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Continued uncontrolled transmission of SARS-CoV-2 in many parts of the world is
creating conditions for substantial evolutionary changes to the virus'. Here we
describe anewly arisen lineage of SARS-CoV-2 (designated 501Y.V2; also known as
B.1.351 or 20H) that is defined by eight mutations in the spike protein, including three
substitutions (K417N, E484K and N501Y) at residues in its receptor-binding domain
that may have functional importance®>. This lineage was identified in South Africa
after the first wave of the epidemicin a severely affected metropolitan area (Nelson
Mandela Bay) that is located on the coast of the Eastern Cape province. This lineage
spread rapidly, and became dominantin Eastern Cape, Western Cape and KwaZulu-
Natal provinces within weeks. Although the fullimport of the mutationsis yet to be
determined, the genomic data—which show rapid expansion and displacement of
other lineages in several regions—suggest that this lineage is associated with a
selection advantage that most plausibly results fromincreased transmissibility or

immune escape®s.

SARS-CoV-2emergedin 2019 and has spread rapidly around the world,
causing over 80 million recorded cases of COVID-19 and over 1.7 mil-
lion deaths attributable to this disease by the end of 2020. The failure
of public health measures to contain the spread of the virus in many
countries hasgivenrise toalarge number of virus lineages. Open shar-
ing of genomic surveillance data and collaborative online platforms
have enabled the real-time tracking of the emergence and spread of
these lineages®™°.

To date, there has been relatively limited evidence for SARS-CoV-2
mutations that have had a substantial functional effect on the virus.
A mutation resulting in a substitution in the spike protein (D614G)
emerged early in the epidemic, and spread rapidly through Europe
and North America in particular. Several lines of evidence now sug-
gest that SARS-CoV-2 variants that carry this mutation have increased
transmissibility” ™. Later in the epidemic, several lineages with a N439K
substitutionin the receptor-binding domain (RBD) of the spike protein
emergedindependently, probablyinarange of European countriesand
the USA. This mutation is associated with escape from neutralization
mediated by monoclonal antibodies or polyclonal serum®,

South Africais the most severely affected country in Africa, with
over 80,000 excess natural deaths having occurred by the end 0of 2020

(approximately 1,400 per million individuals)*. The introductionand
spread of several SARS-CoV-2 lineages to South Africa have previously
been described, as has the identification of lineages unique to South
Africaduring the early phase of the epidemic'™. Here we describe the
emergence and spread of a SARS-CoV-2 lineage that contains several
nonsynonymous spike mutations, including mutations that affect key
sites in the RBD (resulting in K417N, E484K and N501Y substitutions)
that may have functional importance. We demonstrate that this line-
ageislikely to have emerged after the first wave of the epidemicin the
worst-affected metropolitan area within the Eastern Cape province.
This was followed by rapid spread of this lineage, to the extent that by
theend of2020 ithad become the dominant lineage in three provinces.

Epidemic dynamics in South Africa

The second wave of the SARS-CoV-2 epidemicinSouth Africabeganaround
October 2020, weeks after atrough in daily recorded cases following the
first peak® (Fig. 1a). The country-wide estimated effective reproduction
number (R,) increased toabovelat the end of October (indicating agrow-
ing epidemic), which coincided with a steady rise in daily cases. At the
peak of the national epidemicinthe middle of July, there were over13,000

A list of affiliations appears at the end of the paper.
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Fig.1|SARS-CoV-2 epidemiological dynamicsin South Africa.

a-e, Histograms show the number of daily confirmed cases of COVID-19
(mapped to the leftyaxis) from March 2020 to January 2021 in South Africa (a)
andinthe four provinces under study: Eastern Cape (b), Western Cape (c),
KwaZulu-Natal (d) and Northern Cape (e). Fluctuations in the daily estimates of

confirmed cases per day and almost 7,000 excess deaths per week. The epi-
demiological profileinthe three provinces that are the focus of this analysis
(the Eastern Cape, Western Cape and KwaZulu-Natal) were broadly similar,
althoughthe Western Cape had an earlier and flatter peak in the first wave
(Fig.1b—d). Attheend of the first wave of the epidemicin early September,
there had been over 10,000 excess deaths in the Eastern Cape (1,510 per
millionindividuals)—the highest for any province (Extended Data Fig. 1).
Although there was a plateau in cases after the first wave, this was notice-
ablyshortinthe Eastern Cape; by early October, there was asecond phase
of exponential growth that was associated with anincrease indeaths ata
ratesimilar tothat of the first wave (Fig. 1b). The rate of positive PCR tests
atalocal-municipality level shows very high levels of infection (>20%) in
Nelson MandelaBay from the middle of October, followed by rapidly rising
levelsinthe surroundingareas through October and November (Extended
DataFig. 2). The resurgence of the daily case counts at an exponential
rate happened later for the Western Cape and KwaZulu-Natal than for
the Eastern Cape (Fig. 1c, d). By early December, all three provinces were
experiencingasecond wave and new casesinthe Western Cape had already
surpassed the peak of the first wave.

Phylogenetic and phylogeographic analysis

The early and rapid resurgence of the epidemic in parts of the East-
ern Cape and Western Cape prompted the intensification of genomic
surveillance by the Network for Genomic Surveillance in South Africa
(NGS-SA), including sampling in and around Nelson Mandela Bay in
the Eastern Cape and in the neighbouring Garden Route district of
the Western Cape (Extended Data Fig. 3). We analysed 2,882 whole
genomes of SARS-CoV-2 from South Africa, which were collected
between 5 March and 10 December 2020. We estimated preliminary
maximum-likelihood and molecular clock phylogenies for a dataset
containing anadditional 2,573 global reference genomes (Fig. 2a). We
identified a previously unrecognized monophyletic cluster (501Y.V2)
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R.areshowninred (mappedto therightyaxis); the mean estimated median R,
withupperand lower bounds of the 95% confidence interval are shown, along
withacut-offfor R=1(brokenredline). Weekly excess deaths in South Africa
andineachregionareshownasblack brokenlines (mapped to the leftyaxis).

that contained 341sequences, from samples collected between 8 Octo-
ber and 10 December in KwaZulu-Natal, Eastern Cape, Western Cape
and Northern Cape (Fig. 2b). Seven South African sequences that are
basaltothe 501Y.V2 cluster (Fig. 2a) were sampled in the Eastern Cape,
Western Cape, Gauteng and KwaZulu-Natal provinces between late June
and early September. Although these sequences do not have any of the
defining mutations of the 501Y.V2 variant, they are basal to the B.1.351
lineage and indicate that the precursor to the new variant was probably
circulating throughout the country before the emergence of 501Y.V2.

The 501Y.V2 cluster is phylogenetically distinct from the three main
lineages (B.1.1.54, B.1.1.56 and C.1) that were circulating widely in South
Africa (>42% of samples sequenced before October 2020) during the
first wave of infections'® (Fig. 2a). These three lineages had been cir-
culating in the KwaZulu-Natal, Western Cape, Gauteng, Free State,
Limpopo and North-West provinces. By the middle of November, the
501Y.V2lineage had superseded the B.1.1.54, B.1.1.56 and C.1 lineages,
anditrapidly became the dominantlineage in samples from the Eastern
Cape, KwaZulu-Nataland Western Cape (Fig. 2c, Extended Data Fig. 4).

Ourspatiotemporalphylogeographicanalysissuggeststhatthe501Y.V2
lineage emerged inearly August (95% highest posterior density ranging
from the middle of July to the end of August 2020) in Nelson Mandela
Bay. Itsinitial spread to the Garden Route district of the Western Cape
was followed by amore-diffuse spread from both of these areas to other
regions of the Eastern Cape, and more recently to the City of Cape Town
municipality and several locations in KwaZulu-Natal (Fig. 2d). From the
City of Cape Town, the variant has travelled north along the west coast
ofthe country to the Namakwa district in the Northern Cape province.

Mutational profile

At the point of first sampling on the 15 October, this lineage had—in
addition to D614G—five nonsynonymous mutations resulting in sub-
stitutionsin the spike protein: D80OA, D215G, E484K, N501Y and A701V
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Fig.2|Evolution and spread of the 501Y.V2 cluster in South Africa.

a, Time-resolved maximum clade credibility phylogeny of 5,329 SARS-CoV-2
sequences; 2,756 of these are from South Africa (red). The newly identified
SARS-CoV-2cluster (501Y.V2) is highlighted in yellow. b, Time-resolved
maximum clade credibility phylogeny of the 501Y.V2 cluster (n=341), with
provinceindicated. Mutations that characterize the cluster are highlighted at
thebranch atwhich each firstemerged. ¢, Frequency and distribution of
SARS-CoV-2lineages circulatingin South Africaover time. d, Spatiotemporal

(Figs.2b, 3a, Extended DataFig.5). A further three mutations thatlead to
substitutions inthe spike protein had emerged by the end of November:
L18F, R2461and K417N. We also observe a deletion of three amino acids
at positions 242 to 244, whichwas seeninsamples extracted and gener-
atedindifferentlaboratories across the NGS-SA. Thisregionis difficult
toalign; the deletion could potentially also be located at positions 241
t0243, but the resulting sequence would be exactly the same. Although
the variants appearedinavarying proportion of the sampled genomes
and showed changing levels of frequency with time, the mutationsin
RBD seem to become fixed in our sampling set, are present in almost
all of the samples and are consistently high in frequency across time
(Fig.3a,b). Compared to the previous three largest lineages circulating
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inSouth Africa, 501Y.V2 shows marked hypermutation bothin the whole
genomes and the spike regions—including nonsynonymous mutations
thatlead toamino acid changes (Fig. 3c). The main lineages identified
in South Africa during first wave (B.1.1.54, B.1.1.56 and C.1) contained
only the single nonsynonymous spike mutation (D614G) and did not
show therapid accumulation of mutations, as is observed with 501Y.V2.
We estimate that substitutions on the 501Y.V2 lineage are happen-
ing at 1.917 x 107 nucleotide changes per site per year, compared to
5.344x107*,4.251x10™*and 9.781x10™* nucleotide changes per site per
year for B.1.1.54,B.1.1.56 and C.1, respectively (Extended Data Fig. 6).We
performed structural modelling of the spike trimer with these muta-
tions, whichrevealed that three of the substitutions (N501Y, E484K and
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Fig.3|Mutational profile of the spike region of the 501Y.V2lineage.
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(n=341) mapped to the spike-protein sequence structure, indicating key
regions (suchasthe RBD). Each spike protein variantis shown atits respective
proteinlocation; barlengths represent the number of genomes that contain
the specific mutations. Only mutations that appear in>10% (grey dotted line)
ofsequences areshown. The D614 G substitution (inblack) is already presentin
the parentlineage. b, Changesin the mutation frequency of each variant
observed during the course of sampling. Grey bars show the number of 501Y.V2
sequences sampledatagiven time point; coloured lines show the change in the
number of sequences that containeach variant at the respective time points.
¢, Violin plots showing the number of nucleotide substitutions and amino acid

K417N) are at key residues in the RBD; three (L18F, DSOA and D215G)
are in the N-terminal domain; and one (A701V) is in loop 2 (Fig. 3d).
Thedeletion of three amino acid (242 to 244) also liesin the N-terminal
domain. In particular, two of the RBD sites (at positions 417 and 484)
are key regions for the binding of neutralizing antibodies (Extended
DataFig. 7).

Selection analysis

We examined patterns of nucleotide variation and fluctuations in
mutant frequencies at eight polymorphicsitesin the spike gene (Fig. 3a)
to determine whether any of the observed polymorphisms might con-
tribute to changes in viral fitness worldwide. For this analysis, we used
142,037 high-quality sequences from the Global Initiative On Shar-
ing All Influenza Data (GISAID) sampled between the 24 December
2019 and 14 November 2020, which represented 5,964 unique spike
haplotypes. The analysis indicated that two of the three sites in the
RBD (E484 and N501) display a pattern of nucleotide variation that is
consistent with the site evolving under diversifying positive selection.
The N501Y polymorphism that first appears in our sequences sam-
pled onthe 15 October shows indications of positive selection on five

changes that have accumulated in both the whole genomes and the spike
regionof the 501Y.V2lineage (n=341), comparedtolineages B.1.1.54 (n=472),
B.1.1.56 (n=179) and C.1(n=271). Thedot and error bars inside each group
denote the mean andrange for two s.d., respectively.d, Acomplete model of
the SARS-CoV-2 spike trimer is shown, with domains of asingle protomer shown
incartoonview and coloured cyan (N-terminal domain), yellow (C-terminal
domain and receptor binding domain), purple (subdomain1and2),and dark
green; N-acetylglucosamine moieties are colouredinlight green. The adjacent
protomersare showninsurface view and coloured shades of grey. Eight
nonsynonymous mutants (red) and a deletion of three amino acids (pink) that
together define the spike of the 501Y.V2 lineage are shown as spheres.

global-tree internal branches; codon 501 of the spike gene displays a
significant excess of nonsynonymous substitutions globally (dN/dS>1
oninternal branches, P=0.0011by the fixed-effectslikelihood method),
and mutant viruses that encode Y at this site have rapidly increased in
frequency in both the UK and South Africa (z score =11, trend Jonck-
heere Terpstra non-parametric trend test). Similarly, at codon 484,
thereisanindication of positive selection on sevenglobal-tree internal
branches, withan overall significant excess of nonsynonymous substi-
tutions globally (P=0.015). Outside the RBD, codons 18 (P<0.001), 80
(P=0.0014) and 215 (P< 0.001) show evidence of positive diversifying
selection globally, and the L18F mutation has also increased in fre-
quency in the regions in which it has occurred (zscore =17). Up until
the 14 November 2020, there was no statistical evidence of positive
selection at codons 417,246 and 701.

Discussion

We describe and characterize a newly identified SARS-CoV-2 lineage
with several spike mutations thatis likely to have emerged in a major
metropolitanareain South Africa after the first wave of the epidemic,
and thento have spread to multiple locations within two neighbouring
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provinces. We show that this lineage has rapidly expanded and become
dominantinthree provinces, at the same time as there hasbeen arapid
resurgence in infections. Although the full import of the mutations
is not yet clear, the genomic and epidemiological data suggest that
this variant has a selective advantage—from increased transmissibil-
ity,immune escape or both. These data highlight the urgent need to
refocus the public health response in South Africa on driving transmis-
siondownto low levels, not only to reduce hospitalizations and deaths
but also to limit the spread of this lineage and the further evolution
of the virus.

We detected this variant through intensified genomic surveillance
that was enacted inresponse to arapid resurgence of casesin the East-
ern Cape province?. However, both before and after the detection of
501Y.V2, our genomic surveillance involved the regular sequencing
of arandom selection of residual samples from routine diagnostic
services. We show that 501Y.V2 was detected in samples from 197 health
facilities in multiple districts across four provinces. We are therefore
confident that, although our sequencing coverage isrelatively low, the
sequences are representative of the circulating viruses in these prov-
inces. Although the epidemicin the Eastern Cape was contracting from
the middle of July to the middle of August (the estimated time to the
most-recent common ancestor), this was not a period of low transmis-
sion:incidence wasabove 20 case per 100,000 people per week at this
time and the positive testing rate remained above 10%, which suggests
moderate-to-high levels of transmission. As there were many lineages
circulating atthis time, the rapid expansion of 501Y.V2 and the almost
complete displacement of other lineages in multiple regions strongly
suggest a selective advantage for this variant.

Preliminary modelling suggests that the 501Y.V2 could be approxi-
mately 50% more transmissible than the previously circulating vari-
ants, although this estimate assumes that natural immunity confers
complete protection against reinfection®. Increased transmissibility is
plausible, given what we know about the spike mutationsin 501Y.V2 and
whatwe are learning about similar SARS-CoV-2 variants that are emerg-
inginotherlocations. The 501Y.V2 lineage has three substitutions that
affect key sitesinthe RBD (K417N, E484K and N501Y). The N501Y sub-
stitution has also recently been identified in alineage that has spread
rapidly in the UK (designated B.1.1.7)%. There is now good evidence
that this lineage is associated with increased transmissibility?. The
N501Y substitution has previously been shown through deep mutation
scanning, and in amouse model, to enhance binding affinity to human
ACE2%*%, Thereis some evidence that the E484K substitution may also
increase binding affinity to human ACE2?; and that the combination of
N501Y and E484K enhances binding affinity still further**?*. Additional
work is being conducted to understand the precise mechanisms that
underlie the increased transmissibility of these new variants.

The other reason for a selective advantage of 501Y.V2 could be
immune escape (that is, the capacity to cause reinfection). We have
very limited SARS-CoV-2 seroprevalence data from South Africato help
us to understand the true extent of the epidemic. In studies that used
residual blood samples from routine public sector antenatal and HIV
care, seroprevalencein parts of the City of Cape Town was estimated at
approximately 40%inJuly and August (toward the end of the first wave
of the epidemic in this area)*. We have shown that the Eastern Cape—
and Nelson Mandela Bay, in particular—were worse-affected than City
of Cape Towninthefirst wave, and we therefore believe that population
immunity could have been sufficiently high in this regionto contribute
to population-level selection. The RBD of the spike protein is the main
target of neutralizing antibodies that are elicited during SARS-CoV-2
infection?. Neutralizing antibodies to the RBD canbe broadly divided
into four main classes®. Of these, class1and class 2 antibodies appear
to be elicited most frequently during SARS-CoV-2 infection, and their
epitopes directly overlap the human ACE2 binding site”. Class 2 anti-
bodies bind to E484, and the E484K substitution has previously been
shownto confer resistance to neutralizing antibodies in this class and
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to panels of convalescent sera, which suggests that E484 is adominant
neutralizing epitope*>?°~3, Aside from the RBD, the remaining neutral-
izing activity is targeted at the N-terminal domain, and some of the
N-terminal domain mutations in 501Y.V2 affect residues that form an
antigenic supersite or are close to this site**, Preliminary evidence
from live virus and pseudovirus experiments indicates that 501Y.V2
shows substantial or complete escape from neutralizing antibodies in
convalescent plasma’®. We are currently investigating the frequency
of reinfection in the second wave, as well as the clinical presentations
of individuals with reinfection to better understand the clinical and
epidemiological effects of anyimmune escape. We are also conducting
neutralization assays on plasmafromrecipients of vaccines, and await
results of vaccine efficacy trials conducted in South Africa during the
expansion of 501Y.V2.

One hypothesis for the emergence of this lineage (given the large
number of mutations relative to the background mutation rate of
SARS-CoV-2)is thatit may have arisen through intrahost evolution*¢,
This hypothesisis supported by the long branch length that connects
the lineage to the remaining sequences in our phylogenetic tree
(Extended DataFig. 8). The mutationleading to the N501Y substitution
isone of several spike mutations that emerged inanimmunocompro-
mised individual in the USA who had prolonged viral replication for
over 20 weeks*. In South Africa (which has the largest HIV epidemic
inthe world), one concern has been the possibility of prolonged viral
replication and intrahost evolution in the context of HIV infection,
although thelimited evidence so far does not suggest that HIV infection
is associated with persistent SARS-CoV-2 replication®. However, the
observed diversity within this lineage cannot be explained by a single
long-term infection in one individual, because the lineage contains
circulating intermediate mutants with subsets of the main mutations
that characterize the lineage. If evolution within long-terminfections
were the explanation for the evolution of this lineage, then one would
need to invoke a transmission chain that passes through several indi-
viduals. Furthermore, antigenic evolution—evenwithinindividuals who
arenotimmunosuppressed—could offer an alternative explanation, as
several of the individual sites in the spike protein appear to be under
selective pressure worldwide and several of the identified mutations
have emergedindependently around the world (Extended Data Fig. 9)
and been found in circulating lineages together.

Although the fullimplications of the 501Y.V2 lineage in South Africa
are yet to be determined, these findings highlight the importance of
coordinated molecular surveillance systemsin all parts of the world in
enabling the early detection and characterization of new lineages and
informing the global response to the COVID-19 pandemic.
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Methods

No statistical methods were used to predetermine sample size. The
experiments were not randomized, and investigators were not blinded
to allocation during experiments and outcome assessment.

Epidemiological dynamics

We analysed daily cases of SARS-CoV-2inSouth Africaup the 16 January
2020 from publicly released data provided by the National Department
of Health and the National Institute for Communicable Diseases. This
was accessible through the repository of the Data Science for Social
Impact Research Group at the University of Pretoria (https://github.
com/dsfsi/covid19za)**. The National Department of Health releases
daily updates on the number of confirmed new cases, deaths and recov-
eries, withabreakdown by province. We also mapped excess deathsin
each province and in South Africa as a whole onto general epidemio-
logical data to determine the extent of potential underreporting of
case numbers and gauge the severity of the epidemic. Excess deaths
here are defined as the excess natural deaths (inindividuals aged 1 year
and above) relative to the value predicted from 2018 and 2019 data,
setting any negative excesses to zero. We obtained these data from
the Report on Weekly Deaths from the South Africa Medical Research
Council Burden of Disease Research Unit'e. We generated estimates
for the R, of SARS-CoV-2 in South Africa from the ‘covid-19-Re’ data
repository (https://github.com/covid-19-Re/dailyRe-Data) as of the
14 December 2020*.

Sampling of SARS-CoV-2

Aspartof the NGS-SA%, five sequencing hubs receive randomly selected
samples for sequencing every week according to approved protocols at
eachsite. These samplesinclude remnant nucleic acid extracts or rem-
nant nasopharyngeal and oropharyngeal swab samples from routine
diagnostic SARS-CoV-2 PCR testing from public and private laboratories
in South Africa. In response to a rapid resurgence of COVID-19 in the
Eastern Cape and the Garden Route district of the Western Cape in
November, we enriched our routine sampling with additional samples
from those areas. In total, we received samples from over 50 health
facilities in the Eastern Cape and Western Cape (Extended DataFig.10).

Ethical statement

The project was approved by University of KwaZulu-Natal Biomedical
Research Ethics Committee (ref. BREC/00001510/2020), the Univer-
sity of the Witwatersrand Human Research Ethics Committee (HREC)
(ref.M180832), Stellenbosch University HREC (ref. N20/04/008_COVID-
19) and the University of Cape Town HREC (ref. 383/2020). Individual
participant consent was not required for the genomic surveillance. This
requirement was waived by the Research Ethics Committees.

Whole-genome sequencing and genome assembly

cDNA synthesis was performed on the extracted RNA using random
primers followed by gene-specific multiplex PCR using the ARTIC
V3 protocol*. In brief, extracted RNA was converted to cDNA using
the Superscript IV First Strand synthesis system (Life Technologies)
and random hexamer primers. SARS-CoV-2 whole-genome amplifi-
cation was performed by multiplex PCR using primers designed on
Primal Scheme (http://primal.zibraproject.org/) to generate 400-bp
amplicons with an overlap of 70 bp that covers the 30-kb SARS-CoV-2
genome. For nanopore sequencing, we adapted thenCoV-2019 sequenc-
ing LoCost protocol v3*. In brief, PCR reactions were done in 12.5 pl
volumes and no PCR product purification was done. After DNA repair
(NEB) and end-prep reactions (NEB), up to 24 samples were barcoded
by ligation (EXP-NBD104/NBD114, Oxford Nanopore Technologies).
Barcoded samples were pooled, bead-purified and ligated to sequence
adapters. After the bead clean-up, the DNA concentration was deter-
mined with aQubit2.0 instrument (Thermo Fisher). Up to 50 ng of the

libraryin 75 pl were loaded on a prepared R9.4.1 flow-cell. A GridION
XS5 sequencing run was initiated using MinKNOW software with the
high-accuracy base-call setting. The NC045512 reference was used
for alignment during base-calling and the barcodes were split into
different folders. .fastq files were downloaded from the GridION X5
for assembly and further analysis.

For Illumina sequencing, PCR products were cleaned up using
AmpureXP purification beads (Beckman Coulter) and quantified using
the Qubit dsDNA High Sensitivity assay on the Qubit 4.0 instrument
(Life Technologies).

We then used the Illlumina Nextera Flex DNA Library Prep kit accord-
ing tothe manufacturer’s protocol to prepare indexed paired end librar-
ies of genomic DNA. Sequencing libraries were normalized to 4 nM,
pooled and denatured with 0.2 Nsodiumacetate. A12pMsamplelibrary
was spiked with 1% PhiX (PhiX Control v3 adaptor-ligated library used as
acontrol). Wesequenced libraries ona 500-cycle v2 MiSeq Reagent Kit
onthe llluminaMiSeqinstrument (Illumina). Full details of the ampli-
fication and sequencing protocol have previously been published***,

We assembled paired-end and nanopore .fastq reads using Genome
Detective 1.132 (https://www.genomedetective.com) and the Coro-
navirus Typing Tool**. For short reads, to accurately call mutations
and short insertions and deletions (indels) for SARS-CoV-2, Genome
Detective software was updated withan additional assembly step after
the de novo assembly and strain identification. When the de novo
assembly indicates a nucleotide similarity higher than 97% to the ref-
erence strain, a new assembly is made by read mapping against the
reference. In this process, for strains satisfying this criterion, reads
are mapped using minimap2* against the reference rather than the
de novo consensus sequence, and subsequently final mutations and
indels are called using GATK HaplotypeCaller*¢, with low-quality vari-
ants (with QD <10) filtered using GATK VariantFiltration*. To call the
consensus sequence, GATK HaplotypeCaller is used with default set-
tings, followed by GATK VariantFiltration to select only variants witha
variant confidence normalized by unfiltered depth of variant samples
ofatleast10 (QualByDepth>10).For nanopore data, candidate reads
areassigned to candidate reference sequences using NCBI blastn with
sensitive settings and low gap costs. Candidate reads are then aligned
using Annotated Genome Aligner, after which a draft majority con-
sensus sequence is subsequently called, and iteratively improved by
realignment of all reads against the draft consensus sequence and
realignment of regions with a putative insert against the reference
using global alignment (MAFFT). The resulting consensus sequence
isfurther polished by considering and correcting indels of length one
or twoinhomopolymer regions of length four or longer that break the
open reading frame (probably sequencing errors). Mutations were
confirmed visually with .bam files using Geneious software V2020.1.2
(Biomatters). The reference genome used throughout the assembly
process was NC_045512.2 (numbering equivalent to MN908947.3).
All of the sequences were deposited in GISAID (https://www.gisaid.
org/), and the GISAID accession identifiers are included as part of
Supplementary Table 2. Raw reads for our sequences have also been
deposited at the NCBI Sequence Read Archive (BioProject accession
PRJNA694014).

Insome samples, the K417N substitution was previously not called.
To avoid an assembly concern, these samples were also analysed
using the ARTIC Illumina pipeline (https://github.com/connor-lab/
ncov2019-artic-nf, git revision 9ac3119a87). Results between the two
pipelines were highly consistent with respect to the lineage-defining
mutations, but also consistent with respect to the missing 22813G>T
(K417N) mutationin these samples, despite being considered covered
byboth pipelines (Supplementary Table 1). Inaddition, we haveimple-
mented a Sanger sequencing method that covers the main RBD sites
and this was used to confirm the K417N and other substitutions (that
is, E484K and N501Y) in sequences in which we were not confident
about the call from next-generation sequencing data. The full sequence
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properties, mutation and spike mutations of the 501Y.V2 sequences are
shown in Supplementary Tables 3, 4.

LoFreqwas used to detect minor viral variants to study the intrahost
heterogeneity of viral variants (quasi-species)* (Extended Data Fig. 5).
Variants were called with at minimum coverage of 10% and conserva-
tive false discovery rate Pvalue of 0.1. LoFreq models sequencing error
rate and implements a Poisson distribution to probe the statistical
significance of nucleotide variants at each position, filtering out all
variants that fall below the P value threshold.

Quality control of genomic sequences from South Africa

We retrieved all SARS-CoV-2 genomes from South Africa from the
GISAID database as of the 4 January 2021 (n=2,882). Before phylogenetic
reconstruction, we removed low-quality sequences from this dataset.
Wefiltered out genomes that did not pass standard quality assessment
parameters used in NextClade (https://clades.nextstrain.org). We fil-
tered out 105 genomes from South Africa owing to low coverage, and a
further 18 owing to poor sequence quality. Poor sequence quality was
defined as sequences with clustered single-nucleotide polymorphisms
and ambiguous bases at >10% of sites, and low-coverage genomes were
anything with <90% genome coverage against the reference. We there-
foreanalysed atotal of 2,756 South African genomes. We also retrieved a
globalreference dataset (n=2,573). Thiswas selected from the NextStrain
global reference dataset, plus the five most similar sequences to each
of the sequences from South Africa as defined by alocal BLAST search.

Phylogenetic analysis

We initially analysed genomes from South Africa against the global
reference dataset using a custom pipeline based on a local version
of NextStrain (https://github.com/nextstrain/ncov)®. The pipeline
contains several Python scripts that manage the analysis workflow.
It performs an alignment of genomes in MAFFT*8, phylogenetic tree
inference in1Q-Tree V1.6.9%, tree dating and ancestral state construc-
tion and annotation (https://github.com/nextstrain/ncov). The full
NextStrainbuild can be viewed at https://nextstrain.org/groups/ngs-sa/
COVID19-ZA-2021.01.18.

Theinitial phylogenetic analysis enabled us toidentify alarge cluster
of sequences (n =341) with multiple spike mutations. We extracted
this cluster and constructed a preliminary maximum-likelihood
tree in IQ-tree, together with seven basal sequences from the region
that were sampled from June to September 2020. We inspected this
maximum-likelihood tree in TempEst v.1.5.3 for the presence of atem-
poral (thatis, molecular clock) signal. Linear regression of root-to-tip
genetic distances against sampling dates indicated that the SARS-CoV-2
sequencesevolvedinarelatively strong clock-like manner (correlation
coefficient =0.33, R?=0.11) (Extended Data Fig. 6).

We then estimated time-calibrated phylogenies using the Bayesian
software package BEAST v.1.10.4. For this analysis, we used the strict
molecular clock model, the HKY+I, nucleotide substitution model and
the exponential growth coalescent model*°. We computed Markov
chain Monte Carlo (MCMC) in duplicate runs of 100 million states
each, sampling every 10,000 steps. Convergence of MCMC chains
was checked using Tracer v.1.7.1°.. Maximum clade credibility trees
were summarized from the MCMC samples using TreeAnnotator after
discarding10% as burn-in. The phylogenetic trees were visualized using
ggplotand ggtree®>%,

Phylogeographic analysis

Tomodel phylogenetic diffusion of the new cluster across the country,
we used a flexible relaxed random walk diffusion model that accom-
modates branch-specific variation in rates of dispersal with a Cauchy
distribution®. For each sequence, latitude and longitude were attrib-
uted to the health facility at which the diagnostic sample was obtained
or, if thatinformation was not available, to a point randomly sampled
within the local area or district of origin. Given that we do not have

access to residential geolocations within the genomic surveillance,
the location of the health facility serves as a reasonable proxy, espe-
cially as two-thirds of the population live within 2 km of their nearest
health facility®.

As described in ‘Phylogenetic analysis’, MCMC chains were run in
duplicate for 100 million generations and sampled every 10,000 steps,
with convergence assessed using Tracer v.1.7.1. Maximum clade cred-
ibility trees were summarized using TreeAnnotator after discarding
10% as burn-in. We used the R package seraphim to extract and map
spatiotemporal information embedded in posterior trees.

Lineage classification

We used a previously proposed*® dynamic lineage classification method
from the ‘Phylogenetic Assignment of Named Global Outbreak Lin-
eages’ (PANGOLIN) software suite (https://github.com/hCoV-2019/
pangolin). This is aimed at identifying the most epidemiologically
important lineages of SARS-CoV-2 at the time of analysis, enabling
researchersto monitor the epidemicin aparticular geographic region.
Alineage is a linear chain of viruses in a phylogenetic tree showing
connection from the ancestor to the last descendant. Variant refers to
agenetically distinct virus with different mutations to other viruses.
Forthe variantidentified in South Africain this study, we have assigned
it the name 501Y.V2; the corresponding PANGO lineage classification
is B.1.351 (lineages version 2021-01-06).

Selection analysis

To identify which (if any) of the observed mutations in the spike pro-
tein was most likely to increase viral fitness, we used the natural selec-
tion analysis of SARS-CoV-2 pipeline (https://observablehq.com/@
spond/revised-sars-cov-2-analytics-page). This pipeline examines the
entire global SARS-CoV-2 nucleotide sequence dataset for evidence
of: (i) polymorphisms having arisen in multiple epidemiologically
unlinked lineages that have statistical support for non-neutral evo-
lution (mixed effects model of evolution)¥, (ii) sites at which these
polymorphisms have support for a greater-than-expected ratio of
nonsynonymous-to-synonymous nucleotide substitution rates on
internal branches of the phylogenetic tree (fixed-effects likelihood)*®
and (iii) whether these polymorphisms have increased in frequencyin
the regions of the world in which they have occurred.

Structural modelling

We modelled the spike protein on the basis of the Protein Data Bank
coordinate set 7A94, showing the first step of the spike protein trimer
activation with one RBD domainin the up position, bound to the human
ACE2 receptor®’, We used the Pymol program (The PyMOL Molecular
Graphics System, version 2.2.0) for visualization.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Allof the SARS-CoV-2501Y.V2 genomes generated and presented in this
Article are publicly accessible through the GISAID platform (https://
www.gisaid.org/), along with all other SARS-CoV-2 genomes gener-
ated by the NGS-SA. The GISAID accession identifiers of the 501Y.V2
sequences analysedin this study are provided as part of Supplementary
Table 2, which also contains the metadata for the sequences. The raw
reads for the 501Y.V2 have been deposited at the NCBISequence Read
Archive (BioProject accession PRINA694014). Other raw data for this
study are provided as a supplementary dataset at https://github.com/
krisp-kwazulu-natal/SARSCoV2_South_Africa_501Y_V2_B_1_351. The
reference SARS-CoV-2 genome (MN908947.3) was downloaded from
the NCBI database (https://www.ncbi.nlm.nih.gov/).
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Code availability
All custom scripts to reproduce the analyses and figures presented in

this Article are available at https://github.com/krisp-kwazulu-natal/
SARSCoV2 South_Africa_501Y_V2_B 1 351.
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Extended DataFig.1|Excess deaths per millionindividualsby provinceand  metropolitanareas (Nelson Mandela Bay and Buffalo City) (b). EC, Eastern
metropolitan municipalities of South Africa. Dataare shown for up until the Cape; FS, Free State; WC, Western Cape; GP, Gauteng province; NC, Northern
week ending 8 September 2020 (immediately after the first peak of the Cape; KZN, KwaZulu-Natal; MP, Mpumalanga; NW, North West; NMB, Nelson
epidemicpeak).a, b, These graphsindicate the disproportionate effect of the Mandela Bay; BUF, Buffalo City; CPT, Cape Town; MAN, Mangaung; EKU,
first wave of the epidemicin the province of the Eastern Cape (a) and its Ekurhuleni; JHB, Johannesburg; TSH, Tshwane; ETH, Ethekwini.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size At the time of writing, 400 sequences of the 501Y.V2 SARS-CoV-2 variant had been produced by the NGS-SA (all fastq in SRA), and 341
genomes that passed quality control were used in this analysis. We believe this sample size was sufficient because the genomes come from
>90 clinics across 4 provinces and numerous districts of South Africa.

Data exclusions  For phylogenetic analysis, genomes were excluded if they presented <90% coverage against the reference AND/OR have sequencing quality
problem - e.g. gaps in key regions of the spike protein that causes spurious clustering.

Replication Reproducibility were performed for maximum likelihood and bayesian MCMC phylogenetic tree reconstructions. We computed MCMC
(Markov chain Monte Carlo) triplicate runs of 100 million states each, sampling every 10,000 steps for the 501Y.V2 dataset. All attempts at
replication were successful and the MCC tree for the 501Y.V2 cluster was of high support.

Randomization  Samples for SARS-CoV-2 sequencing in South Africa were randomly selected. As part of the Network for Genomic Surveillance in South Africa
(NGS-SA), five sequencing hubs receive randomly selected samples for sequencing every week according to approved protocols at each site. In
response to a rapid resurgence of COVID-19 in EC and the Garden Route District of WC in November, we enriched our routine sampling with
additional samples from those areas. In total, we received samples from over 50 health facilities in the EC and WC (Suppl Fig. S1).

Blinding Geographical blinding of data was not necessary for the study as it involves phylogeographical analysis, however the exact name of the health
facilities associated with the genomic samples were anonymized. Data identification from the samples were also anonymized as this was not
necessary for the analysis.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
[] Antibodies XI|[] chip-seq

Eukaryotic cell lines XI|[] Flow cytometry

O]
|:| Palaeontology |Z |:| MRI-based neuroimaging
]
X

Animals and other organisms

Human research participants

XOXXNXKX &

|:| Clinical data

Human research participants

Policy information about studies involving human research participants

Population characteristics We obtained samples consisting of remnant nucleic acid extracts or remnant nasopharyngeal and oropharyngeal swab samples
from routine diagnostic SARS-CoV-2 PCR testing from public and private laboratories in South Africa. The 501Y.V2 genomes in
this study came from patients of ages 6-84, from 192 female and 139 male patients, for which the 501Y.V2 genotype was
confirmed by sequencing.

Recruitment As part of the Network for Genomic Surveillance in South Africa (NGS-SA)14, five sequencing hubs receive randomly selected
samples for sequencing every week according to approved protocols at each site. In response to a rapid resurgence of COVID-19
in EC and the Garden Route District of WC in November, we enriched our routine sampling with additional samples from those
areas. In total, we received samples from over 50 health facilities in the EC and WC (Suppl Fig. S1).

Ethics oversight The project was approved by University of KwaZulu-Natal Biomedical Research Ethics Committee. Protocol reference number:
BREC/00001510/2020. Project title: Spatial and genomic monitoring of COVID-19 cases in South Africa. This project was also
approved by University of the Witwatersrand Human Research Ethics Committee. Clearance certificate number: M180832.
Project title: Surveillance for outpatient influenza-like illness and asymptomatic virus colonization in South Africa. Sequence data
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from the Western Cape was approved by the Stellenbosch University HREC Reference No: N20/04/008_COVID-19. Project Title:
COVID-19: sequencing the virus from South African patients. Patient consent was not required for the genomic surveillance. This
requirement was waived by the Research Ethics Committees.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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