodetector was conducted, over a series of wavelengths from 460 nm

to 1650 nm [95]. The results of this experiment, presented in figure 8, confirm that the

relation between photon energy and bias current is indeed linear over at least one order

of magnitude in photon energy.

Figure 8 shows all combinations of photon energy and threshold bias current Ith
required to produce a detection probability of 1%. The arrows identify the points where

excitations of different photon numbers with equal energy coincide, confirming the idea

that only the overall energy of the excitation matters for the detection probability and
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Figure 8. Linear dependence between bias current and photon energy. Inset:

the energy-current relation of three different detectors with different geometries

(Reproduced with permission from [95]. c© 2014, American Physical Society.).

validating the use of multiphoton excitations to increase the accessible range of energies.

The inset shows a comparison between three different samples: the nanodetector from

the main figure, a short wire and a meander detector of the type used in applications.

The results of all three samples are described by the same linear relation. Extrapolating

the linear dependence

Ith = I0 − γE (5)

to E = 0, results in a value of I0 ≈ 0.75Ic. It is important to note that the extrapolated

I0 depends weakly on the chosen value of pn to determine Ith.

There might be deviations from this linear relation for low photon energies E.

Specifically one detection model, see section 5.5, predicts a strong nonlinearity as

E → 0. It remains an experimental challenge to extend the measurements to lower

photon energies.

4.3. Temperature dependence of the detection threshold

It was realized early on that a reduction of the operation temperature of NbN SNSPD

from ∼ 4 K to ∼ 2 K does not only reduce the dark-count rate, but also results in

a down-shift of the threshold [41]. The downshift of the threshold continues to even

lower temperatures well below 1 K [96]. This is a counter-intuitive observation. A lower

operation temperature results in a larger gap energy ∆ and thus a smaller number of

excess quasi-particles, which should cause an up-shift of the threshold. Despite repeated

observations of this temperature dependence of the detector performance, it was not

until very recently that a systematic study was conducted that confirmed this trend at

least down to 0.5 K [97]. Increasing the temperature above 4 K ≈ 0.5Tc results in a fast

deterioration of detector performance and increasing instability, at least for NbN and

TaN detectors. It appears that WSi detectors can be operated at least up to 0.7Tc [98].
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In [95] the temperature dependence of the linear energy-current relation has been

investigated using QDT. The authors have found a temperature-independent γ and an

I0 that is slowly decreasing with increasing T over a temperature range that spans from

about 0.3 to 0.7Tc. It is most interesting to note that around 5 K I0 becomes larger

than the measured Ic. This could point towards an explanation for the fast deterioration

of the detector performance observed at around this temperature, see above. However,

at this point it is not clear, if the extrapolated current I0 has a physical meaning

and if the observed temperature dependence can be interpreted as an indication for

vortices assisting in the photon detection. Regardless of the physical interpretation,

the observation of a temperature-independent γ is an important experimental fact that

currently defies a theoretical explanation, see also section 5.4.

4.4. Position dependence of the detection threshold

There have been experimental indications that the detection threshold is position-

dependent [15], i.e. the threshold current Ith for a given photon energy depends on

the absorption position along the cross-section of the nanowire. The existence of

such a position-dependent detection efficiency was very recently verified by polarization

measurements [99]. Light polarized perpendicularly to the wire is absorbed preferentially

in the center of the wire, whereas light polarized parallel to the wire is absorbed

uniformly. This enables one the use of differential polarization measurements to compare

the detection probability at different parts of the wire. Since the length scale associated

with the preferential absorption is itself wavelength dependent, a combination of

polarization and wavelength scans allows for a reconstruction of the detection probability

with a resolution of 10–20 nm.

Figure 9 shows the result of this reconstruction, as well as a theoretical curve

based on the numerical model that will be discussed in more detail in section 5.4. The

figure shows the threshold current required to locally obtain 100% detection probability

given a photon absorption at that point, for photons with a wavelength λ = 1500

nm. The experiments revealed a position-dependent threshold current that results in a

position-dependent detection efficiency as long as Ib is less than the maximum Ith(y),

as illustrated in the inset of figure 9. The threshold current near the edges turns out to

be ≈ 10% lower than in the center of the wire. This is a very important result and a

crucial test for the detection models.

4.5. Magnetic-field dependence of photon counts

The importance of checking the effect of external magnetic fields on the detection of

photons in SNSPDs has been realized long ago together with the introduction of the

vortex scenario for the detection process [100] and for the dark counts [60]. However,

experiments with magnetic field had not been put forward until recently.

First measurements of dark counts in magnetic fields [61, 67, 77] showed that the

quasi-static London approach [66] qualitatively describes the observations, see section 3.
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Figure 9. Local threshold current for a 150 nm wide nanodetector, for light

with λ = 1500 nm. The red curve shows the experimental value based on the

measurements presented in [99]. The grey band around the data (most prominent

around w = ±50 nm) represents the systematic error induced by the uncertainty in

determining the dielectric constant of NbN. The black curve shows the prediction based

on the numerical model discussed in section 5.4. (Adapted, with permission, from [99].

c© 2015, American Chemical Society.)

Figure 10. (a) Rates of photon counts for different photon energies and the

experimental critical current of a meander in magnetic field (Reproduced with

permission from [67]. c© 2014, American Physical Society.). (b) Current dependence

of photon-count rates for two photon energies and different magnetic fields ( c© 2015,

IEEE. Reprinted, with permission, from [101].). In (a) and (b), one can see that a

magnetic field has a stronger effect on the detection of low-energy photons.

In figure 10(a) typical results of photon counts as a function of magnetic field together

with the critical current are shown [67]. It is worth noting that the measurements were

done on a meander which consists of straight lines and bends. The local current densities

in these sections are influenced differently by the external magnetic field as discussed

in section 2. While in the Meissner state, the critical current of the meander linearly

decreases with the field. The dependence changes the slope and acquires steps when

vortices appear in the structure. Qualitatively similar to dark counts, photon-count
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Figure 11. Bias current at constant photon-count rates as a function of the magnetic

field (Reproduced with permission from [102]. c© 2015, AIP Publishing LLC.). Solid

lines describe equidistant ellipses as expected from the Usadel equation. Up to ≈ 50 mT

the ellipses can describe the data points. This points at the importance of the variation

of the order parameter with applied field and current for the detection of photons.

rates increase with increasing magnetic field.

One can see that the rate of photon counts for high-energy photons is almost field

independent in the Meissner state, while the rates for low energy photons start to grow

noticeably at much smaller fields. Similar results were obtained with meander structures

made from films of MoSi [101], see figure 10(b). There is a strong field-dependence of

photon counts for photons with a wavelengths of 1000 nm and almost no change with

magnetic field for a wavelength of 450 nm.

Recent experiments with two-dimensional nanobridges in a magnetic field [102]

have shown that pairs of the magnetic field and current, which keep the photon-count

rates constant, fall onto an elliptic curve in the B–I coordinates at small magnetic

fields . 50 mT, see figure 11(a). The authors interpreted the interplay between field

and current at small fields in terms of a depairing energy Γ that was inferred from the

solution of the 1D-Usadel equation [103]

Γ ∝ αI2b + βB2, (6)

with known constants α and β. One can interpret (6) such that current and magnetic

field result in an equivalent reduction of the order parameter. Physically, this implies

that the order parameter should control the photon-count rates. At magnetic fields

above ≈ 50 mT the current density across the bridge becomes non-uniform enough

to possibly cause deviations from the 1D-Usadel approach indicated by a systematic

deviation from the elliptical curves.

A different behaviour of photon and dark counts, which has been observed in

many experiments, is also seen in their magnetic-field dependence. It is most plausibly

explained in meanders by different origins for these events. Current assisted photon

counts come mostly from straight segments of the meander while fluctuation assisted

photon and dark counts originate from bends [29, 61, 67]. This does not exclude the

possibility that dark counts in the straight fragments of meanders or in nanobridges
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have a different mechanism as compared to photon counts [102].

5. Detection models and comparison with experiments

5.1. Normal-core hotspot model

The first model to describe the detection mechanism of SNSPDs already contains several

of the ingredients also used in later models [1, 88, 104]. Absorption of the photon

results in an excited electron with high energy as compared to the superconducting gap,

Eexc ≈ hν ≫ ∆, with h the Planck constant and ν the photon frequency. This excited

electron thermalizes in a cascading process generating a large number of elementary

excitations, so-called quasi-particles (QPs) and mostly athermal phonons. The QPs

are subject to diffusion resulting in a cloud of QPs with growing diameter. A given

density of QPs will locally suppress superconductivity and a normal-conducting core

may form in the center of this QP-cloud. Originally, it was assumed that the number of

QPs nqp ≈ hν/∆ after the thermalization time τth. In this case, simulations suggested

a normal-core diameter larger than the superconducting coherence length ξGL of NbN

even for near-infrared photons with energies of about 1 eV.

Once such a normal-core with radius rnc > ξGL/2 has formed, the bias current

will be redistributed+. The current avoids the normal-core and the current density is

assumed to increase uniformly in the still superconducting parts of the cross-section

containing the absorption site. If the diameter of the normal-core is big enough, the

critical current density will be exceeded and a detection event will occur through the

suppression of superconductivity across the wire.

This model is essentially based on an area argument: each unit of energy contributes

to making the normal-core larger, which serves to increase the diameter of the obstacle

that the current must overcome. Since the system is 2D, the size scales as
√
E, and the

energy-current relation has a square-root behaviour:

Ith = Ic

(

1− γ′

√
E
)

, (7)

where E is the energy of the incident photon, Ic = Ic,dep is the critical current

assumed to be the depairing critical current and γ′ is the device and material dependent

proportionality factor.

It has soon been realized that this model results in quantitative inconsistencies

when applied to experimental data [74]. However, the strongest argument against it

comes from the observed linear energy-current relation (5), which is incompatible with

(7).

+ Normal-cores with smaller diameter will not result in significant current redistribution, because the

superconducting order parameter cannot change significantly on length scales smaller than ξGL
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5.2. Diffusion-based hotspot model

A more sophisticated model was put forward in 2005 [74], that made one important

generalization as compared to the normal-core hotspot model: the need for a normal-

conducting core of the hotspot is given up. Instead, the number of Cooper pairs in

a minimal section of the wire with a length equal to the coherence length, called a

ξ-slab, is considered. These Cooper pairs, which are reduced in number compared to

the unperturbed superconductor, must still carry the current which was carried by the

original number of pairs. Therefore, they must speed up. If the Cooper pairs exceed the

critical velocity vc, they break up and the wire transitions to the normal state. Because

the current carrying capacity of the wire is proportional to the number of remaining

Cooper-pairs, the energy-current relation is of the form:

Ith = Ic,dep

(

1− E

E0

)

. (8)

Applying several simplifications and approximations it is possible to derive an expression

for the energy scale [74]

E0 = γ ′−1 =

(

N(0)∆2wd

ς

)

√

πDτth, (9)

where the dimensionless parameter ς represents the efficiency with which a photon is

converted from an initial excitation in the material to QPs at the superconducting-

gap edge. It captures, for example, losses to the phonon bath. Since the value of

this parameter could in principle differ from film to film, it serves essentially as a fit

parameter for each set of experimental observations.

This model (also called the refined hotspot model in literature) is in agreement

with several experimental observations. First of all, (8) is in accordance with the linear

energy-current relation of (5). Equation (9) is also in accordance with the observed linear

dependence of the threshold on the width w and thickness d of the nanowire [23,78], as

well as giving a reasonable description of the dependence on the material parameters

N(0), ∆ and D [84]. And taking into account that not only ∆, but also the diffusion

coefficient D of QPs is temperature-dependent, this model can give a qualitatively

correct description of the temperature-dependence of the threshold a low temperatures

T/Tc . 0.5 [97].

However, this model also predicts a down-shift of the threshold for T/Tc > 0.5,

which is not observed experimentally. More importantly, according to (8) the relevant

current scale should be the depairing critical current, whereas in experiments it is

consistently found that I0/Ic ≈ 0.75 . . . 0.8 [78, 94, 95]. Furthermore, the recently

confirmed position-dependence of the threshold cannot be explained by this model. A

further weakness of both the normal-core hotspot model and the diffusion-based hotspot

model is that they predict a deterministic, threshold-like response: the detector responds

to all photons of a particular energy, or it does not. In contrast, experimentally it is

observed that there is a slow roll-off in the count rate when the bias current through

the device is decreased before at even lower bias currents the count-rate decreases
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exponentially. Particularly the exponential behaviour points to a regime in which some

sort of fluctuation, either thermal or quantum mechanical in nature, occasionally assists

in producing a detection event. A natural candidate for these fluctuations are magnetic

vortices, which are taken into account in the following detection models.

5.3. Photon-triggered vortex-entry model

In 2008, the notion was put forward that vortex-antivortex pairs (VAP) could be

responsible for the slow roll-off of the detection efficiency at longer wavelengths and lower

currents than the threshold [100]. Later in 2010, single-vortex hopping was proposed as

the detection mechanism beyond the threshold [23], and in 2011, it was suggested that

vortices are responsible for all detection events, including those at high currents in the

plateau of the detection efficiency [63]. In this model, the arrival of the photon decreases

the entry barrier for vortices as discussed in section 3, which enables a vortex crossing

or makes it at least more likely. In a follow up paper [66] a complete description of the

photon-triggered vortex-entry scenario was worked out, giving analytical expressions for

the current, temperature and magnetic-field dependence of the count rates. To do so, the

authors used the same London-model approach as for the description of vortex-induced

dark counts, see section 3, including those limitations discussed above. Additionally,

they made a very simplistic assumption for the effect of the photon on the vortex-entry

condition, namely that the photon results in a homogeneous reduction of the order

parameter inside a so-called hot belt, but the photon energy is insufficient to make it

normal-conducting. Therefore, the bias current is still uniform across the strip. The

reduction of the order parameter reduces the energy barrier for vortex entry and for high

enough photon energy E at a given Ib it will even vanish completely. Thus, this model

gives an explanation for the detection plateau, as well as a more gradual reduction of

the detection efficiency below the threshold.

In this model, the functional dependence of the detection probability R in the

regime R ≪ 1 is of the form [66]:

R ∝ Iνh+1, (10)

where νh is a parameter that measures the reduction of the energy barrier for vortex

entry to the absorption of a photon. Following [66,67,78], we apply the assumption that

the energy is divided equally over the area of interest. This results in a value of νh of:

νh = ν − 4πςE/(kbT )(ξ/w)
2, (11)

where ν = ε0/(kbT ) is the value of the vortex energy scale in the absence of photon

absorption in units of the thermal energy kBT . The two expressions above imply an

approximate energy-current relation of the form

I/Ic,v = exp(C/(ν − E/E0 + 1)), (12)

with C being a constant, and Ic,v is the critical current that reduces the energy barrier for

vortex entry to zero. Bear in mind, that the energy scale E0 in (12) is different from (8).
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Within the model of [66] Ic,v ≈ 0.8Ic,dep, thus it may explain the observed I0 ≈ 0.75Ic,dep,

if one associates I0 with Ic,v. However, it has to be noted that the value of Ic,v depends

on the vortex model and vortex-core energy used to calculate the critical current for a

vanishing vortex-entry barrier. On the other hand, the highly nonlinear relation (12) is

clearly incompatible with the experimentally determined linear energy-current relation.

Furthermore, from (11) one can estimate the dependence of the minimum photon energy

Emin on the wire width Emin ∝ w2, which is also not supported by experiments [78].

This model also allows one to derive analytical approximations for the magnetic-

field dependence of dark and photon counts. At magnetic fields much smaller than

a characteristic field value the energy barrier decreases approximately linear with the

applied magnetic field. This results in an approximately exponential increase in the rate

of vortex entry from one edge. Also taking into account anti-vortices that enter from

the opposite edge one expects the rate [66]

R(H) ∝ cosh
H

H1

, (13)

with different field scales H1 for dark and photon counts, respectively, from which

one can also derive the vortex-barrier energy scales. Qualitatively, this behaviour is

confirmed in experiments, see for example figure 10(a), where the photon-count rates

are fitted to cosh-relations. Whereas the vortex-barrier energy scale for dark counts

as determined from least-square fits to the experimental field-dependence is reasonably

close to the theoretical expectation [61], it turns out that the experimental energy scale

for photon counts is about one order of magnitude different compared to theoretical

values [67, 101, 102]. This may be a consequence of the various simplifications used

in this theoretical model. Nevertheless, the fitted value of the vortex-barrier energy

scale for photon counts varied in the expected way with the photon energy and the

current [67].

5.4. Diffusion-based vortex-entry model

The diffusion-based hot-spot model (section 5.2) could successfully describe many

experimental observations. Its weak point is the assumption that the local velocity of the

superconducting condensate is uniform across the strip. A model was proposed [105],

with some later corrections [106], that combines the generation and diffusion of QPs

after photon absorption with the formation of the normal-conducting cross-section due

to vortices overcoming the edge-barrier for vortex entry. It turns out that a realistic

description of the underlying processes can only be obtained with numerical methods.

Because of that some previously applied simplifications could be given up as well.

The model assumes that the whole process can be separated into three independent

processes. It starts with the QP generation and diffusion. Instead of using the analytical

solutions for extended 2D-films, the diffusion equation is solved numerically on an

infinitely long strip. Furthermore, the model distinguishes between the excited electron

after photon absorption and thermalized QPs. The excited electron is assumed to diffuse
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with a temperature-independent diffusion coefficient equal to that of electrons in the

normal state De, and it is assumed that this excited electron generates QPs with a

constant time-scale τqp resulting in an exponential increase in the number of QPs. The

diffusion of QPs on the other hand is governed by a temperature-dependent coefficient

Dqp and QPs will eventually recombine to form Cooper-pairs on a time-scale τr. The

phonon temperature is assumed to stay constant on the relevant short time scale of τth
that is assumed to be the time at which the maximum total number of QPs are present

in the film. The background of thermally excited QPs is neglected. This results in the

coupled differential equations [105]

∂Ce(~r, t)

∂t
= De∇2Ce(~r, t) (14)

∂Cqp(~r, t)

∂t
= Dqp∇2Cqp(~r, t)−

Cqp(~r, t)

τr
+

ςhν

∆τqp
exp

(

− t

τqp

)

Ce(~r, t), (15)

with∇2 being the Laplace-operator, Ce(~r, t) is the probability density to find the excited

electron at position ~r at time t, and Cqp(~r, t) is the local density of excess QPs at time

t. This simple exponential behaviour for the increase in the number of QPs was used

instead of a more detailed description [88, 104, 107] to avoid unnecessary complexity.

The inhomogeneous distribution of QPs may also be interpreted as a continuously

varying order parameter of the superconducting condensate. The order parameter varies

comparatively smoothly in the strip even after photon absorption, because the typical

size of the QP-cloud, which may be expressed by the diffusion length Ld =
√
Dt with

an effective coefficient Dqp ≤ D ≤ De, is larger than the coherence length ξGL almost

immediately after photon absorption.

Similar to the diffusion-based hot-spot model, the bias current redistribution is

approximated to be instantaneous, due to the relevant time scales being much shorter

than τqp. Therefore, the current-density distribution is estimated by solving the Laplace

equation [106]

~∇ ·
(

nse
~∇ϕ

)

= 0, (16)

where ϕ is the phase of the superconducting order parameter connected to the drift

velocity of superconducting electrons ~vs = (~/m)~∇ϕ, m is assumed to be the free

electron mass. The current density is then ~j = nse~vs, where it is assumed that the local

sum of the density of superconducting electrons nse and the local density of QPs Cqp

equals the equilibrium density of superconducting electrons. The smooth variation of

nse and of the order parameter, respectively, result in a significantly reduced peak of

the current density due to the current-crowding effect ∗ as compared to the expected

current-crowding around a hole in a superconducting strip [28].

The inhomogeneous order parameter and current distribution, respectively, also

necessitate a numerical calculation of the vortex potential. This is done by placing

a test-vortex at different positions across the superconducting strip [106]. As in the

∗ See appendix in [99]



Detection mechanism of SNSPDs 25

previous vortex model the London-model for a vortex is used neglecting the contribution

of the vortex core to the vortex self-energy. Following [28] the vortex self-energy is

determined by calculating the total current circulating the vortex-core and the work

done by the external current is obtained by integrating the bias-current density from

the point of entry to the current position of the test-vortex. For a given photon energy

and absorption position the detection threshold is determined as the bias-current density

Ib/Ic,dep that reduces the edge-barrier to zero.

In [105] numerical results were compared with implementations of the normal-core

hotspot model and the diffusion-based hotspot model within the same framework. The

authors found clear indications that their new model and the underlying physics would

lead to the entry of a vortex and thus the trigger of a normal domain before either of

the other models predicts a detection event. Most importantly, numerical results for

the energy-current relation are fully compliant with the linear energy-current relation

(5) obtained with QDT. As it turns out, the numerical model and the algorithms used

to solve the differential equations start to produce systematic errors for photon energies

that are too high. Therefore, the calculations are restricted to photon energies smaller

than about 1 eV corresponding to photon wavelengths ' 1200 nm. These photon

energies are still high enough to achieve some overlap with experimentally obtained

data for which the lowest photon energies are typically ∼ 0.8 eV and extrapolations

using (5) allow a direct comparison between numerical and experimental results. Good

agreement between theory and experiment is usually found by variations of the energy

conversion efficiency ς and small adjustments to the zero-energy extrapolated threshold

current I0. These adjustments of I0 are within the estimated numerical and experimental

accuracies, respectively.

A possible position-dependence of the threshold criterion has been investigated

using this numerical model [106]. In figure 12(a) the calculated threshold currents Ith
as a function of the photon absorption position across a 150 nm wide NbN strip are

shown for a selection of photon wavelengths. The data are symmetric around the center

line due to the symmetry between vortices and anti-vortices. The decrease in Ith for

absorption positions near the edge is significant. At each absorption position the energy-

current relation is linear to a very good approximation. As can be seen in figure 12(b)

the magnitude of the slope is increasing towards the edge, whereas the extrapolated

value for E = 0 remains constant within the uncertainties. This is highlighted in the

inset of figure 12(b). The averaged I0 is almost identical with the vortex-entry current in

the absence of a photon, indicated by the red and black horizontal lines in figure 12(a),

respectively. This position-dependence of the threshold gives a direct explanation for

the rounding observed in the universal detection curve [94] and the current-dependence

of the detection efficiency, respectively. As one increases the bias current starting from

low values, at first the areas near the edge of the superconducting strips will reach the

maximum detection efficiency. One has to increase Ib further until the threshold current

for the center to obtain maximum detection efficiency for the complete strip. In the

inset of figure 12(a) a comparison is shown between detection probabilities obtained in
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Figure 12. (a) Calculated dependence of Ith on the photon absorption position

in a long, 150 nm-wide NbN strip for several photon wavelengths (data from [99]).

The black dash-dotted line indicates the vortex-entry current obtained from the

calculations. Inset : detection probability for 1500 nm-photons in a 150 nm wide

NbN strip determined with QDT (black circles) compared with the prediction from

the numerical model based on the position-dependence of Ith (red line). (b) The linear

energy-current relation extracted from the data in (a) for each absorption position. The

vortex-entry current I0 in the limit of zero photon-energy is to a good approximation

independent of the absorption position. This is highlighted in the inset, where I0 (black

data, left axis) and the slope of the linear relation (blue data, right axis) are plotted

versus the position. The average of I0 (red dashed line in the inset of (a)) coincides

with the vortex-entry current in the absence of a photon as calculated directly from

the simulations within numerical uncertainties.

a QDT experiment with the expectation from the model calculations as detailed in the

appendix of [99].

As mentioned in section 4.2, there have been indications of a lower threshold for

photon detection for absorption events near the edge, which could recently been verified

in polarization-dependent QDT experiments [99]. In figure 9 the calculated position-

dependent threshold current Ith for photons of 1500 nm wavelength absorbed in a 150 nm

wide NbN strip is plotted together with the reconstructed position-dependence from the

experiment. The model gives a fair description of the overall experimental observations.

The model reproduces correctly that the threshold current is maximal in the center of

the strip and is reduced towards the edge by about 10%. Nevertheless, there are some

important differences that may shed some light on weak points of the current detection

model. The model simulations result in a near monotonic decrease all the way to edge,

whereas experimental data suggest that Ith levels off for distances less than ≈30 nm from

the edge and a narrower peak at the center. At the current stage the model assumes

perfect edges. The edges of real devices are far from perfect and could be a reason for

the observed discrepancies.

Further indications come from simulations of 2-photon events that the model does

not capture all effects that are of importance for photon absorptions near the edge [106].

QDT experiments have proven that the detector response is determined only by the
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total absorbed energy irrespective of the number of photons. In order to check that this

important result can be reproduced simulations were run with two 2000 nm-photons

absorbed at random positions and the threshold-current distribution has been compared

with threshold currents obtained for 1-photon absorptions of 1000 nm wavelength. At

high bias-currents when the detection probability exceeds ≈ 0.5 the two calculated

detection probabilities or universal curves practically coincide. However, at lower bias-

currents or detection probabilities there are systematic deviations. At these lower bias

currents detection events come primarily from absorption events close to the edge. The

fact that in this regime the simulations result in systematic differences between 1- and

2-photon events indicate that the current model is insufficient to capture all effects that

are important at the edge.

There are some other experimental observations, for which the simulation results

produce the general trend, but fail to give the correct functional relations. The model

correctly results in an approximately linear up-shift of the threshold for increasing

width w, but cannot quantitatively reproduce the Emin ∝ w dependence observed

experimentally [78]. Similarly, the T -dependence of the threshold as computed from

the model qualitatively correctly predicts a down-shift of the threshold for decreasing T

below ≈0.5Tc [97], but it cannot explain the T -dependence of I0 deduced from QDT [95].

In fact, the numerical results would indicate a T -independent I0 and a position- and T -

dependent slope γ, in contradiction to the experimental observations, see also section 4.3.

5.5. Normal-core vortex model

Using an alternative approach, a detection model has been developed [108] that sees

a role for vortices entering from the edge as well as VAPs being generated inside the

superconducting strip. In their original proposal they assume a circular or semicircular

area in the center or at the edge of the strip, respectively, with a fixed radius, where

the effective temperature is increased due to the absorption of the photon. For this

situation they solve the time-dependent Ginzburg-Landau (TDGL) equation, the heat-

diffusion equation and Poisson’s equation for the electrical potential to determine the

evolution of the superconducting state after photon absorption and the formation of the

voltage pulse that signals the detection event. However, this first approach resulted in

several predictions that are in contradiction with experimental observations, e.g. a non-

linear energy-current relation, an extrapolated zero-energy threshold current I0 = Ic,dep,

Emin ∝ w2, and a lower threshold current for photon absorption in the center than at

the edge of the strip. It is well known that the temperature range for which the TDGL is

strictly applicable is much more restricted to T ≈ Tc than for the GL equation [109], and

it could be a reason that this approach failed to describe several experimental results.

A more recent model [110, 111] can describe the detection in an SNSPD more

successfully. It is still assumed that photon absorption results in a well-defined area

with an increased effective temperature. This area is of circular or semicircular shape

depending on the absorption position towards the center or very close to the edge,
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respectively. In order to simplify their model, they neglect the evolution in time of the

hotspot and use a fixed radius for the circular area

ςE ≃ dπR2H
2
cm

8π
, (17)

with Hcm the thermodynamic critical magnetic field and H2
cm/8π the superconducting

condensation energy per unit volume. The semicircles at the edge will have a
√
2

times larger radius to keep the volume constant. Inside these hotspots the excess

QPs are modelled by a nonequilibrium distribution function using a single parameter

α = const < 1 inside the hotspot and α = 1 outside. The order parameter will vary

smoothly inside and outside of the hotspot, due to the superconducting proximity effect.

They then use a relaxation method to find stationary solutions of the GL equation. This

has the advantage that they do not need to make any assumption about the mechanism

resulting in a resistive cross-section, instead it can be deduced from the evolution of the

order parameter.

The results obtained within this model can be interpreted in the following way [111]:

for photon absorptions close to the edge, there is a minimum current Ien that allows

the entry of a single vortex from the edge into the hotspot. If the hotspot radius

R & 3 ξGL a slightly larger current Ipass is required to overcome the pinning force the

vortex experiences inside the hotspot. Only then is the vortex free and can move across

the strip and cause a detection event. This situation prevails until the gap between the

hotspot and the near edge of the strip exceeds ∼2 ξGL. Is the photon absorbed further

away from the edge a slightly different scenario is suggested. Then, there is a critical

current Ipair above which a VAP is formed inside the hotspot. Once more, a slightly

larger current Ipass is required to overcome the binding energy of the VAP. This latter

scenario can be easily motivated by considering a strip of w/2 and a semicircular notch

defect at one edge as done in [28]. Current-crowding around the defect favours the entry

of a vortex at the point of minimum cross-section. The case of a hot-spot in the center

of a strip of width w with strong suppression of the order parameter may then be seen

as two mirrored strips with a notch, joined together.

Using this revised model Vodolazov calculated the threshold current Ith for a

detection probability ≈ 1 as a function of photon energy [110]. For the energy range

probed by QDT [94, 95] the model results in a nearly linear energy-current relation

compatible with experimental data, see also figure 13(a). However, the model predicts

significant deviations from the linear energy relation at photon energies E . 0.5 eV

and a zero-energy extrapolated I0 = Ic,dep. This deviation from linearity for E → 0 is

claimed to be a consequence of a realistic description of the vortex core in the GL-model

as compared to the London-model, but has so far not been observed in experiments ♯.

The position-dependence of Ith has also been calculated in the normal-core vortex

♯ The data presented in [112] for a NbN detector are in contradiction to all data obtained with QDT.

In the same publication, the energy-current relation determined for WSi obtained from data published

in [113] contains errors and can also not been seen as an indication for a nonlinear energy-current

relation.
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Figure 13. (a) Least-square fit of the energy-current relation of the normal-core vortex

model to experimental data (taken from [94]) in comparison with two other models as

indicated (Adapted, with permission, from [110]. c© 2014, American Physical Society.).

(b) Position-dependence of the threshold current (Idet in the figure) for different hot-

spots. The strip width w = 20 ξGL is roughly equivalent to 100 nm (Reproduced with

permission from [111]. c© IOP Publishing. All rights reserved.).

model [111], the results are shown in figure 13(b). Calculated Ith have a broad maximum

near the center of the strip and Ith decreases sharply towards the edge with a minimum

for distances equal to the radius R of the hotspot. For absorption positions even closer

to the edge Ith increases again up to values almost as high as in the center. It could be

that the minimum at a distance R from the edge is an artifact of the calculations, due

to the abrupt change from a circular hotspot to a hotspot in the shape of a truncated

circle. From these position-dependent threshold currents detection probabilities can

be deduced which are similar compared to those computed from the diffusion-based

vortex model and experimentally measured detection probabilities, see figures 12 and 6,

respectively.

However, compared to the experimentally derived position-dependence shown in

figure 9, the calculated threshold currents within the normal-core vortex model deviate

significantly. The dome around the center is flatter than experimentally observed for

an even wider strip. The differences between this model and the measurements of the

position-dependence are more significant for absorption positions closer to the edge.

The minimum Ith at a distance R from the edge is 20% or more reduced compared to

the center and the sharp increase very close to the edge up to approximately the same

value of Ith as in the center has not been seen in experiments. The last revision of the

model [112] results in a some quantitative changes of the position-dependence. Although

for some model parameters the minimum Ith is now reduced by an amount similar to the

experimental results, the threshold current very close the edges is predicted to exceed

Ith in the center by more than 20%.

On the other hand, numerical results published in [110] are consistent with the

linear relation between Emin and w determined experimentally [78] in a range of bias
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currents that correspond to about 0.4 to 0.6Ic,dep. At higher or lower bias currents the

simulated results suggest a nonlinear relation between Emin and w. Unfortunately, for

these bias current ranges, no experimental data are available.

The normal-core vortex model can also qualitatively explain experimental magnetic-

field data. It predicts that the strongest effect of the magnetic field on the rate of photon

counts should occur at detection probabilities < 1, where the light counts are due to

fluctuation assisted or current assisted vortex entry. Interestingly, this model predicts

a slight decrease in the photon-count rate at small magnetic fields and bias currents

just below Ith, figure 11 in [111], a consequence of the position-dependence of Ith on the

position of the hot-spot. It may explain the small increase of the photon-count rate seen

in figure 3 of [67] near zero magnetic field. In a very recent preprint [112] the model

has been further adapted and compared with new experimental data. The decreasing

photon-count rate with increasing magnetic field at bias currents just below Ith could

be confirmed theoretically and experimentally. The model can now also reproduce the

very weak magnetic field effect on count rates of high energy UV photons, see lower

panel of figure 10(b).

The magnetic field-dependence of photon counts measured at low fields on

nanobridges [102] could be well explained by the 1D-Usadel equations. At least for

the 1D-case it was shown that the GL and the Usadel approaches result in very similar

depairing factors at temperatures above 0.5Tc [114]. It is therefore possible that these

two approaches may turn out to be complimentary to each other even for the 2D-case

of typical SNSPDs.

6. Conclusions

Above discussions have demonstrated that there is overwhelming experimental and

theoretical evidence for a significant role of magnetic vortices in the detection of photons

and the generation of dark counts in SNSPDs. Additionally, the success of the diffusion-

based hotspot model, e.g. in the description of the width-dependence and the linear

energy-current relation, is a strong indication of the importance of QP diffusion early

on in the detection process. In many situations this model may be sufficient to give

guidance on how to improve a detector for a certain application. With (9) it is

possible to qualitatively predict the effective change of a device or material parameter

on the detector threshold. However, this model cannot explain the observed position-

dependence of the detection threshold. The same can be said about the photon-triggered

vortex-entry model, which can be regarded as an extension of the diffusion-based model

to treat the entry of vortices and the effects of magnetic fields in an analytical way. The

latter one can successfully predict the qualitative functional dependence of the photon

and dark counts on an applied magnetic field, but it fails to quantitatively describe the

photon-count rates.

There are currently two models requiring numerical solutions of the underlying

equations that allow a more detailed description of the photon detection process in
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SNSPDs. The diffusion-based vortex-entry model applies a phenomenological approach.

This model predicts a linear energy-current relation that is in excellent agreement with

the results from QDT. It can also reasonably well reproduce the position-dependent

threshold current as determined from polarization dependent experiments. On the

other hand, there are also experimental results which cannot be explained yet, e.g. the

width and temperature dependencies. There are indications that the model produces

systematic errors when the photon is absorbed too close to the edge. Currently, the

boundary conditions imply perfect edges, a condition that real structures cannot fulfill.

Structural defects, changes in stoichiometry or oxidation are all likely to result in normal-

conducting areas at the edges of the strip [115]. As a consequence of the superconducting

proximity effect, there will be edge regions with a reduced order parameter that act as

QP traps and reduce the effective number of QPs. One may speculate that the model

can be improved by taking into account these edge effects, but then one should also

consider QP trapping inside the photon generated QP cloud. The use of the London-

approximation for the vortex-core could be another reason that the diffusion-based

vortex-model cannot explain all experimental observations.

The normal-core vortex-model is the most fundamental of all proposed detection

models. Based on the argument that QPs are trapped inside the hotspot due to a

rapidly reduced order parameter, an area with a constant, non-equilibrium distribution

function for the QPs is assumed and the Ginzburg-Landau equation is solved for this

situation, either in its time-independent or its time-dependent form. The model does not

use the simple London approximation of vortices and it also does not need to make any

assumption about the mechanism that leads to the formation of the normal domain to

trigger a detection event. When the photon is absorbed sufficiently close to the edge the

solutions suggest the entry of a single vortex from the edge just like the vortex models

that use the London approximation. It differs from the latter quantitatively, however.

For photon absorptions near the center of the strip a slightly different mechanism is

proposed, in which a VAP is generated inside the hotspot. If the bias current is strong

enough the pair unbinds and both vortices move towards opposite edges and trigger a

normal domain. This model can reproduce the energy-current relation obtained from

QDT reasonably accurate and the newest implementation can very successfully explain

the magnetic field dependence of photon counts. However, the proposed position-

dependence of the threshold current differs systematically from the results derived with

the polarization experiment. It seems likely that the particular position-dependence of

this model is an artefact of the change of the hotspot shape from circular to semicircular

for distances less than the hotspot radius R from the edge.

In table 1 we attempt to give a quick overview by comparing the different

detection models with experimental observations. The normal-core hot-spot model is

not included in this list, since it cannot describe the detector response beyond a basic

phenomenological description.

From the experimental point of view the most interesting challenge is to measure

the energy-current relation at lower photon energies towards the mid-infrared. The



Detection mechanism of SNSPDs 32

normal-core vortex model predicts a pronounced deviation from the currently observed

linear behaviour contrary to the diffusion-based model. Alternatively, one may compare

a range of superconducting materials for which the deviation from the linear energy-

current relation may occur at higher photon energies. Most likely this would be the case

for materials for which the detection threshold is comparatively high.

SNSPDs have also been used to detect particles of much higher energies [116, 117]

with clear indications that a simple normal-core hotspot model is sufficient to explain

the detection mechanism. An interesting question here is the cross-over from a vortex-

based detection mechanism to a mechanism that does not involve vortices. The recently

proposed amorphous WSi [113] is particularly interesting in this respect, because

the low Tc and low density of states N(0) suggest the formation of a large normal-

conducting area upon absorption of relatively low-energy photons in the near-infrared

[106]. Furthermore, the extended, very flat plateau in the detection efficiency and

the possibility to operate WSi-SNSPD up to 0.7Tc are outstanding differences of this

material compared all other materials suggested so far.

Another interesting question is the time delay between photon absorption and the

formation of the normal-conducting domain that triggers the detection event. The

diffusion-based as well as the normal-core vortex model can in principle give an answer

to this question. However, for both models a more accurate description of the QP

multiplication process and the formation of the hotspot, respectively, will be required

to obtain reliable results. With the current simulations one may estimate it to be . τth,

which is as short as a few picoseconds. Ultimately, statistical or position-dependent

variations of this time delay may put a limit on the smallest achievable timing jitter

of SNSPDs. Exploiting correlation effects in 2-photon effects first attempts have been

made to determine the size and life-time of the QP-cloud and hotspot, respectively [93]††.
There are also a number of open questions concerning the dark counts in SNSPD, already

raised above during the discussion of dark counts. It is therefore highly likely that

SNSPDs will continue to stimulate both experimentalists and theoreticians to investigate

metastable and nonequilibrium states in these superconducting structures.
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Table 1. Comparison of the various detection models with experimental observations.

The first row states whether the model has analytical or numeric solutions. A

checkmark (X) means that the model can describe the experimental observation

reasonable well, a cross (x) means the model fails to reproduce experimental data

and a dash (—) means this property has not been or cannot be analyzed in this model.

exp. observation diffusion simple diffusion normal-core

hot-spot model vortex-entry model vortex-entry model vortex model

analytic analytic numeric numeric

linear Emin–Ith Xa x X Xb

position-dependence x x X x

linear w–Emin X x (X)c Xb

T -dependence (X)d — xe —

H-dependence — (X)f — X

universal curve x x X X

a at E = 0 model predicts Ith(0) = Ic,dep
b model predicts nonlinear behaviour outside experimentally measured range
c linearity is reproduced, but quantitatively wrong
d reasonable description of the down-shift of the threshold at low T
e predicts a down-shift of the threshold at low T
f describes functional dependence, but quantitatively wrong

Appendix A. Quantum detector tomography

Appendix A.1. Introduction

In this appendix, we give a brief review ‡ of quantum detector tomography [89, 90].

The goal of performing a QDT experiment is to find the response of the detector in the

number state (Fock) basis, i.e. to find out the probability of a detection event pn if the

detector were to receive exactly n photons as an input.

Unfortunately, the vast majority of optical sources produce states which have some

distribution in the photon number basis, i.e. which are not eigenstates of the photon

number operator. It is therefore not possible to directly measure pn. Instead, a statistical

approach is adopted, in which the detector is illuminated with a series of states with

known distributions in the photon number basis §. A numerical transformation is then

applied to convert these results into the response in the number state basis.

The most convenient set of states to use for quantum detector tomography is the set

of coherent states. These states, which are produced by a laser [120], have the convenient

property that an attenuated coherent state still remains coherent. This means that it

‡ The presentation of the material follows [93]
§ Since the detector is not senstive to the phase of the incoming photon, we may adopt a classical

picture in which we consider only the photon number probability distribution, i.e. we restrict ourselves

to the diagonal elements of the density matrix.
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is possible to create the desired set of photon number probability distributions simply

by attenuation ‖.
The key idea of tomography is that it is independent of any preconceived notions

of the working mechanism of the detector. The quantities pn which are obtained from

tomography are reproducible numbers that do not depend on any model of the detection

mechanism. This makes this approach particularly suited for the investigation of the

detection mechanism of SNSPDs.

Appendix A.2. Experimental considerations

A typical tomography experiment consists of a pulsed laser which is fed to a variable

attenuator. This light is then fed to the device under test. Count rates are recorded

for each light intensity. In the case of SNSPDs, typically, the bias current through the

device is also swept, but each bias current constitutes a separate experiment.

The main experimental demands of QDT are on the light source. In particular,

the pulses which the light source sends out should be shorter than the lifetime of an

excitation in the detector. This number can be determined in a separate experiment [121]

and is 20 ps for NbN SNSPDs. Moreover, the pulses should be separated by more than

the dead time of the detector, to make sure that each individual pulse corresponds to

a separate probing of the detector, uncorrelated to the previous ones. It should also

be understood that the detection probabilities obtained from tomography apply to the

mode with the specific temporal, spatial and frequency characteristics that was used to

perform tomography.

For fiber-based experiments, part of the power is tapped off via a beam splitter

to a power monitor, which tracks fluctuations in the laser intensity. In this way, slow

power fluctuations, i.e. those on a time scale comparable to the experiment duration, can

be monitored. Feito et al. [90] have considered the effect of pulse-to-pulse fluctuations

and found that these can by accounted for by a broadening of the photon number

distribution.

The demands on the attenuator are as follows: experimentally, we find that between

3 and 4 orders of magnitude of attenuation are sufficient to resolve the quantities pn of

interest, i.e. those unequal to zero or one [99]. For large attenuations, which are typically

necessary for highly efficient detectors, the strategy is to use several attenuators and

calibrate each attenuator separately. This avoids two problems: first, the fact that

bolometric power meters have a dark current which defines a minimum level of intensity

which can be measured, typically 20 pW (corresponding to 108 photons/s), and second:

the fact that power meters are typically nonlinear when measuring over a large dynamic

range.

‖ Alternative sources have been proposed, but these have found little application beyond the single-

photon level
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Appendix A.3. Mathematics of QDT

In the most general case, the detector has multiple detection outcomes. An example of

this is a multi-element detector where one or more of the elements of the device may

fire, producing a voltage pulse whose height is proportional to the number of elements

which fired. Indexing the outcomes by m and the number of photons which caused them

by n, and noting that in general we offer up a series of light states indexed i, we may

write:

R = CP, (A.1)

where R = Rm,i is the probability of the m-th kind of outcome to the i-th input state,

C = cn,i is the matrix that contains the probability that state i contains n photons,

and P = pn,m is the probability that n photons will result in the m-th kind of detection

event. Since we are using coherent states, which are fully characterized by their mean

photon number N and have cn,i = exp(−Ni)N
n
i /n!, we may write:

Rm(Ni) =
∑

n

e−Ni
(Ni)

n

n!
pn,m (A.2)

Appendix A.4. Numerical inversion

A general issue with tomography problems is that they are numerically unstable, i.e.

the matrix C is generally close to singular. This means that in general, a least-squares

fit P = C−1R, where C−1 is the Penrose-Moore pseudoinverse, will strongly amplify

small errors ∆R onto the error ∆P. There are several approaches in literature to this

problem. All of these approaches involve adding some weak constraints to the problem

to make the inversion more tractable.

The earliest approach, which was developed by Lundeen, et al. [89]. is to add

the assumption that the pn are smooth in n, i.e. that if we know how the detector

responds to n photons, we can make a decent guess how it will respond to n+1 photons:

pn+1 ≈ pn. This constraint is enforced by penalizing the solution for large differences

between adjacent pn by adding an extra term k
∑

n(pn − pn+1)
2 to the least squares fit.

This has the effect of penalizing solutions which have large difference between photon

numbers, which are considered unphysical in this approach.

A second approach is to introduce the weak assumption about the detector that

some part of the action of the detector is linear loss [91]. This linear loss corresponds

to a reduction of the mean photon number. We can therefore write:

Rm(Ni) =
∑

n

e−ηN (ηNi)
n

n!
pn,m, (A.3)

where 0 ≤ η ≤ 1 is the parameter describing the linear loss. Equation (A.3) is now

overdetermined: only products of η and pn enter. To resolve this issue, an additional

assumption is introduced, which is sparsity: the assumption that only few pn will have

values unequal to 0 or 1. This approach can be formalized in the form of model selection,
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which leads to a rigorous definition of the notion of ’the model that fits the data

well without too many parameters’. In this way, a linear efficiency η and a set of

detection probabilities pn can be obtained simultaneously. This approach was found to

be particularly useful for detectors with small overall efficiency or small active area.
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[47] Engel A, Semenov A D, Hübers H W, Il’in K and Siegel M 2006 Phys. C 444 12

[48] Kitaygorsky J, Komissarov I, Jukna A, Pan D, Minaeva O, Kaurova N, Divochiy A, Korneev A,

Tarkhov M, Voronov B, Milostnaya I, Gol’tsman G and Sobolewski R R 2007 IEEE Trans.

Appl. Supercon. 17 275–278

[49] Langer J S and Ambegaokar V 1967 Phys. Rev. 164 498

[50] McCumber D E and Halperin B I 1970 Phys. Rev. B 1 1054

[51] Skocpol W J and Tinkham M 1975 Rep. Prog. Phys. 38 1049

[52] Little W A 1967 Phys. Rev. 156 396–403

[53] Likharev K K 1979 Rev. Mod. Phys. 51 101

[54] Berezinskii Z L 1970 Zh. Eksp. Teor. Fiz. [Sov. Phys. JETP] 59 907

[55] Berezinskii Z L 1971 Zh. Eksp. Teor. Fiz. [Sov. Phys. JETP] 61 1144

[56] Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181

[57] Mooij J E 1984 Percolation, Localization, and Superconductivity ed Goldman A M and Wolf S A

(Plenum Press New York) p 325

[58] Benkraouda M and Clem J R 1996 Phys. Rev. B 53 5716

[59] Maksimov I L and Maksimova G M 1997 JETP Lett. 65 423

[60] Bartolf H, Engel A, Schilling A, Il’in K, Siegel M, Hübers H W and Semenov A 2010 Phys. Rev.
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2003, Proc. of the 6th Eur. Conf. on Appl. Supercond. Sorrento, Italy (Institute of Physics

Conference Series no 181) ed Andreone A, Pepe G P, Cristiano R and Masullo G p 2895

[116] Suzuki K, Shiki S, Ukibe M, Koike M, Miki S, Wang Z and Ohkubo M 2011 Applied Physics

Express 4 083101

[117] Inderbitzin K, Engel A and Schilling A 2013 IEEE Trans. Appl. Supercond. 23 2200505

[118] Marsili F, Stevens M J, Kozorezov A, Verma V B, Lambert C, Stern J A, Horansky R, Dyer S,

Duff S, Pappas D P, Lita A, Shaw M D, Mirin R P and Nam S W 2015 Hotspot Relaxation

Dynamics in a Current Carrying Superconductor arXiv:1506.03129

[119] Kozorezov A G, Lambert C, Marsili F, Stevens M J, Verma V B, Stern J A, Horansky R, Dyer



Detection mechanism of SNSPDs 40

S, Duff S, Pappas D P, Lita A, Shaw M D, Mirin R P and Nam S W 2015 accepted for publ.

in PRB

[120] Glauber R 1963 Phys. Rev. 131 2766

[121] Zhou Z, Frucci G, Mattioli F, Gaggero A, Jahanmirinejad S, Hoang T B and Fiore A 2013 Phys.

Rev. Lett. 110 133605




