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Abstract. We have characterized a protein immuno- 

logically related to dystrophin, the protein product of 

the Duchenne muscular dystrophy gene. We identify 

this related protein as a fast-twitch glycolytic isoform 

(mouse extensor digitorum longus-specific) of 

myofibrillar alpha-actinin. This specific isoform of 

alpha-actinin exhibits a more restricted pattern of ex- 

pression in skeletal muscle than fast-twitch-specific 

isoforms of both myosin and Ca2+-ATPase. Our results 

provide evidence that dystrophin and myofibrillar 

alpha-actinin are related proteins, reinforcing the 

previous data concerning the sequence homologies 

noted between nonmuscle cytoskeletal alpha-actinin 

and dystrophin. In addition, we describe the first an- 

tisera directed against a specific myofibrillar skeletal 

muscle isoform of alpha-actinin. 

UCnEmqE muscular dystrophy is a common human 
hereditary disease which causes the progressive loss 
of muscle tissue and results in early death. Recently 

the pathobiochemical basis for Duchenne muscular dys- 
trophy was identified as the deficiency of a large, membrane- 
associated, cytoskeletal protein called "dystrophin" (427 kD) 
(3, 9, 10, 15, 27, 32, 35). Based on amino acid sequence 
analysis, dystrophin appears to be related to two other cyto- 
skeletal proteins, spectrin (heterodimer of ~ 200- and *250- 
kD subunits) and nonmuscle alpha-actinin (homodimer of 
,v95-kD subunit) both of which contain an extensive central 
domain hypothesized to be composed of antiparallel triple 
helical-coiled coils which potentially form a dimeric rod 
structure (1, 6, 15). All three of these proteins contain non- 
rodlike carboxyl- and amino-terminal domains which are be- 
lieved to form noncovalent interactions with other proteins, 
thus forming a linkage between bound proteins at each end 
of the central rod domain (15, 17, 32). Dystrophin appears 
more closely related to the cytoskeletal (nonmuscle) alpha- 
actinins than it does to spectrin; there is considerable se- 
quence homology shared between the nonrodlike terminal 
domains of cytoskeletal alpha-actinin and dystrophin, while 
the analogous domains of spectrin appear unrelated to either 
of these proteins (6, 8, 15). 

Alpha-actinins have been defined in a large number of spe- 
cies and cell types by their characteristic molecular mass, 
size, and molecular structure, and also by their ability to bind 
F-actin (1, 2, 18, 23, 24, 29). Despite the structural homo- 
geneity of the alpha-actinins, there are two classes of al- 
pha-actinins which appear to have very different functions. 
Cytoskeletal alpha-actinins appear to be dynamic, Ca2+-sen - 
sitive components of intracellular actin filament networks (5, 
16, 26), while myofibrillar alpha-actinins are static, Ca 2+- 

insensitive major components of the myofibrillar Z-line (18, 
19, 29, 30). Both classes of alpha-actinin bind F-actin via 
their amino-terminal domain (21, 22). Indeed, the actin- 
binding domain has been shown to be very highly conserved 
at the amino acid level between Dictyostelium cytoskeletal 
alpha-actinin and chicken cytoskeletal alpha-actinin (23). It 
is not clear, however, whether this domain is similarly con- 
served with the myofibrillar alpha-actinins at the primary se- 
quence level, as amino acid sequence data is not yet available 
for these isoforms. Despite the obvious functional differ- 
ences between myofibrillar alpha-actinins and cytoskeletal 
(nonmuscle) alpha-actinins, they are highly immunologi- 
cally related. The only reported antibodies specific for al- 
pha-actinin isoforms were produced via immunoabsorption 
of nonspecific antisera against skeletal muscle and smooth 
muscle alpha-actinins (7). No antibOdy specific for a single 
skeletal muscle (myofibrillar) alpha-actinin isoform has, to 
our knowledge, been described. 

During our previous work on the characterization of dys- 
trophin we noted that an antibody preparation raised against 
a portion of the rod domain of dystrophin cross-reacted 
strongly with a Triton-insoluble protein of ~90  kD molecu- 
lar mass (9). This cross-reactive protein continued to be 
strongly recognized by the anti-dystrophin antiserum despite 
affinity purification of antibodies specifically directed against 
dystrophin (9, 32). We now report the characterization of this 
cross-reactive protein as a fast-twitch glycolytic isoform of 
alpha-actinin. We thereby provide the first evidence for the 
structural homology of myofibrillar alpha-actinin and the 
dystrophin rod domain. In addition, we describe the first an- 
tibOdy preparation directed against a specific myofibrillar 
isoform of alpha-actinin. 
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Materials and Methods 

Antisera 

The 30-kD dystrophin peptide used for antisera production was produced 
in bacteria via protein expression vectors by splicing a segment of the mouse 
cardiac dystrophin cDNA into the indolacrylic acid-inducible pATH2 ex- 
pression vector as previously described (9). The resulting antigen contained 
a 207 amino acid segment of dystrophin derived from the center of the rod 
domain of dystrophin, corresponding to amino acid numbers 1,181-1,388 of 
the human sequence (15). Antisera were raised against purified antigen in 
a soluble native form in rabbits, and against SDS-solubilized, denatured an- 
tigen in polyacrylamide gel slices in sheep (9). Dystrophin-specific antibod- 
ies were affinity purified from sheep antisera as described (9), and from the 
rabbit serum as described (32). 

Additional antisera used included a mouse monoclonal antibody directed 
against a fast-twitch isoform of the chicken Ca2+-Mg2+-ATPase (5D2; ref- 
erence 12); a monoclonal antibody against a fast-twitch isoform of chicken 
myosin (F59; reference 20); a polyclonal rabbit anti--chicken gizzard (smooth 
muscle) alpha-actinin antisera kindly provided by Dr. David Critchley of 
the University of Leicester, Leicester, UK (BS); a polyclonal rabbit anti- 
chicken gizzard alpha-actinin antibody purchased from Sigma Chemical 
Co., St. Louis, MO (A2543); and a monoclonal alpha-actinin antibody pur- 
chased from Amersham Corp., Arlington Heights, IL. 

Immunoblotting 

Specific muscle groups were quickly dissected from C57/B6 mice which 
had been killed by cervical dislocation. Muscles were stored frozen at 
-80°C until needed, whereupon the muscles were pulverized into a frozen 
powder, the powder weighed, and then solubilized in 20 vol of sample buffer 
(10% SDS, 0.1 M Tris, pH 8.0, 5 mM EDTA, 50 mM l:lrT). Samples were 
boiled for 2 rain, centrifuged to remove insoluble proteins, and then loaded 
onto 0.8-ram-thick, 3.5-12.5% polyacrylamide-SDS gradient gels with a 
3.0% stacking gel. After electrophoresis, fractionated proteins were elec- 
troblotted onto nitrocellulose (31) and the filters allowed to completely air 
dry. Filters were then processed for immunodetection of specific proteins 
as previously described (9). 

lmmunoprecipitation of alpha-actinin was performed by first extensively 
sonicating an extensor digitorum fungus (EDL) I and soleus muscle from a 
single 5-mo male C57B10 mouse in 1 rnl of cold buffer (1% deoxycholate, 
1% Nonidet P-40, 0.1% SDS, 10 mM Phosphate, pH 6.8, 0.15 M NaCI, 2 
mM EDTA, supplemented with Trasylol [Boehringer Mannheim Diagnos- 
tics, Inc., Houston, TX]). Insoluble proteins were discarded after centrifu- 
gation, and 20 #1 of crude rabbit alpba-actinin antiserum (138) added to the 
supernatant. After a 3-h incubation on ice, immune complexes were col- 
lected by incubation with formalin-fixed Staphylococcus aureus followed by 
centrifugation. The S. aureus/antibedy/alpha-actinin complexes were washed 
five times in 1 rnl of cold buffer, then the complex disassociated by boiling 
in sample buffer. One fifth of the solubilized protein was electrophoretically 
fractionated and blotted as above. 

lmmunofluorescent Microscopy of Thick Sections 

The indicated muscles were frozen in -80°C isopentane and then sectioned 
(8 t~m) onto subbed slides using a cryostat set for -20°C. Sections were 
processed for immunofluorescent microscopy as described below for thin 
sections. 

Immunofluorescent Microscopy of Thin Sections 
and Iramunoelectron Microscopy 

The EDL and soleus muscles were carefully dissected from normal C57/ 
BL6 mice, pinned to dental wax, and lightly fixed (0.01% ghitaraldehyde, 
2% formaldehyde) for 1 h at 4°C. Immunolabeling was found to be quenched 
when fixation stronger than that described was used. After washing in 
0.15 M PBS, pH 7.4, the muscle was cut into small 1-mrn 3 cubes perfused 
in 2.3 M sucrose overnight, mounted on cutting stubs in either a transverse 
or longitudinal orientation, and shock-frozen in liquid nitrogen. Sections 
70-100 run thick were cut using an Ultracut microtome (Reichert Scientific 
Instruments, Buffalo, NY) fitted with an FC4 cryoattachment, mounted on 

1. Abbreviation used in this paper: EDL, extensor digitorum longus. 

Formvar carbon-coated grids, and immunolabel'ed as described elsewhere 
(33) using either the rabbit antidystrophin antibody described above or a 
monoclonal antibody to alpba-aetinin purchased from Amersham Corp., air 
dried, and then examined using a Philips Electronic Instnmmnts, Inc. (Mah- 
wah, N J) EM300 electron microscope. 

For semi-thin immunottuorescence, sections (250 ran) were cut as above 
and mounted on glass slides subbed in 0.2% gelatin. Nonspecific im- 
munoreactivity was blocked with purified goat IgG, and the sections then 
washed in PBS, and incubated in the primary antibody as above which was 
revealed with either a rhodamine- or fluorescein-labeled specific antibody 
(Cappel Laboratories, Cochranville, PA). All antibody incubations were at 
room temperature for 1 h. After thorough washes in PBS, the slides were 
then mounted in Gelvatol (Monsanto Co., Dayton, OH) and examined using 
a Nikon microphot fluorescence microscope. 

Results 

Muscle-type Distribution of Dystrophin 
and the 90-kD Protein 

Dystrophin has been shown to be equally distributed in all 
skeletal muscle groups, cardiac muscle, and smooth muscle 
(3, 11). In addition, dystrophin is present in embryonic, new- 
born, and adult muscle at apparently equal levels (11). To 
determine the muscle group specificity of the 90-kD cross- 
reactive protein, adult mouse soleus (50% fast-twitch oxida- 
tive glycolytic, 50% slow-twitch oxidative [34]), EDL 000% 
fast-twitch glycolytic [34]), heart, and smooth muscle (gra- 
vid uterus) were solubilized, and the constituent proteins 
subjected to immunoblotting. As shown in Fig. 1 A, the 
90-kD protein is recognized solely in the fast-twitch glyco- 
lytic EDL muscle. The tissue distribution of this protein is 
much more limited than that of other, well-characterized 
fast-twitch-specific protein isoforms (Fig. 1, C and D). A 
monoclonal antibody specific for a fast-twitch isoform of 
myosin recognizes such a protein in soleus, heart, and EDL 
(but not smooth muscle) (Fig. 1 D), while a monoclonal anti- 
body specific for a fast-twitch isoform of the Ca2+-Mg 2+- 
ATPase recognizes this isoform in both soleus and EDL (but 
not heart or smooth muscle) (Fig. 1 C). The myosin and 
ATPase isoforms recognized by these antibodies have been 
shown to have a more limited distribution in chicken muscle 
(11, 12, 20), though the analogous muscles of the mouse ap- 
pear to be significantly faster in their metabolism than in 
the chicken and other higher vertebrates. Thus, the 90-kD 
protein recognized by the afffinity-purified dystrophin anti- 
bodies shows a muscle group distribution suggesting that it 
is limited to fast-twitch glycolytic skeletal muscle fibers. 

Though the recognition of the 90-kD protein by the rabbit 
antinative dystrophin serum appears highly specific and of 
high affinity, affinity-purified sheep antidenatured dystrophin 
raised against the same dystrophin antigen fails to detect the 
90-kD protein in any muscle type (Fig. 1 B). This data sug- 
gests that the antigenic sites held in common between dystro- 
phin and the 90-kD protein are dependent on secondary or 
tertiary structure. However, another explanation is that the 
common antigenic sites are not immunogenic in sheep. 

Localization of the 90-kD Protein 
to the Myoftbrillar Matrix 

To localize the 90-kD protein within a subcellular compart- 
ment, immunofluorescence of semi-thin (250 nm), lightly 
fixed cross-sections of C57B6 (normal; dystrophin-positive) 
mouse EDL and soleus, and mdx (dystrophin-negative) EDL 
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muscle was performed with the affinity-purified antidystro- 
phin antisera. As has been shown previously (3, 27, 35), dys- 
trophin immunostaining is seen as a faint ring surrounding 
all normal (C57B6) myofibers in both EDL (Fig. 2 A) and 

soleus (Fig. 2 B) which is absent in mdx myofibers (Fig. 2 
C). The immunostaining corresponding to the cross-reactive 
90-kD protein, on the other hand, is seen as a 'zebra' type 
of pattern in the EDL muscles of both normal (Fig. 2 A) and 
mdx (Fig. 2 C) muscle fibers. AS expected from the immuno- 
blot data (Fig. 1), little or no immunostaining of the 90-kD 
protein is observed in the soleus muscle fibers (Fig. 2 B). 
The zebra pattern of immunostaining of the 90-kD protein 
in semi-thin cross sections implied a myofibrillar localiza- 
tion of this protein. This subcellular localization was rein- 
forced by immunofluorescence of longitudinal thick (8-/zm) 
sections of mdr semimembranous myofibers. As shown in 
Fig. 2 D, the 90-kD protein appears in a striated pattern, 
again suggesting that the 90-kD protein is a component of the 
myofibrillar matrix. 

Figure L Specificity of antisera used and muscle-group distribution 
of the recognized proteins in the mouse. The indicated mouse mus- 
cle groups were solubilized, and constituent proteins (50 #g) sub- 
jected to immunoblotting. Identical filters were incubated with the 
antisera indicated. Arrows indicate the position of prestained mo- 
lecular mass markers (from top, 116, 84, 58, 48.5, 36.5, and 26.6 
kD). A was incubated with afffinity-purified rabbit antidystrophin 
raised against the 30-kD dystrophin antigen in an SDS-free, solu- 
ble, native form (9). The major protein species recognized by this 
antiserum is a cross-reactive (nondystrophin), EDL-specific pro- 
tein of ,x,90 kD. The 90-kD protein is ,x,l,000-fold more abundant 
than dystrophin, which is not visualized in this particular blot. Dys- 
trophin is, however, detected with this same antibody preparation 
(see references 9 and 32; and Fig. 3). B was incubated with afffinity- 
purified sheep antidystrophin raised against the identical antigen 
used in A, but in an SDS-solubilized, denatured form. Dystrophin 
(427 kD; reference 15) and its smaller smooth muscle isoform (11) 
is recognized with high sensitivity in all muscle types, while the 
90-kD protein seen in A is not evident. C was incubated with a 
monoclonal antibody against a fast-twitch isoform of the 105-kD 

Identification o f  the 90-kD Protein as an 

Alpha-Actinin 

Dystrophin has been shown to exhibit primary amino acid 
sequence homology to cytoskeletal (nonmuscle) alpha-ac- 
tinin, a protein of '~90 kD (6, 8, 15). To determine if the 
EDL-specific 90-kD myofibrillar protein was indeed an iso- 
form of myofibrillar (muscle) alpha-actinin, total mouse 
EDL muscle protein was solubilized and subjected to elec- 
trophoresis using a single large lane on a polyacrylamide 
gradient gel. The proteins were blotted onto nitrocellulose, 
with the nitrocellulose then being sliced into parallel sec- 
tions. Adjacent nitrocellulose slices were incubated with the 
rabbit affinity-purified antidystrophin antisera, and with two 
different polyclonal antibodies raised against chicken gizzard 
(smooth muscle) alpha-actinin. As shown in Fig. 3, all three 
antisera recognize a common polypeptide of ~90  kD which 
appear to comigrate, suggesting that the protein recognized 
by the dystrophin antisera is an alpha-actinin. 

To more directly show that antigenic determinants are 
shared by dystrophin and alpha-actinin, alpha-actinin was 
immunoprecipitated from both EDL and soleus muscles 
with polyclonal anti-alpha-actinin (B8). The immunoprecip- 
itated proteins were then fractionated and immunoblotted as 
above, using both affinity-purified antidystrophin antibodies, 
and the same anti-alpha-actinin antisera used for the im- 
munoprecipitation. As shown in Fig. 4, the antidystrophin 
antibodies recognize the immunoprecipitated EDL alpha-ac- 
tinin, but not that precipitated from the soleus. The alpha- 
actinin antiserum, on the other hand, recognizes the immu- 
noprecipitated alpha-actinin in both the EDL and soleus. As 
the rabbit immunoglobulins were also subjected to electro- 
phoresis in this experiment, the reduced, monomeric IgG 
heavy chain is detected by the enzyme-linked second anti- 
body (most antibodies are directed against the constant re- 
gion of the heavy chain in anti-immunoglobulin prepara- 
tions). 

Ca2+-Mg 2+ ATPase (12). D was incubated with a monoclonal anti- 
body directed against a fast-twitch isoform of 205-kD myosin (20). 
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Figure 2. Immunofluorescent localization of the 90-kD protein. A, B, and C show thin (250-nm) cryosections of lightly fixed adult C57B6 
(normal) mouse EDL muscle (A), C57B6 soleus (B), and mdx EDL (C) in slightly oblique cross-sections. The faint plasma membrane- 
staining characteristic of dystrophin localization is seen as a ring around the normal mouse fibers (A and B), which is absent in the dystrophin 
deficient mdx myofibers (C) (references 3 and 27). The 90-kD cross-reactive protein, on the other hand, is localized in a zebra-like pattern 
(arrows) in the EDL muscles of both C57B6 and mdr mice (A and C), but not in soleus (B). The immunostaining pattern of the 90-kD 
protein is suggestive of EDL-specific myofibrillar localization. D shows longitudinally sectioned (8/~m) unfixed myofibers from an adult 
mdx mouse semimembranous muscle (predominantly fast-twitch) incubated with affinity-purified rabbit antidystrophin antisera to visualize 
the localization of the 90-kD cross-reactive protein. A striated pattern of immunostaining is evident. Bars, 20 ~m. 

Immunolocalization of the 90-kD Protein 
to the Z-line 

To further reinforce the identification of the 90-kD protein 
as a specific isoform of myofibrillar alpha-actinin, immu- 
noelectron microscopy of ultra-thin cryosections was per- 
formed. As shown in Fig. 5 A, the 90-kD protein is clearly 
localized within the Z-line of myofibrils of the EDL muscle. 
Immunostaining with the same antibody was completely ab- 

sent in soleus myofibrils (Fig.. 5 B), verifying the immuno- 
blot analysis above. Parallel immunostaining of myofibrils 
with a monoclonal anti-alpha-actinin antibody revealed a 
very similar pattern of myofibrillar localization (Fig. 5 C), 
as has been previously described (30). Dystrophin has been 
immunolocalized on the cytoplasmic face of the plasma 
membrane and possibly the transverse tubules (32), and is 
not evident in the figures shown. 
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Figure 3. The 90-kD dystrophin-related protein comigrates with 
alpha-actinin. Total protein was solubilized from mouse EDL mus- 
cle and subjected to electrophoresis as a single lane on a 3.5-12.5 % 
gradient SDS-polyacrylamide gel. The proteins were transferred to 
a nitrocellulose filter, and the filter cut into parallel segments. Lane 
A was incubated with affinity-purified rabbit antidystrophin antisera 
to visualize the cross-reactive 90-kD protein. Lanes B and C were 
incubated with crude alpha-actinin antisera from Sigma Chemical 
Co. and Dr. David Critchley of the University of Leicester, respec- 
tively, to visualize alpha-actinin. The 90-kD cross-reactive protein 
recognized by the dystrophin antisera clearly comigrates with the 
alpha-aetinin band recognized by the other two alpha-actinin an- 
tisera. To show that dystrophin is also recognized by the dystrophin 
antisera, a similar blot was overdeveloped to visualize the very low 
abundance dystrophin protein (lane D). 

Discussion 

We have demonstrated that dystrophin, the product of the 
Duchenne muscular dystrophy gene, is immunologically re- 
lated to myofibrillar alpha-actinin. Contamination of the 
original dystrophin antigen preparation by alpha-actinin an- 
tigenic determinants is not possible given the methods used 
for dystrophin antigen production (bacterial dystrophin cDNA 
expression) (9). Thus dystrophin and myofibriUar (muscle) 
alpha-actinin must share antigenic determinants. Previous 
primary amino acid sequence analysis has indicated a simi- 
larity between dystrophin and cytoskeletal (nonmuscle) al- 
pha-actinin (6, 8, 15). This paper, however, presents the first 
evidence suggesting that dystrophin is also related to myo- 
fibrillar alpha-actinin. Indeed, the antibodies used in this 
study were raised against the central rod domain of dystro- 
phin, a domain which exhibits very little direct sequence ho- 
mology to cytoskeletal alpha-actinin (15). The central do- 
main of dystrophin has been hypothesized to be structurally 
homologous to alpha-actinin, however, despite the lack of ex- 
tensive sequence homology (6, 15). In agreement with the 
structural nature of the homology, the shared antigenic deter- 

Figure 4. Immunoprecipitation of the 90-kD dystrophin-related 
protein by alpha-actinin antiserum. Alpha-actinin was immunopre- 
cipitated from mouse EDL and soleus muscle protein using poly- 
clonal antiserum, and the immune complexes subjected to immuno- 
blotting as described above. Identical immunoblots were incubated 
with either affinity-purified antidystrophin antibodies (A) or with 
the same alpha-actinin antisera used for the immunoprecipitation 
(B). A large amount of soleus alpha-aetinin, and a smaller amount 
of EDL alpha-actinin, is precipitated and recognized by the alpha- 
actinin serum, while only the EDL alpha-actinin is recognized by 
the antidystrophin antibodies. The IgG heavy chain monomer (IgG- 
HC) is also evident as a consequence of the experimental procedure 
used. The positions of prestained molecular mass markers (Sigma 
Chemical Co.) are indicated. 

minants appear to be structure dependent, as only antibodies 
raised against the dystrophin antigen in soluble, native form 
exhibited the immunological cross-reaction to alpha-actinin 
(Fig. 1; reference 9). 

Perhaps the most intriguing result of the described work 
is that we have produced an antisera highly specific for a sin- 
gle alpha-actinin isoform. Many groups have described the 
production of anti-alpha-actinin antisera from various spe- 
cies, tissues, and muscle types (5, 7, 13, 16, 19, 23, 24). From 
these previous immunological studies, and other biochemi- 
cal studies using purified alpha-actinin, it has become clear 
that myofibrillar (muscle) alpha-actinins are distinct from 
cytoskeletal (nonmuscle) alpha-actinins (4, 5, 16, 17, 21), and 
that muscle fiber type-specific forms of alpha-actinin exist 
(5, 13, 14, 25, 28). Despite the well-documented distinctions 
between the various alpha-actinin isoforms, few groups have 
been able to successfully distinguish between these isoforms 
immunologically. Two groups of investigators have reported 
immunological differences between smooth muscle and skel- 
etal muscle alpha-actinins using double-diffusion analyses 
(4, 13), however such specificity was either not reproducible 
using immunofluorescence techniques (4) or was apparently 
artifactual (14). An additional laboratory has produced atfin- 
ity-chromatography fractions which are specific for chicken 
smooth muscle or skeletal muscle (7), however no group has 
produced a preparation monospecific for a single myofibril- 
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lar isoform. The alpha-actinin antiserum described in this 
publication appears specific for a fast-twitch glycolytic iso- 
form of alpha-actinin both by immunoblot and immunocyto- 
chemical analyses. Thus, the described antiserum is, to our 
knowledge, the first reported antisera monospecific for a 
myofibrillar alpha-actinin isoform. Significantly, this iso- 
form exhibits a distribution in mouse muscle which is more 
limited with respect to fiber type than any other antibody of 
which we are aware. The restricted distribution of this alpha- 
actinin isoform is most apparent in the soleus muscle, where 
fast-twitch-specific isoforms of both the Ca2+-Mg2+-ATPase 
and myosin are present (most likely due to the fast-twitch ox- 
idative/glycolytic fibers present in mouse soleus [34]), while 
the described alpha-actinin isoform is completely absent. 

Clearly, myofibrillar alpha-actinin and dystrophin must 
have distinctly different cellular functions given their very 
different subcellular localization in the myofiber. Neverthe- 
less, the results presented reinforce the concept of a family 
of cytoskeletal proteins based on a rodlike central structural 
domain, which includes dystrophin, spectrin, cytoskeletal 
(nonmuscle) alpha-actinin, and myofibrillar alpha-actinin. 
Future studies should identify additional members of this 
family, and elucidate the sequence and/or functional similar- 
ities between these proteins. 
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