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Abstract: We demonstrate the possibility of applying surface-enhanced Raman spectroscopy (SERS)
combined with machine learning technology to detect and differentiate influenza type A and B viruses
in a buffer environment. The SERS spectra of the influenza viruses do not possess specific peaks
that allow for their straight classification and detection. Machine learning technologies (particularly,
the support vector machine method) enabled the differentiation of samples containing influenza A
and B viruses using SERS with an accuracy of 93% at a concentration of 200 µg/mL. The minimum
detectable concentration of the virus in the sample using the proposed approach was ~0.05 µg/mL
of protein (according to the Lowry protein assay), and the detection accuracy of a sample with this
pathogen concentration was 84%.

Keywords: surface-enhanced Raman spectroscopy; SERS; influenza A virus; influenza B virus;
detection; machine learning

1. Introduction

Outbreaks and epidemics of viral diseases in recent years have raised the active search
for new methods for differential diagnostics and virus detection. Modern methods of virus
detection, such as polymerase chain reactions (PCR) [1] and enzyme-linked immunosorbent
assays (ELISA) [2], have high sensitivity in determining the presence of influenza viruses
in a sample [3,4] but have a number of disadvantages: laboriousness, time duration of the
assays, low versatility, and a high percentage of false positive results [5,6].

Surface-enhanced Raman spectroscopy (SERS) is considered a promising alternative
for the differential detection of viral infections [7–11]. The viral envelope contains surface
proteins that differ in their amino acid composition and conformation which leads to the
difference in Raman spectra of various viruses. Since the Raman scattering signal is rather
weak, the SERS is used to enhance it by implementing special substrates with a surface layer
containing nanoparticles. The latter allows amplification of the Raman scattering signal of
the test sample due to the plasmon resonance effect, by 103–109 times, and the subsequent
detection of the pathogen in low concentrations (5 × 108 PFU/mL) [7]. Identification of
viral particles by SERS spectroscopy has a number of potential advantages over classical
diagnostic methods, such as the speed of testing and the possibility of diagnosing without
the need to use specific antibodies or aptamers [7,9–11]. On the other hand, there are
developments that are aimed at the selective detection of a specific pathogen based on
SERS substrates made from precious metal nanoparticles and immobilized antibodies or
aptamers [12–14]. This approach, however, deprives versatility, which is the SERS technol-
ogy’s main advantage, since each antigen has its own specific features in the spectrum [15].
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The label-free SERS platform, in combination with machine learning, can become a power-
ful tool for diagnosing viral diseases not only due to antigen detection, but also due to the
detection of biomarkers in the sample [16,17].

Many research efforts are underway to create a universal SERS substrate made from
metal nanoparticles and nanorods which will allow us to determine the presence of viruses
(including their type) in a sample [18–22]. The optimal parameters of nanostructures in
these studies are selected to amplify the Raman signal. Thus, the differences in spectra
could be noticeable visually [22] or be differentiated by classical methods of mathematical
analysis, such as multivariate calibration and partial least squares regression (PLS/PSR) [23].
It should be noted, however, that these studies were carried out with purified samples
of viral particles. In field work dealing with clinical samples, virus detection using this
approach can be complicated.

Spectral patterns of different influenza strains have similarities [24,25] and to make
their robust classification possible, mathematical processing methods can be used. For
example, machine learning technologies improve the accuracy of differentiation and clas-
sification of SERS spectra [26]. Huang J. et al. managed to achieve an accuracy of 87.7%
using the technology of recurrent neural networks (RNNs) in identifying the spectra of
SARS-CoV-2 spike proteins [27]. The experiments by Paria D. et al. demonstrated how
the random forest algorithm provides an accuracy of 83% when differentiating Zika, coro-
navirus (SARS-CoV-2), influenza A (H1N1), and Marburg viruses [11]. Yeh Y.T. et al.
described a technique for recognizing differences in the SERS spectra of rhinovirus, the
influenza A virus, and the type 3 parainfluenza virus with an accuracy of 93% [24]. Their
scientific team also conducted a study on samples containing avian influenza viruses and
confirmed the data processing efficiency by machine learning using the logistic regression
algorithm [24,28]. The work of Lim J.Y. et al. [25] demonstrates the possibility of classifying
the cells infected with wild and mutant influenza A viruses by their SERS spectra using the
principal component analysis (PCA) [29].

The paper by Zhang Z. et al. described an experiment on modifying the structures
of silver nanosubstrates by adding acetonitrile, bromine, and calcium ions; the minimum
number of viruses for successful detection, in this case, was 100 particles per test [30]. In
their work, the PCA was used to classify the samples containing and not containing viruses;
as a result, differentiation analysis showed the spectra separation with a 95% accuracy
(yet the researchers noted that the cell proteins interfere with the detection of the viral
proteins themselves). In continuing experiments with SERS substrates, Zhang Z. et al.
used sodium borohydride to change the conformation of silver nanostructures in order to
detect adenovirus, coronavirus (SARS-CoV-2), and the influenza A (H1N1) virus [31]. The
analysis time was 2 minutes and the minimum number of viral particles for detection was
reduced to 10 units. Their work used the Latent Dirichlet allocation algorithm [32] with a
differentiation accuracy of 95%.

The work of Durmanov et al. describes the usage of a fabricated SERS substrate,
which was composed of nanoporous mica with the addition of a thin silver layer by
electron beam physical vapor deposition method [33]. Four types of viruses were selected
to demonstrate the practical application of the new SERS substrate: the myxoma virus
(MYXV), the canine distemper virus (CDV), the tobacco mosaic virus (TMV), and the
potato virus X (PVX). The SERS substrate performance was tested in its ability to obtain
the spectra of viral particles of different sizes, morphology, structural composition, and
physicochemical properties. Various methods of data analysis were used to identify the
viruses by their spectra. Data spectral analyses were carried out by the method of machine
learning, the principal components, and the linear discriminant analysis (PCA-LDA), in
particular. The classification model accuracy was double-checked by 5-fold repetition of
the 3-fold cross-validation, resulting in an average accuracy of 99.4%.

Paria D. et al. reported on the creation of a label-free SERS platform with a metal-
insulator-metal nanostructure [34]. Combined with machine learning methods, this struc-
ture made it possible to differentiate four viruses: the influenza A virus, coronavirus,
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Zika virus, and Marburg virus. The PCA method was used for visual analysis of the data
obtained from the SERS spectra collection, and the random forest algorithm was used to
classify the spectral data set. The resulting classification accuracy for labeling an unknown
virus sample was ranging from 83 to 95%.

Song C. et al. were able to demonstrate the possibility of using the portable Raman spec-
trometer to detect the influenza A virus [35]. In their work, SERS spectra of the three influenza
virus types (A/Mute Swan/MI/06/451072-2/2006, A/chicken/Pennsylvania/13609/1993, and
A/chicken/TX/167280-4/02) and the control sample spectra were obtained, with the PCA
method used to classify the spectra. Visualization of the results on the principal component axes
indicated 100% accuracy (n = 10 for each sample). Despite the small number of data set samples,
this study demonstrated the portability and versatility of the SERS virus particle detection
technology.

The support vector machine (SVM) method has been previously applied to the detec-
tion of varied biomarkers using spectroscopic data [36]. A recent study by Yang Y. et al.
demonstrates highly accurate differentiation of respiratory disease virus agents by imple-
menting custom-fabricated SERS substrates with silver nanorods and the SVM classification
procedure with data preprocessing [37]. The authors were able to differentiate a variety
of viruses, including a coronavirus, influenza A and B viruses, and adenovirus. In their
work, influenza viruses were contained in chick embryo allantoic fluid that could influence
spectral uniformity and produce fluorescence. The inclusion of organic components may
influence pattern recognition and defining fingerprints characteristic for viral particles.

In this paper, we propose implementing SERS and subsequent processing of the
spectra to detect and differentiate the A and B influenza viruses in an STE buffer medium
and investigate the limits of virus detection using this approach. Here, to the best of
our knowledge, we, for the first time, demonstrate differentiating the A and B influenza
viruses in an STE buffer based on SERS and SVM. We demonstrate successful detection
and 93% accuracy in the differentiation of the viruses with low-cost commercial substrates,
a simple STE buffer solution, and a standard machine learning algorithm that does not
require time-consuming preprocessing steps of the spectral data. This makes our approach
affordable and effective for use in real-life applications.

2. Materials and Methods
2.1. Viruses

Influenza A and influenza B viruses are typical agents causing acute respiratory
infections. The antigenic structure of the hemagglutinin of influenza A and B viruses differs
by ~70% [38], which made these pathogens a representative model for research.

Influenza A (A/California/07/2009, A(H1N1)pdm09) and influenza B (B/Hong
Kong/269/2017) viruses were grown in chick embryos; purified virus concentrate was
then obtained by differential centrifugation of virus-containing allantoic fluid followed
by ultracentrifugation reprecipitation. The Pierce BCA Protein Assay Kit (Thermo Fisher
Scientific, Rockford, IL, USA) was used to measure the protein concentration in purified
virus concentrates. The result of determining the concentration of protein, according to
Lowry, in concentrated viral suspensions, was <200 µg/mL. The hemagglutination titer of
the concentrate was 1:256. The specificity of the obtained viral concentrates was confirmed
by the ELISA test using specific monoclonal antibodies to the hemagglutinating protein of
influenza A and B viruses.

The suspension of purified viral particles was placed in an STE buffer medium for
further storage and use.

2.2. Buffer Medium

The STE containing NaCl, Tris, and EDTA with pH = 8.0 was used as a buffer medium.
The choice of this medium was justified by the absence of a fluorescence signal in the
range required. The absorption spectrum of the STE buffer medium (in the visible and IR
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ranges) is shown in Figure 1. It absorbs, in the IR region, near 980 nm lying far from the
SERS signal.
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Figure 1. Absorption spectra of the STE buffer medium.

2.3. SERS Substrates

Commercial SERS substrates from SERSitive [39] were used in this work. This choice
was made due to the substrate’s hydrophilicity and tenfold Raman signal amplification
at a 633 nm wavelength. The substrates consisted of glass, indium tin oxide, and con-
tained nanostructured electrodeposited silver nanoparticles. The average size of substrate
nanoparticles was 100–150 nm and the distance between nanoparticles was 100–200 nm.
This substrate structure makes it possible to adsorb viral particles and provide high signal
reproducibility over the entire surface. The image of the substrate obtained by scanning
electron microscopy (the accelerating voltage was 10 kV) is shown in Figure 2.
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2.4. Raman Spectroscopy Setup

The measurements were carried out using a Horiba LabRam Raman spectrometer
(Horiba Jobin Yvon S.A.S., Longjumeau, France). The setup included a laser source (a
632.8 nm wavelength, 0.01 mW of power), a spectrometer (600 lines/mm grating, a
500 nm blaze wavelength), a Mitutoyo Apo Plan 50x VIS lens, and a CCD camera (a
2000 × 800-pixel matrix in the receiving area, a 15 × 15 µm size of the pixel). The design of
the spectrometer is shown in Figure 3.
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4—lens; 5—sample; 6—mirror; 7—condenser; 8—entrance slit of the spectrometer; 9, 11—aspherical
mirrors; 10—diffraction grating; 12—CCD camera.

The excitation radiation of the laser source was put through an aperture diaphragm
serving as a spatial filter. The edge filter reflecting the excitation light and transmitting the
Raman signal directs the excitation beam to the sample fixed at the object stage. The Raman
scattering signal was then collected by the lens, passed through the edge filter, and directed
to the spectrometer. The spectrally resolved signal was projected onto a CCD camera to
obtain a Raman spectrum.

It was experimentally found that the selected laser’s power and wavelength make
possible the fluorescence signal reduction and allow for minimizing the probability of
destroying the biological structures due to the nanoparticle heating.

3. Results
3.1. Spectra of A Pure Buffer Medium and Viruses in A Buffer Medium

During the experiments, the first dark spectra and spectra of a pure substrate without
a sample were obtained, with no Raman scattering peaks or artifacts visible during the
process. Then, 1 µL volume samples of a clean STE buffer medium with influenza A and
B viral particles (having concentrations of 500 µg/mL and 200 µg/mL according to the
Lowry method, correspondingly), were applied to the SERS substrates surface. Further,
the samples were dried at room temperature and placed in the spectrometer. SERS spectra
were obtained in the range from 550 to 2000 cm−1, which includes the main vibrational
modes of organic compounds; the exposure time was 60 s. Several spectra were taken from
five to six randomly selected spatial points on the substrate. As a result, 25–30 spectra were
obtained for each sample, some of which are given in Figure 4.
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medium; (b) an influenza A virus in the buffer medium; (c) an influenza B virus in the buffer medium.
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The Raman spectra of the influenza A and B containing samples are visually similar
to the buffer medium spectra due to the strong signal from the latter. In this case, the
differentiation of spectra and virus detection become complicated (see Figure 5), prompting
the use of mathematical processing methods (see Section 3.3).
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3.2. Spectra of Influenza A Virus in A Buffer Medium at Different Concentrations

To determine the method sensitivity limits of the SERS spectra and classification using
mathematical processing, the suspension with the influenza A virus was diluted with the
STE buffer medium in various ratios: 1:10, 1:100, 1:1000, and 1:10,000. The initial protein
concentration of the sample with the viral suspension was 500 µg/mL, according to the
Lowry method [40]. For this purpose, the STE buffer medium was poured into four test
tubes in portions of 10 µL. Then, 1 µL of the influenza A virus concentrated suspension
was added to the first tube and thoroughly mixed. Next, 1 µL was taken from the resulting
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suspension and put into the next tube, etc. The protein concentration in the resulting
diluted samples was 50 µg/mL, 5 µg/mL, 0.5 µg/mL, and 0.05 µg/mL, respectively. The
samples were then placed on a SERS substrate and dried. The process of obtaining Raman
scattering spectra was the same as the method described in Section 3.1; ten samples were
obtained for each concentration. The spectra did not differ visually, as shown in Figure 6.
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3.3. Mathematical Processing of Spectra
3.3.1. Detection of Influenza A Virus in a Buffer Medium

The experimental spectra obtained were combined into a table in which the columns
corresponded to wavelengths and the rows corresponded to intensity values. The table that
is used as a sample set had the dimensions of 57 × 1332 cells, where 29 lines corresponded
to the spectra of the STE buffer medium and 28 lines corresponded to the spectra of the
influenza A virus. For the mathematical processing, we used the package Scikit-learn v.
0.24.2 for Python v. 3.10.7 [41].

The detection of the viral particles was carried out by binarily classifying the spectra of
the pure buffer medium and the spectra of virus A in a buffer medium (with a concentration
of 500 µg/mL, according to Lowry). For preliminary processing of the data, we applied
standardization (StandardScaler) and normalization (Normalizer) to the sample set. For
classification, the support vector machine (SVM) method was used. The SVM is one of the
most commonly used machine learning algorithms, the purpose of which is to solve the
classification problem by constructing an optimal separating hyperplane [42].

Samples that are closest to the hyperplane are the support vectors. The hyperplane
is constructed so that the distance between it and the support vectors is maximized. This
distance is called a margin. Accordingly, the remaining objects must have a distance
to the hyperplane greater than the margin to perform the classification. This strict rule
corresponds to the linear kernel.

Cross-validation was carried out using StratifiedKFold (stratification of the data set
into two subsets at a ratio of 9 to 1, a training set of 51–52 samples, and a test set of
5–6 samples, with equal distribution of objects belonging to the different classes).

The average virus detection accuracy was 95.5% (see Table 1). Visualization of the
classification is shown in Figure 7 (in this case, the values of the spectra were separated by
a hyperplane).
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Table 1. Spectrum Classification Accuracy Results.

Iteration 1 2 3 4 5 6 7 8 9 10

Test set size 6 6 6 6 6 6 6 5 5 5

Accuracy 100% 94% 94% 100% 94% 94% 94% 88% 100% 94%
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Figure 7. Visualization of spectra clustering of the pure STE buffer medium and influenza A virus
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3.3.2. Differentiation of Influenza A, Influenza B, and Pure Buffer Medium Spectra

The spectra of influenza A and B viruses were combined into a table and the total
size was 90 × 1332 cells (a total of 90 spectrum samples). An additional class-labeled
column was introduced for classification purposes (the blank buffer medium was labeled
0, the influenza A virus was labeled 1, and the influenza B virus was labeled 2). Each
class of spectra was represented by an equal number of samples (30 for each). Similarly,
the methods of standardization (StandardScaler) and normalization (Normalizer) of the
samples were used for preprocessing. Here, we used the SVM method with the hinge loss
kernel function for classification that introduces soft boundaries of a margin.

Cross-validation was carried out using the StratifiedKFold method (the total data
set was stratified into two subsets at a ratio of 9 to 1, where the size of the training set
was 81 and the size of the test set was 9 samples. The training (test) set included per 27
(3) spectrum samples of the virus A, the virus B, and the pure buffer medium. Thus, a
balanced division of the sample set into subsets with respect to the classes was obtained).
In the full dataset, the mean cross-validation accuracy of classification was 93% (Table 2).
For different subsamples, the prediction accuracy varied within 85–100% and the standard
deviation (SD) was 4.8% (0.04835) at 10 cross-validation iterations. The visualization results
are shown in Figure 8.

Table 2. Accuracy of the pure STE buffer medium, the influenza A virus in the STE buffer medium,
and the influenza B virus in the STE buffer medium spectrum differentiation.

Iteration 1 2 3 4 5 6 7 8 9 10

Accuracy 93% 89% 93% 100% 93% 96% 89% 85% 100% 96%

SD 4.8%
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3.3.3. Determination of the Minimum Allowable Concentration of Viral Particles for The
Detection and Classification of the Influenza A Virus

In order to solve the binary classification problem of the pure buffer medium spectra
from the influenza A virus spectra at different dilutions, the support vector machine with a
linear classification kernel was used.

For samples with different influenza A virus concentrations in the buffer medium (1:10,
1:100, 1:1000, and 1:10,000), a data set was formed, which consisted of 10 measurements
of the virus A spectra (for each concentration) and 10 measurements of the buffer spectra.
Five subsets were formed for cross-validation (cross-validation was carried out using the
stratification method to maintain the balance of virus and buffer classes). Thus, the test set
for cross-validation had a dimension of 4 × 1332 (two spectra of the influenza A virus and
two spectra of the pure buffer medium), and the training set was 16 × 1332 (eight spectra
of the influenza A virus and eight spectra of the pure buffer medium).

The model always accurately differentiated the virus and the buffer at high virus con-
centrations (the classification accuracy was 100%), but the classification accuracy decreased
while lowering the concentration. The results of differentiation are presented in Table 3.
The samples with a virus concentration of 1:10,000 are of the greatest practical interest, and
the average accuracy of the virus/buffer binary classification for the test sets was 0.84 (84%)
in this case.

Table 3. Results of spectra differentiation by the algorithm at different influenza A virus dilutions.

Sample
Dilution

Average
Accuracy

SD of
Accuracy

Average
Spectrum

RSD

Total
Number

of
Samples

Training
Set Size

Test Set
Size

1:10 100% 0% 24% 20 15 5

1:100 100% 0% 42% 20 15 5

1:1000 94.5% 6.9% 26% 24 20 4

1:10,000 84% 15.2% 28% 20 15 5

We determined the spectrum relative SD (RSD) to investigate the intensity signal
deviation of the spectrum samples and their potential influence on the classification accu-
racy. We calculated the normalized intensity SD at each spectral wavenumber, normalized
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it by a mean value to obtain an RSD at each point, and then averaged it over the entire
wavenumber range. The average RSD was 24% for 1:10, 42% for 1:100, 26% for 1:100, and
28% for 1:10,000. It should be noted that such relatively high values may be caused by
using a label-free SERS substrate, and that no special techniques for ensuring uniformity of
a sample distribution were undertaken. Despite these RSD values, no apparent influence of
signal deviation was found during the classification process.

4. Discussion

Through a combination with machine learning, photonics technology has flourished in
biosensing by the implementation of extremely sophisticated methods to prepare biosam-
ples, tailored substrates, and complicated preprocessing of spectral data for numerical
analysis. In this work, we were focusing on design approaches to easy-to-use and affordable
biosensing applications, and demonstrated the possibility of detecting and differentiating
viral particles in a sample containing the STE buffer medium. The use of surface-enhanced
Raman spectroscopy technology in combination with machine learning algorithms made
it possible to differentiate samples with the influenza A virus, the influenza B virus, and
without the virus, even for the limited data set sizes. The spectra were classified using the
support vector machine. The accuracy of virus detection was 93%. To approach clinical
studies, the concentration of the influenza A virus was reduced by 104 times. At low concen-
trations, the method used was able to differentiate between virus-free and virus-containing
samples with an accuracy of 84%. The results of the study will help to develop fast, cheap
but reliable diagnostic methods for real life working with clinical samples.
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