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Detection of a MicroRNA Signal in an In Vivo Expression
Set of mRNAs
Tsunglin Liu1,2., Thales Papagiannakopoulos1,2., Kathy Puskar4, Shuping Qi7, Fernando Santiago1,2, William Clay8, Kaiqin Lao9, Yohan Lee6,
Stanley F. Nelson6, Harley I. Kornblum7, Frank Doyle5, Linda Petzold4, Boris Shraiman3, Kenneth S. Kosik1,2*

1 Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, California, United States of America, 2 Department of
Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California, United States of America, 3 Kavli
Institute of Theoretical Physics, University of California at Santa Barbara, Santa Barbara, California, United States of America, 4 Department of
Computer Science, University of California at Santa Barbara, Santa Barbara, California, United States of America, 5 Department of Chemical
Engineering, University of California at Santa Barbara, Santa Barbara, California, United States of America, 6 Department of Human Genetics, David
Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America, 7 Departments of Psychiatry,
Molecular and Medical Pharmacology, the Semel Institute and the Jonsson Comprehensive Cancer Center, David Geffen School of Medicine,
University of California at Los Angeles, Los Angeles, California, United States of America, 8 Department of Mathematics, Jackson State University,
Jackson, Mississippi, United States of America, 9 Applied Biosystems, Foster City, California, United States of America

Background. microRNAs (miRNAs) are approximately 21 nucleotide non-coding transcripts capable of regulating gene
expression. The most widely studied mechanism of regulation involves binding of a miRNA to the target mRNA. As a result,
translation of the target mRNA is inhibited and the mRNA may be destabilized. The inhibitory effects of miRNAs have been
linked to diverse cellular processes including malignant proliferation, apoptosis, development, differentiation, and metabolic
processes. We asked whether endogenous fluctuations in a set of mRNA and miRNA profiles contain correlated changes that
are statistically distinguishable from the many other fluctuations in the data set. Methodology/Principal Findings. RNA was
extracted from 12 human primary brain tumor biopsies. These samples were used to determine genome-wide mRNA
expression levels by microarray analysis and a miRNA profile by real-time reverse transcription PCR. Correlation coefficients
were determined for all possible mRNA-miRNA pairs and the distribution of these correlations compared to the random
distribution. An excess of high positive and negative correlation pairs were observed at the tails of these distributions. Most of
these highest correlation pairs do not contain sufficiently complementary sequences to predict a target relationship; nor do
they lie in physical proximity to each other. However, by examining pairs in which the significance of the correlation
coefficients is modestly relaxed, negative correlations do tend to predict targets and positive correlations tend to predict
physically proximate pairs. A subset of high correlation pairs were experimentally validated by over-expressing or suppressing
a miRNA and measuring the correlated mRNAs. Conclusions/Significance. Sufficient information exists within a set of tumor
samples to detect endogenous correlations between miRNA and mRNA levels. Based on the validations the causal arrow for
these correlations is likely to be directed from the miRNAs to the mRNAs. From these data sets, we inferred and validated
a tumor suppression pathway linked to miR-181c.

Citation: Liu T, Papagiannakopoulos T, Puskar K, Qi S, Santiago F, et al (2007) Detection of a MicroRNA Signal in an In Vivo Expression Set of
mRNAs. PLoS ONE 2(8): e804. doi:10.1371/journal.pone.0000804

INTRODUCTION
miRNAs regulate both the stability and translatability of their

mRNA targets [1]. This regulation occurs by binding of the ,21

nucleotide mature miRNA to an imperfectly matched sequence

within the target mRNA in animals. Most descriptions of miRNA

function focus either on their role as post-transcriptional regulators

of target mRNAs or at a much higher level on their cell biological

processes and organismal roles. Between these two roles lies

a poorly understood landscape through which the miRNA signal

must travel to implement its cell biological function at the

phenotypic level. Following reductions in the level of a protein

encoded by a target mRNA, subsequent effects may alter the levels

of other mRNAs and thus changes in miRNA expression will

ramify through the transcriptional profile. As the networked link to

miRNA fluctuation becomes more distant and diluted, correlative

changes in mRNAs may no longer be discernable among the

many other factors that control change in mRNA levels across a set

of transcriptional profiles. However, changes in mRNAs that may

not be direct targets, but lie closer to the consequences of miRNA

inhibitory effects may be discernable in the transcriptional profile.

Often the effects of miRNAs on mRNAs are studied by

expressing or suppressing the miRNA in cells. Because it is very

likely that non-physiological levels of miRNAs will alter the target

field, i.e. the specific set of mRNAs targeted, a more accurate

measure of miRNA effects requires endogenous determinations.

To discover cases in which miRNAs exert detectably strong

relationship to the level of an mRNA within a set of transcriptional

profiles we collected a set of human glioma samples and performed

broad-scale analyses of miRNA levels and mRNA levels. Broad

based gene expression in cancer data sets, which are known to vary
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in a manner that is predictive of tumor grade and patient

prognosis [2–4], were used to find significant correlations between

endogenous fluctuations in the miRNA and mRNA expression.

mRNAs were measured with oligonucleotide arrays (Affymetrix).

The miRNA profile was measured by multiplex RT-PCR (Applied

Biosystems) which can discern the specificity of miRNAs even for

very similar sequences from the same family [5]. These methods are

more reliable when comparing the expression of the same miRNA,

which was done in this study. The statistical analysis applied to the

data set revealed an excess of high correlation miRNA-mRNA pairs

beyond the number expected by chance. A subset of these high

correlation pairs was experimentally validated and revealed

a network of linked genes related to carcinogenesis.

RESULTS

Detection of highly correlated of miRNA-mRNA pairs
We measured the expression levels of 330 miRNAs and about

14,500 genes in 12 brain tumor biopsies from humans using

multiplex RT-PCR and Affymetrix oligonucleotide microarrays,

respectively. Before correlation analysis, we filtered data with

substantial noise due to low abundance in order to gain more

confidence in the resulting correlations (see Methods). We also

filtered those data with little variation across the 12 samples because

the absence of high variation will result in correlations mainly due to

noise. These criteria left 93 miRNAs and 7,089 probe sets for the

analysis. This approach was chosen because we intended to ask

whether there existed significant correlation within a highly

accurate data set, instead of extracting lower reliability data from

the entire data set. Both the mRNA and the miRNA data sets were

normalized by quantile normalization (see Methods). After

normalization, we calculated the Pearson’s correlation between

the expression profiles of the miRNAs and the mRNAs, and

compared these correlations with the random case. The random

case is referred to as any result obtained from randomly generated

or permuted expression profiles. Here, we asked whether the

distribution of 93*7,089 = 659,277 correlation coefficients, r’s, from

the data set was significantly different from the random case.

The distribution of r’s between our data set and the random

case (see Methods for a derived closed form solution of the random

case) clearly differed (Figure 1A). To ensure a truly random

control, we randomly permuted the order of samples in miRNA

(or mRNA) profiles and repeated the analysis 100 times. Such

random permutations preserved the autocorrelations among

miRNAs and mRNAs, and generated results close to the random

case. Quantitatively, our data set output 74 and 1631 correlations

below 20.9 and 20.8 respectively, while the output from the

random cases was 23.65 and 615.12 on average. The binomial

probability to obtain at least 74 and 1631 correlations from

659277 random trials with a probability of success (23.65/659277)

and (615.12/659277) was 1.4*10211 and 1.6*10211 respectively.

Similarly, the binomial probability to obtain at least 75 and 1735

correlations above 0.9 and 0.8 from 659277 random trials with

a probability of success (23.73/659277) and (628.19/659277) was

3.6*10211 and 1.1*10211 respectively. These small p-values

indicated the significant difference between our data set and the

random cases. Thus, the correlations between miRNAs and

mRNAs contained information regarding interactions, but did not

suggest a causal direction of the interaction. The difference

between the distribution of correlations in the data set and that of

the random distributions, was re-plotted with the ratio between the

number of r’s in each range of experimentally derived coefficients

to the random case (Figure1B). At both positive and negative

correlation tails, the miRNA-mRNA correlations were stronger

and more numerous than expected in the random case.

As seen in Figure1B the high positive and negative correlations

at the tails indicated a set of miRNA-mRNA correlations that were

stronger and more numerous than expected in the random case.

To define this set we defined a cutoff rc according to the equality

P(r < �rc(or r > rc) in the random case)�

(number of mRNAs)~0:1

This says that for a given miRNA, the expected number of mRNAs

with correlation greater than rc (,0.916 with 7089 mRNAs) is only

0.1 in the random case. A correlation coefficient was considered

high when the absolute value was above the 0.916 cutoff. With

a total of 93 miRNAs, we would expect 9.3 pairs with a high

negative correlation by chance; however we obtained 35 such pairs

from our experimental data (Table1), of which 27% were expected

to occur by chance. Similarly, for the positive correlations, we

obtained 37 such pairs, of which 25% were expected to occur by

chance. In other words, approximately one quarter of the total high

correlation pairs—72 positive and negative correlations (Table1)—

could be false positives. Nevertheless, the binomial probability in

obtaining at least 72 coefficients above the cutoff with the

probability of success 0.1 is very low (P,5*10221).

Figure 1. Distribution of correlation coefficients. (A) The histogram consists of 40 bins ranging from 21 to 1. (B) The ratio of number of correlation
coefficients in the experimental data to the random case for bin in Figureô 1A. At high correlations, the number of microRNA-mRNA pairs is larger
than expected in the random case. This result suggests information exists in the correlation coefficients between miRNAs and mRNAs.
doi:10.1371/journal.pone.0000804.g001

MiRNA/mRNA Correlated Pairs
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The clear correlation signal arising from just 12 samples was

somewhat surprising given the very large number of correlations

tested. However, the finding was validated by demonstrating

a decline in excess strong correlations over the random case with

fewer samples (Figure S2, where the ratio in number of

coefficients, similar to Figure1B, was plotted). The signal declined

with fewer samples because the correlation between a miRNA and

an mRNA in the actual data did not increase as fast as the

probability for high correlations in the random case. This

difference from the random case increased our confidence that

the signal was bona fide.

Target Predictions among Correlated Pairs
Among the explanations for high negative correlation pairs is

direct targeting of the mRNA by the paired miRNA. Therefore,

we checked the percentage of miRNA-mRNA high correlation

pairs that were predicted as target pairs by TargetScan [6].

Among the 35 high negative correlation pairs four were predicted

to have one target site (Table1). This number of predicted targets

may represent chance because among 37 high positive correlation

pairs five were predicted to have one target site. No high positive

correlation pair has two predicted sites, but among the high

correlation negative correlation pairs two pairs (in addition to the

four single target site pairs) had two predicted target sites (Table1).

Among the 659277 miRNA-mRNA pairs, 84238 (,12.8%) were

predicted targets. Thus, with 35 (or 37) pairs, we would expect

about 4,5 predicted target pairs by chance, which was the case

for the highly correlated miRNA-mRNA pairs. These findings

demonstrate that the dominant feature of the miRNA-mRNA

relationship in terms of the magnitude of change in the mRNAs is

indirectly related to the binding of the miRNA to its mRNA

targets. miRNA binding to a target usually has only a modest effect

on the level of the target mRNA and a greater effect on the

Figure 2. Percentage of predicted targets across a range of
correlation coefficients. The percentage of targets over the range of
correlation defined in Figureô 1 decreases with the increasing
correlation between miRNAs and mRNAs. This implies that the
correlation indeed captures information about target prediction, and
the negative slope might be related to direct targeting effect between
miRNAs and mRNAs.
doi:10.1371/journal.pone.0000804.g002

Table 1. List of miRNA-mRNA high correlation pairs and number of predicted target sites.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

miRNA(hsa-) mRNA r site miRNA(hsa-) mRNA r site miRNA(hsa-) mRNA r site

let-7b ULK2 0.93 1 miR-195 SF3B2 0.92 0 miR-30d ASTN 0.94 0

let-7i CBLB 20.92 0 miR-195 AARS 0.93 0 miR-30d TAOK3 0.94 0

miR-106b ADSS 20.92 0 miR-195 SVIL 20.94 1 miR-340 LAMC1 20.96 0

miR-106b TCF4 0.96 0 miR-195 LNK,SH2B3 20.92 0 miR-340 LPHN2 20.93 0

miR-139 INPP5A 0.96 0 miR-195 MAPT 0.92 0 miR-340 DNM3 0.94 0

miR-142-5p SNAP23 0.92 1 miR-195 FTO 0.93 0 miR-342 LPHN1 20.92 0

miR-142-5p EVI2B 0.92 1 miR-195 SCN3A 0.92 1 miR-342 APC2 20.92 0

miR-181c PCAF 0.93 1 miR-19a ANXA4 20.93 1 miR-365 APIP 0.92 0

miR-181c ASCC1 0.95 0 miR-19a GSTO1 20.92 0 miR-92 ANXA7 20.93 0

miR-193a TM9SF1 0.92 0 miR-19a IFITM1 20.94 1 miR-182 FADS2 0.92 0

miR-193a B3GALNT1 0.94 0 miR-19a DDX11 0.93 0 miR-182 HPS1 20.93 0

miR-193a SOD2 0.92 0 miR-19a TTC3 0.93 0 miR-204 HRASLS 20.92 0

miR-193a PBEF1 0.93 0 miR-19a ENTPD1 20.93 0 miR-9 ATP6V0E 20.93 0

miR-194 AARS 0.95 0 miR-19a NCF2 20.92 0 miR-9 AMPD3 20.93 0

miR-194 LNK,SH2B3 20.96 0 miR-19a PRR13 20.92 0 miR-9 CCNG1 20.92 1

miR-194 REEP1 0.93 0 miR-27a PDZD8 20.92 0 miR-99a MAPT 0.93 0

miR-194 INA 0.92 0 miR-27b FSCN1 0.92 0 miR-99a MAPT 0.92 0

miR-194 LY75 20.95 0 miR-29a TRIM37 20.94 2 miR-155 RGS17 0.95 0

miR-194 PBX1 0.92 0 miR-29b DDX50 0.94 0 miR-155 SPRY4 0.92 0

miR-194 SCAMP5 0.92 0 miR-30b RAP2C 20.93 2 miR-376b TULP3 20.92 0

miR-194 RPIP8 0.92 0 miR-30c TXNIP 20.93 0 miR-518a-2* COPS4 20.93 0

miR-194 DLST,DLSTP 20.95 0 miR-30c ULK2 20.92 0 miR-518a-2* DCHS1 20.92 0

miR-194 CTBS 20.94 0 miR-30d TSPAN7 0.92 0 miR-93 PVRL2 20.93 0

miR-194 C1orf78 20.95 0 miR-30d PFKM 0.95 0 miR-95 HS2ST1 20.96 0

doi:10.1371/journal.pone.0000804.t001..
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encoded protein. Therefore, direct binding effects are more

difficult to detect in an endogenous data set of profiles. However,

the ability to detect specific endogenous changes in an mRNA

profile associated with miRNA fluctuations has not been pre-

viously reported.

Although most of the strongest miRNA-mRNA correlations are

not likely to be due to direct targeting, it is possible to detect in the

data set a weak effect that is consistent with miRNA targeting to

specific mRNAs. The coefficients of all miRNA-mRNA pairs were

split into 40 bins, ranging from 21 to 1 with a bin size 0.05 and

the percentage of predicted target pairs for each bin calculated

(Figure2). A clear trend was observed as the correlation went from

negative to positive: the percentage of predicted target pairs

decreased. As a control, we repeated the target analysis for the 100

random permutations mentioned above and compared their slopes

(see Methods). None of the 100 random permutations gave a slope

as negative as our observation, which indicated the significance of

the trend. This finding is consistent with data that miRNAs can

down regulate their targeted mRNAs [7], and therefore more

predicted target pairs should lie in the region of negative

correlation. This trend was apparent in the data even though

about 87% of the miRNA-mRNA pairs were not predicted as

target pairs by TargetScan.

Having detected a relationship between negative correlation

values and the percentage of predicted targets, we next asked

whether for a given miRNA, do its predicted targets show more

negative correlations. To this end, we split the 7,089 correlations

of each miRNA into two groups, those with and without predicted

targets. We then applied one sided Wilcoxon Rank Sum (WRS)

test to check the null hypothesis, that the correlation of the first

group is not lower than the second group. For each miRNA, the

one sided WRS test gave a P-value, and a P-value smaller than

a given cutoff indicated that the correlation with the predicted

targets was more negative than that with non-predicted targets. Of

91 miRNAs (two miRNAs from the set of 93 were not in

TargetScan.), 28 (,30%) miRNAs fell below the significance level

P = 0.05 (Figure3). Using the Bonferroni correction for multiple

tests, 7 miRNAs were found to show significantly more negative

correlations with the predicted targets, while only two were found

to show more positive correlation (Figure3). No relationship was

found between miRNA abundance and this difference in the rank

sum. Thus, those pairs which are predicted targets, but showed

a more positive correlation may be indirectly related.

Positive Correlations between Proximate Pairs
Some miRNAs are intronic, and these miRNAs show correlated

expression patterns with their host genes [8]. This observation was

replicated in our data where almost all the miRNAs and their host

genes showed positive correlations (Table2). Three miRNA-

mRNA pairs, miR-25/MCM7, miR-15b/SMC4L1, and miR-30c/

NFYC also appeared in the previous study. The reported

correlation coefficients were 0.838, 0.509, and 0.406, respectively,

values which are consistent with our data (Table2). We also

observed the co-expression of neighboring miRNAs as reported in

the same study (Figure S1).

A positive correlation signal was also detected between mRNAs

and those miRNAs that were close to, but not within the gene

encoding the mRNA (Figure4). Although weak, the positive

correlation signal persisted beyond the 1 Mb shown in the figure.

Thus, co-expression comprises part of the positively correlated

signal. However, the strongest co-expression signal from the

intronic miRNAs and the host genes did not contain a correlation

greater than 0.8 (Figure4). Therefore, proximity did not explain

the very highly positive correlations.

Validation of High Correlation Pairs
Three miRNAs (miR-181c, miR-182, miR-19a) were selected from

among the miRNA-mRNA high correlation pairs to test whether

the correlations predicted changes that could be reproduced

experimentally. miR-181c and miR-182 were individually transfected

as pre-miRNAs into U251 glioblastoma cells to increase their levels

2–4 fold (data not shown). miR-19a was downregulated by addition

of 29-O-methyl (29-O-Me)-miR-19a. The U251 cells were derived

from a high-grade glioblastoma; therefore, they represent a reason-

able cell culture system for experimental validations of data derived

from glioblastoma biopsies. We determined whether the effects of

each miRNA on the mRNAs with which it was highly correlated

Figure 3. Histogram of P values from the WRS test for each of the
miRNAs. The WRS test compared the correlations of the predicted
targets with that of the non-predicted ones for each of the 91 miRNAs.
As the correlation went from negative to positive the percentage of
predicted target pairs decreased. Interestingly, some highly positively
correlated miRNAs had high P values, which suggests an indirect
relationship with the predicted target.
doi:10.1371/journal.pone.0000804.g003

Table 2. Correlations between intronic miRNAs and their host
genes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

miRNA(hsa-) Gene r

miR-106b MCM7 0.75

miR-9 C1orf61 0.73

miR-140 WWP2 0.61

miR-25 MCM7 0.6

miR-15b SMC4L1 0.47

miR-30e-3p NFYC 0.4

miR-151 PTK2 0.36

miR-93 MCM7 0.33

let-7f HUWE1 0.33

miR-30e-5p NFYC 0.31

miR-30c NFYC 0.21

miR-340 RNF130 0.15

miR-342 EVL 0.06

let-7g TMEM113 20.06

miR-214 DNM3 20.52

doi:10.1371/journal.pone.0000804.t002..
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corresponded to the relationship predicted in the correlation data

set. These experiments also served to suggest the direction of

causality between the correlated pair.

Twenty-four hours after the transfections of pre-miR-182, pre-

miR-181c, 29-O-Me-miR-19a, as well as a pre-miR scramble or a 29-

O-Me scramble, we collected total RNA for real-time RT-PCR to

determine the relative changes in the levels of the correlated

mRNAs (Figure5). We computed a delta Ct by taking the

difference in the mRNA values in cells exposed to the precursor

miRNA or the 29-O-Me-miRNA and cells exposed to the

appropriate scrambled control. As negative controls we de-

termined the levels of ten mRNAs that did not show any

significant correlation with the miRNA being tested. For each

miRNA, the expected outcomes are shown in the left box of

Table3 as either positive (+) or negative (2) correlations based on

the high correlation pairs in Table1, or no change (blank space)

because the measured mRNA is not highly correlated with

endogenous fluctuations in the test miRNA. The actual outcome

of the experiment, i.e. change in mRNA level relative to the

scrambled, is shown in the right box (Table3). Up or down

changes of more than two-fold in the mRNA level are indicated by

an up or down arrow; a difference less than two fold was denoted

by a blank space. Most boxes represent control cases in which no

significant correlation existed in the data set, nor did any change in

the mRNA occur in the experiment (Table3). Thus, all of these

cases bore out the predictions. Five cases with predicted correlative

changes were borne out by experiment. In four cases, the data set

predicted a correlation that did not occur experimentally and in

one case the experiment and the prediction went in opposite

directions (Table3). Given that we expect 26% to be false positives

and the imprecision of U251 cells to replicate the in vivo

fluctuations among the more diverse tumor samples this result

indicates a very high degree of predictability.

Among the validated high correlation pairs was a positive

correlation between miR-181c and p300/CBP-associated factor

(PCAF). PCAF is a histone acetyltransferase that induces transcrip-

tional activation by histone H3 acetylation of target promoters [9].

Additionally, PCAF can acetylate lysines on non-histone proteins

such as tumor protein p53 and retinoblastoma 1, activating their tumor

suppressor activity [10,11]. Abrogating PCAF function by lowering

its transcript levels is a mechanism by which the transforming

growth factor-beta, retinoblastoma, and p53 tumor suppressive

pathways are negatively modulated in cancer. The validation

experiment suggested that the direction of causality very likely

went from miR-181c to PCAF (although if the pair is networked as

a negative feedback loop in cis, causality in vivo could be bi-

directional).

Figure 4. Distribution of correlations between miRNAs and proxi-
mate mRNAs. This figure showed the distributions for 3 groups of
miRNA-mRNA pairs, classified by the distance between a miRNA and an
mRNA on the same chromosome. The y-axis shows the percentage of
miRNA-mRNA pairs in each range of correlation (21 to 1 with binsize
0.1). An intronic miRNA had a distance zero to its host gene. The
average length of a human gene, 55Kb (http://www.ncbi.nlm.nih.gov/
Web/Newsltr/Spring03/human.html), was chosen as one distance
boundary. As the distance between the correlated pair increased, the
distribution increasingly shifted away from positive correlations to
a normal distribution.
doi:10.1371/journal.pone.0000804.g004

Figure 5. Experimental Validation of Highly correlated miRNA/transcript pairs. The above figure represents Ctscrambled-Ctpre-mir/29-O-Me from three
individual transfection experiments of pre-miR-181c, pre-miR-182, 29-O-Me-miR-19a, 29-O-Me-scrambled and pre-mir-scrambled. PCAF, ASCC1, FADS2,
HPS1, ANXA4, GSTO1, IFITM1, DDX11, TTC3 and PRR13 levels were determined after transfection.
doi:10.1371/journal.pone.0000804.g005

MiRNA/mRNA Correlated Pairs
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We performed western blot analysis to verify the increase of

PCAF protein levels in response to miR-181c upregulation in U251

cells and in an additional glioma line, U87. Twenty-four hours

post-transfection we observed a significant increase in PCAF in the

pre-miR-181c treated U87 and U251 cells when compared to the

negative control scramble (Figure6A,B). This observation sug-

gested that the increase of PCAF observed in the qPCR

experiments was translated into an increase in the protein/enzyme

levels in both glioma lines. The upregulation of PCAF in response

to increased miR-181c could occur through a known transactivator

of PCAF, p53 [12,13]. We checked the levels of p53 in both U251

and U87 treated cells and observed a significant increase of p53

protein levels in the miR-181c treated U251 cells (Figure6C,D);

however we could not detect p53 in the U87 cells.

We then tested how miR-181c upregulation affected cell

proliferation and apoptosis, because the upregulation of PCAF

and p53 protein levels in U251 cells could lead to activation of

a plethora of other downstream tumor suppressive genes that can

suppress the oncogenic state of these glioma cells. We used the

Cell-Titer Glo assay to determine the number of metabolically

viable cells upon addition of miR-181c as compared to the

negative control scramble. We observed ,30% (p,0.01, t-test)

decrease in viable cells in the miR-181c treated sample, relative to

the negative control (Figure7A). This decrease could occur due to

increased apoptosis, therefore we checked the activity of Caspase-

3/7 in cells that were treated under the same conditions. There

was ,12% (p,0.05, t-test) increase in Caspase-3/7 activity in

response to miR-181c upregulation relative to the negative control

(Figure7B). These results suggest that the decrease of cell

numbers with miR-181c addition could be partially explained

by increased apoptosis. However, the level of apoptosis that we

observed does not fully account for the much higher difference in

the viable cell numbers, suggesting that miR-181c is also having

an anti-proliferative effect which could be mediated through p53

and PCAF (Figure8).

DISCUSSION
RNA from 12 brain tumor samples with some variation in their

histological diagnoses was sufficient to detect a set of miRNA-

mRNA pairs whose fluctuations are highly correlated. The merit

of this statistical detection method is that it avoids non-

physiological conditions required to alter gene expression. The

number of such high correlation pairs was significantly greater

than expected in the random case (Figure1). A weak positive

correlative effect due to distance between the pairs could be

detected (Figure4) as well as a weak negative correlative effect due

to direct miRNA targeting of mRNAs (Figure2,3). However,

among the very high correlation pairs only a small number bore

a predicted target relationship (11 of 72, Table1) or were located

on the same chromosome (7 of 72). For the remaining high

correlation pairs the data does not imply any direction of

casualty—is the correlation due to an effect of the miRNA on

the mRNA or vice versa? Key to this approach was the

endogeneous variations among the samples. In other words, the

correlations might stem from individual differences and are not

tumor specific. By restricting the samples to gliomas rather than

including healthy controls, these data in general cannot directly

address carcinogenesis. The interpretation of the correlations is

limited to miRNA/mRNA relationships solely within our sample

set.

Validation of the correlations was obtained by over-expressing

or suppressing the implicated miRNA and measuring the mRNAs

predicted to correlate. These experiments frequently matched the

prediction and suggested that in these cases, the correlation was

due to an effect of the miRNA on the mRNA (Table3). As

expected, some pairs were not validated. Among the reasons for

failure to validate are: (a) some of the high correlation pairs are

false positives; (b) the U251 cells do not exactly replicate the

tumors; (c) in some cases more than one miRNA contributes to the

effect; (d) the direction of causality may pass from mRNA to

miRNA; (e) direct causality does not underlie the relationship,

rather the high correlation is the consequence that both the

miRNA and the mRNA have a true biological relationship with

a third element. Nevertheless, the statistical approach to

endogenous fluctuations can reveal in vivo effects of miRNAs on

the transcriptional profile.

Global effects of miRNAs upon the transcriptional profile and

tissue specificity of mRNA expression have been reported [14,15].

However, these studies have generally focused on miRNA targets

which show more modest effects compared to the non-target

effects described here. Furthermore, in one of the cited studies [15]

the over-expression of a miRNA by transfection can create non-

physiological changes upon the mRNA target field. Because direct

miRNA targeting is unlikely in the absence of a seed region, as

observed in most of the high correlation pairs, other explanations

for how the high correlation pairs might arise were schematized

(Figure9). Among the possible explanations for high correlation

pairing is the binding of the miRNA to the promoter region of the

paired gene with the result that transcription increases in those sets

with positive correlations. A non-coding RNA binding to

a promoter has been described [16], albeit in this case suppression

occurred. Also possible is that the mRNA drives the effect on the

miRNA.

Validation experiments allowed us to infer a tumor suppression

pathway involving miR-181c (Figure8). MiR-181c and PCAF were

among the endogenously highly correlated transcripts. We

determined that miR-181c leads to an increase in PCAF and p53

protein levels consistent with the known positive interactions

between PCAF and p53 (Figure6). At least two possible

mechanisms could explain this result. The increase in p53 protein

levels could drive the increase in PCAF [12,13]. Alternatively, the

increase in p53 could occur through PCAF, which was recently

shown to stabilize p53 by inactivating MDM2, an E3 ubiquitin

Table 3. Validation of highly correlated pairs.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

miR-182 (X) miR-181c (X) miR-19a (Y)

PCAF +X X

ASCC1 +X X

FADS2 +X Y

HPS1 -Y Y

ANXA4 -X X

GSTO1 -X

IFITM1 -X X

DDX11 +Y

TTC3 +Y

PRR13 -X

The left box under each miRNA column indicates a high positive (+) or negative
(2) correlation (|r|.0.916) of that miRNA with the mRNA in each row. The up or
down arrow next to the plus or minus sign indicates the expected direction
when the miRNA at the top of the column is experimentally changed. miR-182
and 181c were upregulated (X) and miR-19a was downregulated (Y). The
observed direction of change is indicated in the right box under each miRNA
column. A difference of less than two fold is considered as no change and
denoted by a blank.
doi:10.1371/journal.pone.0000804.t003..
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Figure 6. Immunoblot analysis of miR-181c treated cells. Immunoblots of U251 and U87 transfected cells transfected with either miR-181c pre-
miRNA or a scrambled sequence. PCAF (A) and p53 (C) were immunodetected and actin was used as a loading control. Quantification of the
immunoblots showed a significant difference in B and C (p,0.01, t-test in all three comparisons).
doi:10.1371/journal.pone.0000804.g006

Figure 7. Cell Growth and Apoptosis Assays. U251 cells were treated with pre-miR-181c and negative control scramble. 24 hrs post-transfection, a)
cell growth (p,0.01, t-test) and b) apoptosis were assayed (p,0.05, t-test).
doi:10.1371/journal.pone.0000804.g007
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ligase that negatively controls p53 stability [17]. Concluding, the

positive correlation of miR-181c with these two tumor suppressor

genes can potentially explain the inhibitory effect of miR-181c on

cell growth and the more subtle increase in apoptosis observed in

the glioma cells (Figure8). Interestingly, miR-181c has been

reported to be low in a panel of high-grade glioblastomas tumors

and glioblastomas cell lines [18] and inhibition of another member

of the miR-181 family, miR-181a, in A549 lung carcinoma cells

induced cell growth [19]. Lower levels of miR-181c in glioblasto-

mas could indirectly decrease the transcript levels of the positively

correlated PCAF, resulting in decreased activation of major tumor

suppressive pathways in glioblastoma cells.

METHODS

Sample preparation
Tissue from glioma resections were obtained and collected at

UCLA under approval from the Institutional Review Board.

Categorization into high or low grade was based on the formal

pathology report, with WHO grades III and IV being termed

‘‘high grade’’ and grades I and II termed ‘‘low grade’’. Histological

diagnoses fell into the following categories: two low grade

anaplastic mixed gliomas, one low grade oligodendroglioma, six

high grade glioblastomas, two high grade gliosarcomas, and one

high grade glioblastoma/gliosarcoma. From each the 12 tumor

samples mRNAs and miRNAs were extracted.

mRNA Microarrays
Microarray data were obtained from the 12 tumors using

Affymetrics HG-U133A array platforms as described previously

[20]. Briefly, total RNA was isolated from tumor samples using

a TRIzol reagent (Invitrogen Life Technologies, Carlsbad, CA)

and was followed by a cleanup on a RNeasy column (Qiagen,

Hilden, Germany). cDNA was generated and cRNA probes were

generated using standard protocols. Aliquots of each sample

were hybridized to U133A oligonucleotide microarray (Gene-

Chip Human Genome U133A, Affymetrix, Santa Clara, CA),

which represents ,14,500 human transcripts. The chips were

scanned using the GeneArray scanner (Affymetrix). The CEL

files generated by the Affymetrix Microarray Suite (MAS 5.0)

were converted into DCP files using the DNA-Chip Analyzer

(dChip 1.3, http://biosun1.harvard.edu/complab/dchip/). The

processed data and the raw CEL files had been deposited in

NCBI Gene Expression Omnibus database (series record

GSE8692).

All arrays were performed using standard protocols recom-

mended by the manufacturer within the UCLA DNA Microarray

Facility. Briefly, all RNA samples had a 28S/18S ratio over 1.5

with no evidence of degradation. All scanned images were visually

inspected for surface defects. Quality Control assessment of array

data was performed using GCOS v1.4 (Affymetrix, Santa Clara,

Ca) and Array Assist v5.0 build 30237 (Stratagene, La Jolla, Ca).

Hybridization and Poly-A controls were within expected param-

eters, and 39/59 ratios for actin and GAPDH were below 3 (mean

Beta Actin 39/59 = 1.53 and mean GAPDH 39/59 = 1.02). GCOS

v1.4 Expression Reports also revealed expected Call percentages

(Present: 48% to 62%; Absent: 36% to 49%; Marginal: 1.5% to

1.9%). All arrays were within 1.5 fold of each other in overall

intensity.

miRNA expression profile
Using the same 12 tumor samples from which the microarray data

was obtained, miRNA profiling was performed by real-time

multiplex RT-PCR [5]. Briefly, multiplexed reactions were

performed with 330 sets of reverse transcriptase and second

strand synthesis primers followed by individual singleplex TaqMan

reaction in four 96-well reaction plates to measure the abundance

of each of the 330 miRNAs after the multiplexed RT-PCR. Each

primer and probe contained zip-coded sequences specifically

assigned to each miRNA to increase the specificity of each reaction

so that even small sequence differences in miRNA were amplified

and detected. This approach is reliable as miRNA measurements

on RT-PCR and microarray are concordant [21].

Cell Culture and Reagents
U251 and U87 glioblastoma cells were plated out in DMEM

containing 10% DMEM, 100 units/ml penicillin and streptomy-

cin. Cells were cultured in a humidified incubator with 5% CO2 at

37uC. Transfections were performed using siPORT NeoFX

Figure 8. Tumor suppressive pathway involving miR-181c.
doi:10.1371/journal.pone.0000804.g008

Figure 9. Mechanisms through which high miRNA-mRNA correlation
pairs could operate.
doi:10.1371/journal.pone.0000804.g009
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(Ambion, Austin, TX). Transfection complexes were prepared

according to the manufacturer’s instructions and 16105/ml cells

were added directly to the transfection complexes on the plate to

a final pre-mir concentration of 50 nmol/L. The transfection

medium was replaced 8 hours post-transfection. Three indepen-

dent transfections were performed for each pre-mir and 29-O-Me

oligoncleotide of miR-181c, miR-182, miR-19a and a scrambled

pre-miR or 29-O-Me as a negative control (Ambion, TX).

Real-Time PCR analyses of mRNAs
Total RNA was harvested 24 h after the transfection of U251 cells

with the pre-mir by using the mirVana kit (Ambion) and 1.2 mg of

total RNA was converted to cDNA by Superscript II first strand

synthesis kit (Invitrogen, Carlsbad, CA), both according to

manufacturers protocol. SYBR green real time PCR was

performed by using the 7500 real-time PCR system (Applied

Biosystems, Foster City, CA), POWER SYBR green master mix

(Applied Biosystems) and gene specific primers for PCAF, ASCC1,

FADS2, HPS1, ANXA4, GSTO1, IFITM1, DDX11, TTC3, PRR13,

ENTPD1, NCF2 and GAPDH (Applied Biosystems, http://www.

allgenes.com). All the real-time PCR data was normalized to

GAPDH. Melting temperatures for individual amplicons were

determined, and proper PCR product sizes were confirmed using

agarose gel electrophoresis. PCR assays were run in triplicate, and

expression data were averaged. To calculate the relative

expression for each gene, the 22DDCt method was used.

Western Blot
Total protein was isolated from U251 and U87 transfected cells in

mRIPA cell lysis buffer. Protein concentration was measured using

the BCA assay kit (Pierce, Rockford, IL). The membrane was first

probed with antibodies against PCAF (H-369) (Santa Cruz

Biotechnology, Santa Cruz, CA), anti-p53 (BD Biosciences, San

Jose, CA) and then with anti-beta-actin antibody (Sigma-Aldrich

St. Louis, MO). Secondary antibodies were labeled with either

Alexa Fluor 680 (Invitrogen) or IRDye800 (Li-Cor Biosciences,

Lincoln, NE). Signals were visualized using the Odyssey infrared

imaging system (Li-Cor Biosciences).

Cell Growth and Apoptosis Assay
U251 cells were transfected with 50 nM of pre-miR-181c (Ambion)

and 50 nM of negative control scramble (Ambion) and seeded in

96-well plates at 10,000 cells/well. Caspase-3/7 Glo (Promega,

Madison, WI) reagent was used to determine the Relative

Apoptosis 24 hours post-transfection. Cell Titer Glo (Promega)

reagent was used to determine relative cell growth 24 hours post-

transfection. Relative Apoptosis/Cell growth was determined by

comparing miR-181c with scramble treated cells. Results represent

the means of three separate experiments.

Data processing
mRNA data We computed the perfect match minus mismatch

model-based expression values and performed quantile

normalization implemented in dChip [22]. During

normalization, we checked the single, array, and probe outliers

such that these less reliable data were excluded. After

normalization, we were able to compare the expression levels of

all the genes in 12 samples. The presence-call was also determined

for each probe set. This call indicates whether an expression level

is reliable by labeling it as Present/Marginal/Absent through

comparing the perfect match with the mis-match values for each

probe set. Probe sets were linked to gene symbols using two

annotation files, ‘‘HG_U133A_annot.csv’’ obtained from

Affymetrix website and Ensembl (Release 43 February 2007)

[23] through BioMart [24]. Due to the overlap between

transcripts, a single probe set might detect more than one gene.

Alternatively, different probe sets might be mapped into the same

gene because many of them were designed to detect different splice

variants of the same gene. We found that probes for the same gene

usually showed very high correlation among themselves. For

example, in the filtered data mentioned below, there were 2,563

sets of probes that detect the splice variants of the same genes.

Probe sets that detected potentially alternatively splice variants

were highly correlated with over 80% with correlation coefficients

over 0.5.

The HG-U133A microarray chip contains 22,283 probe sets,

from which a subset was selected for correlation analysis. We set

up three criteria in selecting the subset: 1) to exclude less reliable

data, the presence-call of a probe set through out 12 tumor

samples had to be all Present. 2) to ensure high variability that

permits the investigation of correlation, we selected genes which

the maximum intensity among 12 samples was at least two fold

higher than the minimum one. 3) a probe set had to have a gene

symbol such that the biological relevance can be checked further.

The rationale behind these criteria were: 1) Because correlation

was critical to the analysis, we sought to reduce the uncertainty in

the data as much as possible. In fact, when the level in one or more

samples was labeled ‘‘Absent’’, the overall levels in all samples

were usually relatively low. Because low levels were usually

accompanied with relatively high fluctuations, we tended to filter

such cases. 2) The absence of high variability for a miRNA across

samples implied that the observed variation was more likelyto be

noise, and the resulting correlation spurious. 3) a gene symbol was

needed for the target analysis and the output of highly correlated

miRNA-mRNA pairs. 12542, 2547, and 105 probe sets were

filtered away by criteria 1,2, and 3, respectively, and we were left

with 7,089 probe sets for correlation analysis, which correspond to

5,822 distinct genes.

miRNA data Multiplex RT-PCR data for miRNAs were

normalized and reliability determined. The accuracy of

measurement determinations with different amounts of miRNA

samples demonstrated that a cut-off of 32 for the 30 ng sample was

reliable [5]. Bias was clearly detected when comparing the levels of

each miRNA from two samples before normalization (Figure S3).

Without normalization, the fluctuation in overall concentration of

miRNAs resulted in a strong artifactual auto-correlation among

miRNAs themselves (Figure S4). Therefore, similar to the

normalization of microarray data, quantile normalization on the

multiplex RT-PCR results was performed. In brief, with N ( = 12

here) samples, each contains Ct values of m microRNAs, quantile

normalization projects the N kth-tile’s into the same value which is

the average of the N kth-tile’s (k = 1,m). After normalization, the

Ct distributions of the N samples overlap exactly by definition.

In order to increase the confidence, we selected a subset of

miRNAs in which all the Ct’s in 12 samples were reliable, i.e., less

than the cutoff 32, and obtained Ct’s for 94 miRNAs in each

sample. This subset was then used for quantile normalization.

After normalization, we further excluded one miRNA such that

the remaining miRNAs all had strong signals, i.e., the maximum

Ct among 12 samples was greater than the minimum by at least 1,

a definition similar to the criteria used for mRNA data processing.

The Ct’s of these 93 miRNAs were then used for correlation

analysis.

Correlation coefficient and the random case
Before correlation analysis, we transformed the microarray

intensity data into log scale of base 2 such that they were
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comparable with the Ct data of miRNAs. In addition, we

converted a Ct value into 32-Ct such that the latter value was

positively proportional to the log of copy number.

The distribution of correlation coefficients of two normally

distributed random variables was utilized [25]. The derivation was

recapped as follows: Given two profiles xi and yi with i = 1,N,

where N is the number of data points (N = 12 in our case), the

Pearson’s correlation coefficient r is defined as

r~

PN
i~1

(xi{�xx)(yi{�yy)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

(xi{�xx)2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i~1

(yi{�yy)2

s ~
XN

i~1

dxidyi

where dxi and dyi are the normalized profiles with mean equals

zero and norm equals one (Sdxi = 0 and Sdxi
2 = 1). We can view

dxi and dyi as two vectors on a uni-sphere in high dimensional

space, then r is simply the inner product of these two vectors. For

example, in three dimensions, without loss of generality we set z-

axis as the direction of one vector, the inner product is simply the

angle between the two vectors, i.e., r = cosh. The probability

density of r can be derived through

p(r)dr~p(h)dh~

ð
p(A) sin hdhdw~

1

2
sin hdh,

where A is the surface area in three dimensional space. For

a random vector, the distribution on the surface should be uniform

such that p(A) = 1/A = 1/4p, a constant. In n-dimensions, the

probability density of h is known as p(h)sinh(n22). Thus,

p(r)! sin h(n{2) dh

dr
~ sin h(n{3)~(1{r2)(n{3)=2:

Since the vector is constrained to have its mean as zero, given N

data points, the vectors stay in N-1 dimensions. Thus, n equals N-1

in the last equation; after normalization such that the probability

adds up to one, we obtained the probability distribution as

p(r; N)~
C((N{1)=2)ffiffiffi
p
p

C((N=2){1)
(1{r2)(N{4)=2:

To confirm the probability distribution, we ran the following

simulations. We used our miRNA/mRNA data and randomly

generated a set of mRNA/miRNA data of the same size and

compared the resulting distribution of correlations with the

formula. All the 100 trials resulted in a distribution very close to

the random case. In addition, we randomly permuted the sample

order in the miRNA (or mRNA) profiles and repeated the analysis.

The clear signals shown in figures of this work disappeared in all

100 such trials (data not shown).

TargetScan prediction
Bulk data of the predicted mRNA targets of miRNAs in

TargetScan (Release 3.1 November 2006) was downloaded from

the website. We considered miRNAs in both conserved and non-

conserved families (conservation across human, mouse, rat, dog,

and sometimes chicken). The predicted targets only in human

were extracted. Two binding sites were considered distinct if their

seed region loci in the multiply aligned 39UTR sequences were

different. The 39UTR length for each gene was determined from

the 39UTR sequence from TargetScan. We removed the masked

bases and counted the remaining bases as the 39UTR length.

Estimation of slope in target percentage
We selected the correlation between 20.8 and 0.8 for slope

estimation to avoid the large fluctuations due to small amount of

miRNA-mRNA pairs outside the range. In Figure2, the slope of

points inside this range was obtained by fitting the curve to

a straight line.

miRNA host genes and their loci
Host gene information was obtained from miRBase (Release 9.1

February 2007) [26]. Gene loci were obtained from Ensembl

(Release 43 February 2007) [23] through BioMart [24] using

dataset Homo sapiens NCBI36. Each gene loci is a range of base

pairs and the distance between two genes was defined as the head

to tail distance except when a miRNA is in the intron of an

mRNA.

SUPPORTING INFORMATION

Figure S1 Relationship between the correlation of two miRNAs

on the same chromosome strand and the distance separating the

two miRNA loci (small points). The distances for all pairs of

miRNAs were ranked, and the distance rank is used as the x-axis.

For each distance rank, the physical distance on the chromosome

strand in log-scale is shown (circles). To view the coarse-grained

relationship, five correlations for each distance rank are averaged.

For example, for distance rank 10, we averaged the five

correlations of distance ranks 8 to 12.

Found at: doi:10.1371/journal.pone.0000804.s001 (1.45 MB TIF)

Figure S2 Ratio of number of correlation coefficients between

our experiments and the random case with 12, 11, 10, 9, 8, and 7

samples.

Found at: doi:10.1371/journal.pone.0000804.s002 (1.45 MB TIF)

Figure S3 Scatter plots of the Ct values of two samples for all

miRNAs. Two pairs of two samples were shown as an illustration.

Found at: doi:10.1371/journal.pone.0000804.s003 (1.45 MB TIF)

Figure S4 Distribution of correlation coefficients among miR-

NAs before and after normalization.

Found at: doi:10.1371/journal.pone.0000804.s004 (1.45 MB TIF)
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