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Detection of aberrant splicing events in RNA-seq
data using FRASER
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Laura S. Kremer4,5, Mirjana Gusic 4,5, Holger Prokisch 4,5 & Julien Gagneur 1,2,5✉

Aberrant splicing is a major cause of rare diseases. However, its prediction from genome

sequence alone remains in most cases inconclusive. Recently, RNA sequencing has proven to

be an effective complementary avenue to detect aberrant splicing. Here, we develop FRASER,

an algorithm to detect aberrant splicing from RNA sequencing data. Unlike existing methods,

FRASER captures not only alternative splicing but also intron retention events. This typically

doubles the number of detected aberrant events and identified a pathogenic intron retention

in MCOLN1 causing mucolipidosis. FRASER automatically controls for latent confounders,

which are widespread and affect sensitivity substantially. Moreover, FRASER is based on a

count distribution and multiple testing correction, thus reducing the number of calls by two

orders of magnitude over commonly applied z score cutoffs, with a minor loss of sensitivity.

Applying FRASER to rare disease diagnostics is demonstrated by reprioritizing a pathogenic

aberrant exon truncation in TAZ from a published dataset. FRASER is easy to use and freely

available.
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I
t is estimated that about 15–30% of the variants causing
inherited diseases affect splicing1–5. The underlying mechan-
isms include skipping, truncation, and elongation of exons as

well as intron retention6,7. Despite advances in the detection of
variants affecting splicing by machine learning8–11, accurate
detections remain limited in particular for deep intronic var-
iants11. Therefore, genetic diagnosis guidelines require additional
functional evidence to classify a variant as pathogenic12,13. Fur-
thermore, many variants affecting splicing, especially deep
intronic variants, are ignored by most prediction tools14 or are
missed when whole-exome sequencing or panel sequencing
technologies are used15. To overcome the limitation of genetic
variant interpretation, RNA sequencing (RNA-seq) has gained
popularity over the last few years16–19. RNA-seq allows not only
the validation or invalidation of effects on splicing of variants of
unknown significance16 but also allows the detection of de novo
aberrant splicing events transcriptome-wide, including the acti-
vation of deep intronic cryptic splice sites16,17,19.

Three distinct methods developed by (1) Cummings et al.16, (2)
Kremer et al.17, and (3) Frésard et al.18 have been employed to
call aberrant splicing in RNA-seq data for rare disease diag-
nostics. Moreover, two additional methods to call aberrant spli-
cing were developed in parallel to this study: LeafCutterMD20 and
SPOT21. All five methods make use of the so-called RNA-seq split
reads, whose ends align to two separated genomic locations of the
same chromosome strand and are, therefore, evidence of splicing
events. These methods all consider RNA-seq split reads de novo,
i.e., beyond annotated splice sites, because the creation of novel
splice sites has a strong pathogenic potential by leading to fra-
meshifts, ablation of protein sequences, or creation of non-
functional protein sequences. The first method consists of a
combination of cutoffs applied to absolute and relative RNA-seq
split read counts16,19. The limitation of this method is that sta-
tistical significance is not assessed. Furthermore, the cutoffs are
not data-driven. In particular, it is unclear whether the require-
ment that an intron occurs in no other sample16 or in less than

five affected samples19 would generalize well to larger cohorts
than the ones investigated to date. Instead, Kremer et al.17 tested
the significance of differential splicing using LeafCutter22, a
multivariate count fraction model developed for mapping splicing
quantitative trait loci. This approach, along with the more recent
LeafCutterMD20 and SPOT21, which are also multivariate
approaches, allowed controlling for false discovery rate (FDR)
and are less dependent on cohort size. One limitation, however,
was made evident by Frésard et al.18, who showed that strong
covariations of split-read-based splicing metrics are widespread
within RNA-seq compendia. The origins of these covariations
may include sex, population structure, or technical biases such as
batch effects or variable degree of RNA integrity. Not controlling
for these latent confounders can substantially affect the sensitivity
of the detection of aberrant splicing events. To address this issue,
Frésard et al. corrected split-read-based splicing metrics by
regressing out principal components. Aberrant splicing events
were then identified using a cutoff on the z scores (|z| ≥ 2) of these
corrected splicing metrics. The major drawback of this approach
is that an absolute z score cutoff does not guarantee any control
for FDR. Moreover, a z score cutoff amounts to a quantile cutoff
when assuming that the data distribution is approximately
Gaussian. However, Gaussian approximations may be inaccurate
when splicing metrics are based on low split read counts, which
occurs on splice sites with low coverages and at repressed
splice sites.

Here, we address these issues by developing FRASER (Find
RAre Splicing Events in RNA-seq), which is an algorithm that
provides a count-based statistical test for aberrant splicing
detection in RNA-seq samples, while automatically controlling
for latent confounders (Fig. 1). Unlike previous methods, FRA-
SER is not limited to alternative splicing, as it also captures intron
retention events by considering non-split reads overlapping
donor and acceptor splice sites. The parameters are optimized for
recalling simulated outliers by training a so-called denoising
autoencoder23. FRASER shows substantial improvements against

Fig. 1 The FRASER aberrant splicing detection workflow. The workflow starts with RNA-seq aligned reads and performs splicing outlier detection in three

steps. First (left column), a splice site map is generated in an annotation-free fashion based on RNA-seq split reads. Split reads supporting exon–exon

junctions as well as non-split reads overlapping splice sites are counted. Splicing metrics that quantify alternative acceptors (ψ5), alternative donors (ψ3),

and splicing efficiencies at donors (θ5) and acceptors (θ3) are then computed. Second (middle column), a statistical model is fitted for each splicing metric

that controls for sample covariations and overdispersed count ratios. Third (right column), outliers are detected as data points that deviate significantly

from the fitted model. Candidates are then visualized using a genome browser. D donor site, A acceptor site. Made in ©BioRender - biorender.com.
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former methods on simulations based on the healthy cohort
dataset of the Genotype-Tissue Expression project (GTEx)24.
Lastly, we demonstrate the applicability of FRASER to rare dis-
ease diagnosis by reanalyzing an RNA-seq dataset of individuals
affected by a rare mitochondrial disorder17.

Results
To identify splice sites independently of genome annotation,
FRASER creates a splice site map by calling de novo introns
supported by a sufficient amount of RNA-seq split reads (Fig. 1,
“Methods” section). An intron is defined by a donor (or 5′ splice
site) and an acceptor (or 3′ splice site). For each intron, FRASER
computes two metrics. The ψ5 metric quantifies alternative
acceptor usage. It is defined as the fraction of split reads from an
intron of interest over all split reads sharing the same donor as
the intron of interest. The ψ3 metric, which is analogously defined
for the acceptor, quantifies alternative donor usage. FRASER also
considers the donor splicing efficiency metric θ5, which is defined
as the fraction of split reads among split and unsplit reads
overlapping a given donor, and the analogously defined acceptor
splicing efficiency metric θ3. Splicing efficiency metrics (deno-
ted collectively θ) have lower values in case of intron retention or
impaired splicing. The advantage of these four metrics against
alternative splicing metrics, such as the popular percent spliced-
in25, is that they can be quantified from short-read sequencing
data without prior exon annotations26. These four metrics are
read proportions and, therefore, range in the interval [0,1]. For
modeling and visualization purposes, we used the corresponding
log-odds ratios that were estimated using a robust logit-
transformation (“Methods” section).

To establish FRASER, we considered the GTEx project dataset
(V6p)24. After quality filtering, this dataset consisted of 7,842
RNA-seq samples from 48 tissues of 543 assumed healthy donors.
Although the GTEx donors did not suffer from any rare disease,
the samples may present aberrant splicing events, just as they
present genes with aberrant expression levels21,27. After filtering
for expressed junctions per tissue (“Methods” section), the
FRASER splice site map contained on average 137,058
(±5,848 standard deviation across tissues) donor sites and
136,743 (±5,920) acceptor sites (Supplementary Fig. S1), of which
1.7% and 1.8%, respectively, were not in the GENCODE anno-
tation (release 28)28. Hierarchical clustering of intron-centered
logit-transformed ψ5 values revealed distinct sample clusters for
all GTEx tissues (Fig. 2a–c). Overall, the average absolute corre-
lation between samples per tissue was 0.10 (±0.05 standard
deviation across tissues, Fig. 2d). Strong covariation was also
observed for ψ3 and for the splicing efficiency metric θ (Supple-
mentary Figs. S2 and S3). This covariation structure was tissue-
specific (Fig. 2a–d). Artefactual covariation due to pseudocount
effects could be excluded as sample covariations were even
stronger for highly transcribed introns (Supplementary Fig. S4).
In some tissues, samples clustered according to the RNA degra-
dation index (e.g., heart left ventricle, Fig. 2b, and Supplementary
Figs. S2 and S3b), while in others they clustered according to the
sequencing center or to the death classification (e.g., whole blood
samples, Fig. 2c). However, no single known covariate could
explain covariations for all tissues. Such sample covariations may
arise from common genetic variation, technical artifacts, or other
unknown factors. These observations, consistent with Frésard
et al.18, motivated us to control for between-sample covariations
prior to calling aberrant splicing events.

We modeled those between-sample covariations by fitting a
low-dimensional latent space for each tissue separately. The latent
space was estimated by principal component analysis (PCA) on
logit-transformed splicing metrics. The optimal dimension for the

latent space was determined by maximizing the area under the
precision-recall curve when calling artificially injected aberrant
values independently for each splicing metric (denoising auto-
encoder, “Methods” section). Typically, the value of the latent
space dimension q giving the highest area under the precision-
recall curve depended on the amplitude of the deviations from the
observed values, with higher dimensions (i.e., more complex
models) performing better for the milder deviations (Supple-
mentary Fig. S5a). To not depend much on the value of the
amplitudes of simulated outliers, we opted for drawing randomly
the deviation amplitudes between 0.2 and the maximal possible
amplitude a metrics can take (i.e., in order to reach 0 or 1). This
strategy is similar to the injection scheme used in OUTRIDER29.
The method was robust to the choice of the encoding dimension,
as the performance for recalling artificial outliers typically pla-
teaued around the optimal dimension (Supplementary Fig. S5a).
The fitted encoding dimension per tissue was 15 for ψ5, 16 for ψ3,
and 12 for θ on average. Moreover, the fitted encoding dimension
grew approximately linearly with the number of samples resulting
in larger encoding dimensions in tissues with more samples
(Supplementary Fig. S5b). Controlling for the latent space
reduced the between-sample correlation from 0.10 ± 0.05 down to
0.02 ± 0.01 (mean ± standard deviation across tissues; Fig. 2d and
Supplementary Figs. S2d and S3d).

Calling aberrant splicing events using the beta-binomial dis-
tribution. Having established an effective procedure to model
between-sample covariations, we then addressed the issue of
calling aberrant splicing events by finding statistically significant
outlier data points. Based on the latent space, FRASER models the
expected value of each observation (“Methods” section). In con-
trast to methods such as LeafCutter22, LeafCutterMD20, and
SPOT21, we modeled each junction individually and did not
model jointly all junctions of a gene. We considered the obser-
vations that significantly deviated from their expected value as
outliers. To this end, we modeled random deviations from the
expected values using the beta-binomial (BB) distribution, a
distribution for count fractions parameterized by its expected
count ratio and an intra-class correlation parameter that accounts
for variations exceeding sampling noise (“Methods” section). This
model allowed computing a two-sided P value for each obser-
vation (“Methods” section). For the alternative acceptor splicing
metric ψ5, the P values of introns with the same donor are not
independent, as the sum of proportions on which they are based
is one. Therefore, we corrected the ψ5 P values for each donor
with the family-wise error rate (FWER) using Holm’s method,
which holds under arbitrary dependence assumption (“Methods”
section)30. The same approach was applied to ψ3, yielding a single
P value per acceptor and sample. Moreover, we controlled the
splice site P values for the FDR genome-wide per sample using
Benjamini–Yekutieli’s method (“Methods” section)31. To show-
case the application of FRASER, we used the suprapubic skin
tissue from the GTEx dataset, as done by Brechtmann et al.29.
Figure 3a shows as an example the ψ5 metric of the seventh intron
of SRGAP2, which exhibited a proportional relationship between
the number of split reads supporting the seventh intron and the
total number of split reads with the same donor site. In this
example, the P values tended to be conservative, yet modeling the
distribution of the data across samples reasonably well (Fig. 3b).
Figure 3c shows an example of an outlier in the ψ5 metric of the
17th intron of SRRT, with one data point exhibiting a much
higher usage of this acceptor site compared to the other samples
and a corresponding very low nominal P value (P= 5.83 × 10−11,
Fig. 3d). Across all introns and splice sites, P values were gen-
erally conservative (Fig. 3e and Supplementary Fig. S6). An excess
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Fig. 2 FRASER corrects for covariations in alternative acceptor usage. a–c Intron-centered and logit-transformed ψ5 of the 10,000 most variable introns

clustered by samples (columns) and introns (rows) for three representative GTEx tissues: suprapubic skin (a, n= 222), left ventricle heart (b, n= 211), and

whole blood (c, n= 369). The red and blue colors indicate relative high and low intron usage, respectively. Colored horizontal tracks display sequencing

center, batch, RNA integrity number (RIN), gender, age, and cause of death (DTHHRDY, Hardy scale classification) of the samples. d Boxplots of absolute

values of between-sample correlations of intron-centered logit-transformed ψ5 for 48 GTEx tissues before (orange) and after (green) correction for the

latent space (n= number of sample pairs per GTEx tissue, between 52 and 401 samples per tissue, for more details, see Supplementary Fig. S1E). The ψ5

values were clipped to the [0.01, 0.99] interval before logit-transformation. These plots show that while tissue-specific correlation structures exist among

samples, latent space fitting allows correcting for them. The data in d are represented as boxplots in which the middle line indicates the median, the bounds

of the box indicate the first and third quartiles and the whiskers indicate ±1.5 × IQR (interquartile range) from the third and first quartile, respectively.

Outlying data points are shown as dots.
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of low P values was detected for the most extreme ten-thousandth
of the data, possibly reflecting genuine aberrant splicing events
(Fig. 3e). Similar results were obtained for all GTEx tissues
investigated (Supplementary Fig. S7).

Recall benchmark of artificially injected outliers. Next, we
assessed the performance of FRASER and delineated the con-
tributions of modeling the covariation and of using the BB dis-
tribution. To this end, we simulated a ground truth dataset based
on the suprapubic skin tissue, in which we artificially injected
splicing outliers with a frequency of 10−3, which yielded 25,988,
26,153, and 49,169 outliers for ψ5, ψ3, and θ, respectively
(“Methods” section). The amplitude of the deviations from the
original observed values was drawn uniformly between 0.2 and 1
and their directions (increase or decrease) were randomly
assigned with equal probability (“Methods” section). We then
monitored outlier recall as well as precision, i.e., the proportion of
injected outliers among the reported outliers. Methods not
modeling covariation performed worse than methods modeling
covariation at any level of recall and for all splicing metrics (Fig. 4
and Supplementary Figs. S8–10). Moreover, methods that mod-
eled covariation and used BB-based P values yielded a higher
precision than those that used z scores (Fig. 4 and Supplementary
Figs. S8–10). This higher precision was observed at all levels of
recalls, simulated outlier amplitudes, and read coverage (Fig. 4).
Notably, using PCA and a z score cutoff equal to 2, instead of
FRASER at FDR < 0.1, yielded two orders of magnitude more
outliers across all GTEx tissues (Supplementary Fig. S11) and a
drastic drop in precision (3% vs. 92% with FRASER) for a small
increase in recall (98% vs. 83% with FRASER, Supplementary

Fig. S12). This drastic difference in precision strongly suggests the
advantage of using an FDR cutoff rather than an absolute z score
cutoff.

The benchmark with simulated outliers also allowed investi-
gating alternative ways to estimate the expected values by
regression on the latent space. This included a naïve BB
regression, a robust version of the BB regression, as well as a
least squares regression of logit-transformed splicing metrics
(“Methods” section). The naïve BB regression was too sensitive to
outlier data points; hence, it was outperformed by its robust
version (Supplementary Fig. S13). However, least squares
regression of logit-transformed splicing metrics had a high
performance that was similar to that of the robust BB regression
(Supplementary Figs. S8–10, “Methods” section) while being
much faster to compute. We, therefore, adopted least squares
regression of logit-transformed splicing metrics to estimate the
expected values.

FRASER considers each junction of a gene individually. In
principle, this can be less sensitive than considering all junctions
of a gene in a joint model, as with the Dirichlet-Multinomial based
methods LeafCutterMD20, SPOT21, and the LeafCutter adaptation
of Kremer et al.17. To assess this, we performed a benchmark
whereby splicing outliers are simulated by swapping out, for a
single individual, skin and brain tissue read counts for a
differentially alternatively spliced gene (“Methods” section). These
differentially spliced genes were identified by LeafCutter22, giving
a potential advantage to Dirichlet-Multinomial-based aberrant
splicing detection methods. Nevertheless, precision-recall curves
for this simulation setting shows that FRASER outperforms
the three Dirichlet-Multinomial-based methods (Supplementary
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Fig. 3 Splicing outlier detection based on the beta-binomial distribution. a Intron split read counts (y-axis) against the total donor split read

coverage (x-axis) for the seventh intron of SRGAP2. b Observed negative log-transformed P values (y-axis) against expected ones (x-axis) of the ψ5 metric

for the data shown in a. Under the null hypothesis, the data are expected to lie along the diagonal (red, 95% confidence bands in gray). c Same as a for the

17th intron of SRRT, showing an outlier (FDR < 0.1, red). d Same as b for the 17th intron of SRRT. The outlier is marked in red. e Same as b across all introns

and splice sites for ψ5 (green), ψ3(orange), and splicing efficiency (θ, purple). a–e Based on the suprapubic skin tissue from GTEx (n= 222). b, d, e P values

were calculated two-sided with the beta-binomial distribution and significance was determined based on FDR after adjusting for multiple comparisons

(“Methods” section). FDR false discovery rate.
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Fig. S14). Dirichlet-Multinomial-based approaches might be
improved using latent space fitting, but this is not yet supported
by existing implementations.

Rare variant enrichment analysis. We further evaluated the
performance of FRASER by assessing the enrichment of rare
genetic variants among splicing outlier genes based on the
rationale that some aberrant splicing events are caused by rare
genetic variants. For this analysis, we defined a variant as being
rare when it had a minor allele frequency (MAF) less than 0.05
within GTEx24 and gnomAD32, as done for gene expression by Li
et al.27. We annotated these variants in two ways. First, we
considered splice region variants (“Methods” section), which
were defined as variants located within 1–3 bases of an exon or
1–8 bases of an intron. This corresponds to the union of the splice
site dinucleotide and splice region variants, as defined by
the sequence ontology through the variant effect predictor
(VEP)33,34. We found on average 299.4 ± 207.6 (standard devia-
tion) rare splice region variants per sample. Second, we con-
sidered rare variants that were predicted to affect splicing by
MMSplice10, which is a machine learning algorithm that scores
variants as far as 100 base pairs away from splice sites (on average
66.0 ± 48.0 rare MMSplice variants per sample; “Methods” sec-
tion). The consequences of a genetic variant on splicing may
spread across the splice sites of a gene because of complex effects,
including competition between splice sites or coordinated splicing
between distant exons35. Hence, the detectable effects of a variant
that affects splicing are not necessarily located at its closest splice
sites. Therefore, we computed the enrichment at the gene level.
To this end, we computed gene-level P values using a FWER
correction across all splice sites within a gene (“Methods”

section). In addition to the previously benchmarked methods, we
also applied the Dirichlet-Multinomial distribution-based meth-
ods LeafCutterMD20, SPOT21, and the LeafCutter adaptation of
Kremer et al.17.

Across all 48 GTEx tissues, FRASER showed higher enrich-
ments than LeafCutter, Gaussian-based P values, LeafCutterMD,
SPOT, and non-corrected BB P values. The higher enrichments
observed held for different nominal P value cutoffs and both for
rare variants in the splice regions, as well as for those predicted to
affect splicing by MMSplice (Fig. 5 and Supplementary Fig. S15).
Notably, the MMSplice variant set showed 2–10 times higher
enrichments across all methods compared to the splice region
variant set, emphasizing the importance of considering exonic or
deep intronic variants as potential splice-affecting candidates. The
enrichment for MMSplice variants was even higher when
computing it locally at the donor and acceptor level compared
to the gene level (Supplementary Fig. S16 and Supplementary
Note 1). Taken together, these benchmarks on non-simulated
data confirmed the importance of controlling for covariation and
using a count fraction distribution to identify aberrant splicing.

Reproducibility of outlier calls is particularly hard to assess
because relevant existing datasets do not provide large amounts of
replicate experiments. As a proxy for assessing the reproducibility
of our calls, we investigated how often splicing outlier calls are
replicated across different tissues from the same individual within
GTEx. To this end, we considered outlier calls in individuals with
at least 20 available tissues and on genes expressed in at least 10
tissues. This analysis revealed a surprisingly high amount of
tissue-specific outlier calls for all methods (Supplementary
Fig. S17), in line with the observations of Ferraro and colleagues
when using SPOT on the same dataset21. However, FRASER had
the highest percentage of outlier calls replicated across at least two

Fig. 4 Benchmark using artificially injected outliers for alternative acceptor usage. The proportion of simulated outliers among reported outliers

(precision) plotted against the proportion of reported simulated outliers among all simulated outliers (recall) for increasing P values (FRASER, green; naïve

beta-binomial regression, purple) or decreasing absolute z scores (PCA, orange). Moreover, all events with jΔψ5j<0:1 are ranked last. The data are

stratified by the mean coverage of the intron (columns) and by the injected absolute Δψ5 value (rows). The cutoffs for each method are marked (FDR < 0.1,

circle; absolute z score > 2, triangle). The darker lines mark the precision-recall curves computed for the full dataset while the light ribbons around the

curves indicate 95% confidence bands estimated by bootstrapping (n = 200). These results show the importance of controlling for latent confounders, of

using a count-based distribution, and of correcting for multiple testing. BB beta-binomial, FDR false discovery rate, PCA principal component analysis.
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tissues among all analyzed methods (Supplementary Fig. S17).
For instance, 22% of the outliers reported by FRASER at the
nominal P value of 10−7 were also found at the nominal P value
of 10−3 in one or more other tissues of the same individual. For,
SPOT this figure is only 11%. Moreover, tissue-specific outliers
were less enriched for rare variants predicted to affect splicing
than outliers replicated in at least two tissues (“Methods” section,
Supplementary Fig. S18). This suggests a higher proportion of
false positives among the tissue-specific outliers. We have
investigated the raw RNA-seq data of several such tissue-
specific outliers with the Integrative Genomics Viewer (IGV)36.
These calls actually appear to be well supported by the raw data,
consistent with the fact that all methods report such an apparent
excess of tissue-specific outliers. Further investigations, using
biological replicates from the same tissue will be needed to
understand the reason for this apparent excess of tissue-specific
outliers.

Application to rare disease diagnosis. Having established
FRASER using a large cohort of healthy donors, next we reana-
lyzed the 119 RNA-seq samples of skin fibroblasts from 105
individuals with a suspected rare mitochondrial disorder reported
by Kremer et al. (hereafter termed the Kremer dataset)17. In a rare
disease diagnosis context, the aim is to identify aberrant splicing
events that could be disease-causing, typically by disrupting the
function of a phenotypically relevant gene. Thus, gene-level sta-
tistics are handier entry points than splice site level statistics.
Moreover, we suggest combining statistical significance cutoffs
with effect size cutoffs, because larger effects are more likely to

have strong physiological impacts. For the Kremer dataset,
FRASER reported a median of 12, 7, and 10 genes with at least
one aberrant splicing event per sample for ψ5, ψ3, and splicing
efficiency, respectively, at a significance level of FDR < 0.1 and an
effect size > 0.3 (absolute difference between observed and
expected value, Fig. 6a). Similar numbers of splicing outliers per
sample were obtained for all 48 GTEx tissues (Supplementary
Fig. S11). These criteria yielded a slightly lower number of spli-
cing outliers than reported by the original study (1,666 versus
1,725, Fig. 6b) yet detecting all novel pathogenic splice events
described in the original study (CLPP, TIMMDC1 in two indi-
viduals, and MCOLN1, Fig. 6b). Notably, the intron retention
event in the gene MCOLN1 was missed by the aberrant splicing
pipeline used by Kremer et al.17 because it was based on Leaf-
Cutter22, which does not consider non-split reads. (Kremer et al.
identified this pathogenic event through the mono-allelic
expression of a heterozygous intronic variant.) Generally,
including the splicing efficiency metrics with FRASER led to a
two-fold increase of detected aberrant events over considering the
alternative splicing metrics ψ5 and ψ3 alone (Supplementary
Fig. S19). Altogether, these findings show the clinical relevance
and the complementarity of using both splicing efficiency and
alternative splicing metrics.

Moreover, the reanalysis of the rare disease dataset highlighted
aberrant alternative donor usage in the gene TAZ for the
undiagnosed individual 74116 (difference ψ3=−0.88 and FDR
= 1.98 × 10−9, Fig. 7a–d), which was overlooked in the original
study17. The nearly complete loss of the canonical donor site
usage of the fourth exon (Fig. 7b) resulted in the usage of a newly
created donor site located 22 bp inside the fourth exon (Fig. 7e).
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Fig. 5 Enrichment for rare variants predicted to affect splicing. a Enrichment using FRASER (y-axis) against enrichment (x-axis) using different aberrant

splicing detection methods (columns) for rare variants located in a splice region. The enrichment is calculated for different nominal P value cutoffs (rows).

The applied methods are a naïve beta-binomial regression, the LeafCutter adaptation of Kremer et al.17, LeafCutterMD20, and SPOT21. Each dot represents

a GTEx tissue (n= 48). b Same as a but the enrichment is computed for rare variants predicted to affect splicing by MMSplice10. BB beta-binomial.
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Usage of the new donor site leads to an ablation of eight amino
acids of the protein encoded by TAZ, Tafazzin. Tafazzin catalyzes
the maturation of cardiolipin, a major lipid constituent of the
inner mitochondrial membrane that is involved in energy
production and mitochondrial shape maintenance37. Moreover,
individual 74116 harbors a rare homozygous synonymous variant
(c.348C>T) that creates the new upstream donor site by
introducing a GT dinucleotide (Fig. 7e). This variant had not
been prioritized by WES analysis, as it was synonymous and not
indexed by ClinVar38. However, the variant had been previously
associated with a splicing defect in TAZ and dilated

cardiomyopathy39, consistent with the myopathic facies and
arrhythmias presented by individual 74116, thereby establishing
the genetic diagnosis.

The number of samples is often limited in rare disease cohorts.
Hence, we investigated the sensitivity of FRASER to the sample
size. To this end, we used the Kremer dataset and the 13 known
pathogenic splicing events to estimate the required dataset size to
reach significance for most of the clinically relevant events. We
monitored the percentage of recovered pathogenic events after
randomly removing samples with no pathogenic splicing defect
from the dataset (Supplementary Fig. S20). As expected, the

Fig. 6 Aberrant splicing detection in a rare disease cohort. a Number of aberrantly spliced genes within the Kremer dataset (FDR < 0.1 and jΔψj>0:3) per

sample ranked by the number of events for ψ5 (orange), ψ3 (green), and θ (purple). b Venn diagram of the aberrant splicing events detected by FRASER

using alternative splicing (orange, ψ) or splicing efficiency (violet, θ) only and detected by Kremer et al. (green)17. Pathogenic splicing events are labeled

with the gene name. FDR false discovery rate.
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Fig. 7 Detection of a pathogenic splicing defect using FRASER. a Gene-level significance (−log10(P), y-axis) versus effect (observed minus expected ψ3,

x-axis) for alternative donor usage for individual 74116. Six genes (red dots, including TAZ) passed both the genome-wide significance cutoff (horizontal

dotted line) and the effect size cutoff (vertical dotted lines). b Number of split reads spanning from the fourth to fifth exon (y-axis) against the total number

of split reads at the acceptor site of the fifth exon (x-axis) of the TAZ gene. Sample 74116 (red) deviates from the cohort trend. c Observed (y-axis) against

FRASER-predicted (x-axis) ψ3 values for the data shown in b. d Quantile-quantile plot of observed P values (−log10(P), y-axis) against expected P values

(−log10(P), x-axis) and 95% confidence band (gray) for the data shown in b. Sample 74116 (red) shows an unexpectedly low P value. e Sashimi plot of the

exon-truncation event in RNA-seq samples of the TAZ-affected (red) and three representative TAZ-unaffected (orange) individuals. The RNA-seq read

coverage is given as the log10 RPKM-value (Reads Per Kilobase of transcript per Million mapped reads, y-axis) and the number of split reads spanning an

intron is indicated on the exon-connecting line. e (bottom) the gene model of the RefSeq annotation is depicted in black and the aberrantly spliced exon is

colored in red. The insert depicts the donor site-creating variant of the affected individual 74116. a, d P values were calculated two-sided with the beta-

binomial distribution, and significance was determined based on FDR after adjusting for multiple comparisons (“Methods” section).
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percentage dropped with reduced sample size. With 30 samples,
we recovered 85% (11 out of 13 events on average) while we
needed 100 samples to capture all events regardless of the sample
selection.

Implementation. FRASER is implemented as an R/Bioconductor
package40,41. It contains functions to count RNA-seq reads, fit the
model, calculate P values, as well as to extract and visualize
the results. The workflow and functionalities of the FRASER
package are aligned with the previously published OUTRIDER
package29. The package allows for a full analysis to be made with
only a few lines of code and includes a comprehensive vignette
that guides the user through a typical analysis step by step.
It is available through Bioconductor as an open source software
package (http://bioconductor.org/packages/release/bioc/html/
FRASER.html). FRASER is included in the workflow Detection
of RNA-seq Outlier Pipeline (DROP), which includes further
analytical tools for RNA-based diagnostics42.

Discussion
We have introduced FRASER, an algorithm specifically developed
for the detection of aberrant splicing events in RNA-seq data. The
combination of three features render FRASER unique: (1) it
considers non-split reads overlapping splice sites, allowing for
detecting intron retention; (2) it automatically controls for latent
confounders; and (3) it assesses statistical significance using a
count distribution. Extensive benchmarks with artificially simu-
lated aberrant splicing events, enrichment of rare variants with a
splicing effect potential, as well as reanalysis of a rare disease
cohort demonstrated the importance of each of these features.
FRASER is provided as an easy-to-use R/Bioconductor package.

We implemented FRASER in a modular way so that the pro-
cedures for fitting the latent space, for estimating expected values
given the latent space, as well as the distributions used to define
splicing outliers can be independently chosen. The best-
performing model was obtained using a hybrid combination in
which the fitting of the latent space and the estimation of the
expected values are performed using a least-squared loss, while
the BB distribution is used for assessing the significance of the
outlier. Although this combination does not correspond to a
maximum likelihood fit of a particular distribution that we are
aware of, it did yield the best empirical results. Future research
could investigate whether other classes of models, such as a
multivariate logit-normal binomial distribution, can provide good
maximum likelihood fits to the splicing metrics.

FRASER is based on splicing metrics defined at the level of
individual splice sites. In theory, the use of a gene model that
integrates data across entire splice isoforms can increase sensi-
tivity because all reads supporting an isoform over another
contribute to the test statistic. However, benchmarks with
simulated outliers as well as enrichment analyses for rare variants
predicted to affect splicing have shown that FRASER out-
performed two recently described gene-level aberrant splicing
methods SPOT21 and LeafCutterMD20. One difficulty of gene-
level methods is that either a gene model must be known
beforehand or it has to be assembled de novo. In particular, SPOT
appears to require robust gene models in the first place, because
data preprocessing and filters yielded only 6,000 genes analyzed
on a typical GTEx tissue. This filtering and clustering may be
appropriate to investigate healthy populations and the basic
biology of aberrant splicing21, but limits its application in rare
disease diagnostics, where any single event could be the disease-
causing one. Moreover, SPOT and LeafCutterMD do not offer
users the inclusion of a latent space.

Analysis of the GTEx dataset revealed a surprisingly large
number of singletons, i.e., outliers called in a single sample. These
singletons could be genuine tissue-specific outliers. However, the
relatively lower level of enrichment for rare variants among these
singletons suggests that they are enriched for false positive calls.
This issue affected all investigated methods and we did not find
an obvious pattern in the RNA-seq data that would raise con-
cerns. For diagnostic applications, we advise prioritizing candi-
date genes by combining RNA-seq outlier calls with
complementary information including genotype (presence of a
rare variant) and complementary data (a replicate RNA-seq, a
northern blot, or other functional assays).

FRASER has been developed to detect aberrant splicing events
with a splice site-centric point of view, which is particularly
adapted for short-read RNA-seq data. However, long-read
sequencing technologies like Pacific Biosciences’ single-molecule
real-time sequencing and Oxford Nanopore Technologies’
nanopore sequencing, which allow the direct sequencing of full-
length transcripts43,44, are becoming increasingly accessible. The
advantage of long-read sequencing over short-read sequencing is
the possibility to better assess the functional implication of
defective splicing by investigating the entire sequence of the
resulting isoforms. However, relative quantification of full-length
isoforms using long-read sequencing remains challenging due to
complex biases including 3–5′ coverage bias induced by frag-
mentation or pore blocking45. Moreover, it could also turn out
that, due to the complexity of de novo transcript isoform
assembly and due to the vast heterogeneity of isoforms per gene,
splice site-centric approaches such as FRASER remain effective
for long-read sequencing data analysis.

One limitation of the application of RNA-seq for the diagnosis
of rare diseases is that the affected tissue may not be accessible.
Nonetheless, a causal splicing defect may also be detectable in a
clinically accessible tissue, such as blood or skin, while its
pathological consequence may be revealed only in the affected
tissue. The TAZ gene is such an example, as it has pathological
effects in the heart but is nevertheless expressed in skin-derived
fibroblast cells. We suggest investigators to check the gene and
exon overlap with tissues of interest using the MAJIQ-CAT web
interface46. In conclusion, based on the easy-to-use R/Bio-
conductor package, the integration of FRASER into DROP42, and
the advancement over alternative methods, we foresee that
FRASER will become an important tool in the growing field of
RNA-seq-based diagnosis of rare diseases.

Methods
Datasets. We considered two RNA-seq datasets: (1) a dataset consisting of 119
RNA-seq samples from skin fibroblasts of 105 individuals with a suspected rare
mitochondrial disease17 (the Kremer dataset, https://doi.org/10.1038/
ncomms15824) and (2) 7,842 RNA-seq samples from 48 tissues of 543 assumed
healthy individuals of the Genotype-Tissue Expression Project V6p24 (hereafter
the GTEx dataset). The two datasets are not strand-specific. Read mapping files
in the BAM file format were obtained for the Kremer dataset by mapping the
RNA-seq reads to the UCSC hg19 genome assembly47 using STAR (version
2.4.2a)48. To detect novel exon junctions, we ran STAR in the two-pass mode
(option twopassMode= Basic) with a minimal chimeric segment length of 20
(chimSegmentMin= 20). For GTEx, we obtained the BAM files from dbGaP
(phs000424.v6.p1), which were already aligned by the GTEx consortium with
TopHat (version v1.4) against the GRCh37 genome assembly49 based on the
GENCODE v19 annotation28. We considered only samples with an RNA
integrity number of 5.7 or higher and marked as usable by the GTEx consortia
(SMRIN and SMAFRZE column, respectively). Further, we discarded any
replicated sample and finally discarded tissues with less than 50 samples
remaining.

Read counting and splicing metrics. The set of acceptor and donor splice sites
(or the splice site map) of a dataset was defined by calling all introns, including de
novo events, based on RNA-seq split reads. To this end, the split reads were
extracted from the BAM files and counted using the R/Bioconductor packages
GenomicAlignments and GenomicRanges50. Having defined the splice site map,
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non-split reads overlapping splice sites were counted to compute the splicing
efficiency, which can be used to detect intron retention. Specifically, the non-split
reads were counted for each splice site using the R/Bioconductor Rsubread pack-
age51 requiring at least 5 nt aligned on each side of the splice site for robustness
against mapping errors of very short overhangs, as described by Braunschweig
et al.52.

As described by Pervouchine et al.26, we compute the ψ5 and ψ3 values for
donor D (5′ splice site) and acceptor A (3′ splice site), respectively, as:

ψ5ðD;AÞ ¼
nðD;AÞ

P

A0 nðD;A0Þ
ð1Þ

ψ3ðD;AÞ ¼
nðD;AÞ

P

D0 nðD0;AÞ
; ð2Þ

where n(D, A) denotes the number of split reads spanning the intron between
donor D and acceptor A and the summands in the denominators are computed
over all acceptors that spliced with the donor of interest (Eq. (1)) and all donors
that spliced with the acceptor of interest (Eq. (2)). To not only detect alternative
splicing but also partial or full intron retention, we considered a splicing efficiency
metric. Multiple related definitions exist including 3′ splice site ratio53,
completeness of splicing index54, and percent intron retained52. We used the θ5
and θ3 values as defined by Pervouchine et al.26. Specifically:

θ5 ¼

P

A0 nðD;A0Þ

nðDÞ þ
P

A0 nðD;A0Þ
ð3Þ

θ3 ¼

P

D0 nðD0;AÞ

nðAÞ þ
P

D0 nðD0;AÞ
; ð4Þ

where n(D) is the number of non-split reads spanning the exon-intron boundary of
donor D, and n(A) is defined as the number of non-split reads spanning the intron-
exon boundary of acceptor A. While calculating θ for the 5′ and 3′ splice sites
separately, θ5 and θ3 were not distinguished later in the modeling step and hence,
we termed it jointly θ in the remainder of the manuscript.

For robust fitting of the model, we restricted the analysis to splice sites of
introns supported by at least 20 split reads in at least one sample. Further, we kept
only splice sites and introns with at least one read coverage in 95% of the samples.

Statistical model. The metrics ψ5, ψ3, and θ are count proportions. For each of
these metrics, we model the distribution of the numerator conditioned on the value
of the denominator using the BB distribution. Unlike the binomial distribution, the
BB distribution can account for overdispersion. Specifically, for ψ5, we assume that
the split read count kij of the intron j= 1, …, p in sample i= 1, …, N follows a BB
distribution with an intron-specific intra-class correlation parameter ρj and a
sample- and intron-specific proportion expectation μij:

PðkijÞ ¼ BBðkijjnij; μij; ρjÞ; ð5Þ

where nij defines the total number of split reads having the same donor site than
intron j. The metrics ψ3 and θ are modeled analogously. For ease of writing, we will
refer in the following with ψ always to the site-specific ψ5 and ψ3 form. Both μij and
ρj are limited to the range [0,1]. The parametrization of the BB distribution used
here can be found in the Supplementary Note 3.

The proportion expectation μij is jointly modeled using a latent space that
captures covariations between samples. Specifically, we model:

μij ¼ σðyijÞ ¼
expðyijÞ

1þ expðyijÞ
; ð6Þ

yi ¼ hiWd þ b; ð7Þ

hi ¼ ~xiWe; ð8Þ

where the vectors hi are the rows of the matrix H, the N × q projection of the data
onto the q-dimensional latent space with 1 < q <min(p, N), We is the p × q
encoding matrix,Wd is the q × p decoding matrix, and the p-vector b is a bias term.
The input row vector ~xi is given by the centered logit-transformed pseudocount
ratios. We define ~xi as:

~xij ¼ xij � �xj; ð9Þ

xij ¼ logit
kij þ 1

nij þ 2

 !

; ð10Þ

logit að Þ ¼ log
a

1 � a
: ð11Þ

Fitting of the latent space and the distribution. Four parameters must be fitted,
namelyWe (the encoding matrix),Wd (the decoding matrix), b (the bias term), and
ρj (the intra-class correlation of the BB distribution). The fitting of these para-
meters is achieved in two steps. First, the latent space H and the expected splicing

proportions μij are fitted using a PCA. To this end, a PCA is computed on the input

matrix ~X using the pcaMethods package55. The latent space H is then computed
using Eq. (8) by setting the encoder matrix We to the first q loadings of the PCA.
Given the latent space H, μij is computed using the transpose of We for Wd and
setting the bias term to xj. In the second step, the intra-class correlation parameters

of each intron j, ρj, are fitted given the count proportion expectations using a BB
loss function. Specifically, we use the optimize function from R41 and minimize the
average negative BB log-likelihood in parallel across introns (Supplementary
Note 3).

Alternative distribution fitting using a beta-binomial regression. Moreover, we
implemented an alternative approach to fit the distribution parameters given the
latent space H. To this end, we use a negative BB log-likelihood loss function to
model in an iterative fashion the decoding matrix Wd and the bias term b on the
one hand and the intra-class correlation parameter ρ on the other hand. First, we
initialize the parameters as described above using PCA. Given the latent space,
these parameters can be fitted independently for each intron j. We start by opti-
mizing ρj given the decoder coefficients wd

j and the bias bj (step 1). Subsequently,

we optimize wd
j and bj given ρj in step 2. Steps 1 and 2 are repeated until the

average negative log-likelihood of each step in one iteration does not differ by more
than the convergence threshold of 10−5 from the last step of the previous iteration,
or until 15 iterations are reached, which triggers a warning. We use the L-BFGS
method implemented in the R function optim to fit the decoder coefficients and the
bias56. A detailed derivation of the loss functions and the respective gradients can
be found in the Supplementary Note 3.

Alternative distribution fitting using a robust beta-binomial regression.
Outlier data points can have strong effects on the BB regression. We therefore also
implemented an alternative method based on a robust BB regression. To this end,
we used weights in the loss function to decrease the influence of outliers on the BB
regression, according to the edgeR approach57. Specifically, we defined the weight
for each observation based on its Pearson residual. The Pearson residual (rij) of the
observed data point xij (Eq. (10)) with respect to the BB distribution including the
pseudocounts is defined as follows:

rij ¼
observed � expected

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðexpectedÞ
p ¼

xij � μij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μijð1� μijÞð1þðnij � 1ÞρjÞ

nij þ 2

r :

ð12Þ

The weights wij for sample i and intron j are obtained from these residuals using
the Huber function58:

wij ¼
1 for rij

�

�

�

�

�

� ≤ k;

k
rijj j

; otherwise

8

<

:

; ð13Þ

where we use k= 1.345 as suggested in the edgeR package57, which leads to the
downweighting of about 5% of the data points. These weights are then included in
the calculation of the negative log-likelihood yielding the average weighted negative
log-likelihood LW:

LW ¼
1

p ´ N

X

i;j

wijLij; ð14Þ

Lij ¼ �log BBðkijjnij; μij; ρjÞ
� �

; ð15Þ

where Lij is the negative BB log-likelihood of sample i and intron j as defined in the
Supplementary Note 3.

Finding the hyperparameter. All three model fitting procedures described above
leave one hyperparameter that requires optimization: the latent space dimension q.
To find the optimal latent space dimension q, we implemented a denoising auto-
encoder approach23. Specifically, we generated corrupted data by injecting aberrant
read count ratios with a frequency of 10−2 into the original data. The injection
scheme is laid out in detail in the next section. We then select q as the dimension
maximizing the area under the precision-recall curve for identifying the corrupted
read ratios. This is done for each splicing metric separately. To speed up the fitting

procedure of the hyperparameter, we randomly subset the input matrix ~X to 15,000
introns out of the 30,000 most variable introns with a mean total coverage greater
than 5. This subsetting is performed before the injection of aberrant read count
ratios.

In silico injection of artificial outliers. To fit the FRASER hyperparameter as well
as to compare the outlier detection performance between FRASER and other
methods, we developed a procedure to inject artificial outliers into a given dataset.
For injection, we considered all expressed introns or splice sites within the dataset
and injected only one outlier per splice site and sample. Outliers were randomly
injected with a frequency of 10−2 for the hyperparameter optimization and with a
frequency of 10−3 for the benchmarking.
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To create aberrant splicing ratios, we inject in silico a splicing outlier count koij
by changing the original read count kij such that the value of ψij changes by Δψ

o
ij .

Δψo
ij is derived from a uniform distribution:

Δψo
ij � ±Uð0:2;Δψmax

ij Þ; ð16Þ

where Δψmax
ij is the maximal possible Δψij for intron j in sample i. The value of

Δψmax
ij is dependent on the randomly sampled injection direction: Δψmax

ij ¼

1 � ψij and Δψ
max
ij ¼ ψij for up- or down-regulation, respectively. To ensure that

an aberrant splice ratio can be injected the direction is switched if Δψmax
ij < 0:2. We

injected outliers only for introns harboring 10 reads or more in the considered
sample.

Taking the pseudocounts into account, the outlier count koij is then given by

koij ¼ roundððψij ±Δψ
o
ijÞ � ðnij þ 2Þ � 1Þ: ð17Þ

In order to provide a biologically realistic outlier injection scheme that preserves
the total amount of reads, the counts for the introns l sharing the same donor or
acceptor, respectively, with koij are changed accordingly, where the Δψo

ij change is

distributed equally over all secondary introns l, as follows:

Δψs
il ¼ �Δψo

ij �
ψil

1 � ψij
ð18Þ

ksil ¼ roundððψil ±Δψ
s
ilÞ � ðnil þ 2Þ � 1Þ: ð19Þ

Injection of splicing outliers by interchanging reads between tissues. Bench-
marking FRASER against Dirichlet-Multinomial distribution-based algorithms
required an alternative injection scheme. To this end, we swapped reads mapping
to alternatively spliced genes between two GTEx tissue samples of the same indi-
vidual. We used LeafCutter22 with the default parameters to detect alternatively
spliced genes between the suprapubic skin tissue and the brain cortex tissue and
used 40 random individuals sequenced in both tissues. We then randomly selected
60 gene-sample pairs from the top 100 LeafCutter hits and replaced all reads falling
into the gene body of the given suprapubic skin tissue sample with the reads from
the brain cortex tissue sample. The benchmark was then performed on the
40 suprapubic skin tissue samples previously selected.

Statistical significance. The statistical significance of outliers is assessed by testing
the null hypothesis that the count kij with nij trials follows a BB distribution with
parameters fitted as described above for every pair of sample i and intron j. We
compute two-sided P values pij using the mean probability of success μij and the
fitted intra-class correlation parameter ρj, as follows:

pij ¼ 2 � min
1

2
;

X

kij

k¼ 0

BBðkjnij; μij; ρjÞ; 1 �
X

kij � 1

k¼ 0

BBðkjnij; μij; ρjÞ

8

<

:

9

=

;

: ð20Þ

The term ½ is included to prevent the generation of P values greater than 1,
which can happen due to the nature of the discrete distributions.

The P values of introns sharing a splice site are not independent, as the sum of
the proportions on which they are based is one. Therefore, we correct the P values
for each splice site with the FWER using Holm’s method, which holds under
arbitrary dependence assumptions30, and report the minimal corrected P value per
splice site. An additional FWER step is performed at the gene level if gene-level P
values are requested. To correct for multiple testing genome-wide, we use the
Benjamini–Yekutieli FDR method31 as both splice site-corrected P values and the
gene-wise corrected P values can still be correlated due to biological effects that are
not completely removed by the model. All P value corrections are performed on a
per-sample basis.

Z score and Δψ calculation. Z scores zij are calculated per intron on the difference
on the logit scale between the measured ψ value including pseudocounts and the
proportion expectation μij, as follows:

zij ¼
δij �

�δj

sdðδjÞ
; ð21Þ

δij ¼ logit
kij þ 1

nij þ 2

 !

� logit μij

� �

: ð22Þ

logit að Þ ¼ log
a

1 � a

� �

: ð23Þ

The Δψ values are calculated as the difference between the observed ψij value on
the natural scale including pseudocounts and the proportion expectations μij:

Δψij ¼ ψij � μij ¼
kij þ 1

nij þ 2
� μij: ð24Þ

Alternative splicing outlier detection methods. We implemented different
alternative splicing outlier detection methods to assess the performance of FRA-
SER. As the baseline for our approach, we used a simple BB distribution with no
correction for existing covariation and the parameters μij and ρj were estimated
using the VGAM package in R59. Further, we implemented a z score approach
similar to the approach described by Frésard et al.18. Instead of regressing out the
top q principal components accounting for 95% of the variation within the data, we
used the top q loadings of the PCA maximizing the precision-recall of in silico
injected splicing outliers and computed the z scores according to Eq. (21). Fur-
thermore, we implemented three Dirichlet-Multinomial distribution-based meth-
ods. First, the LeafCutter22 approach described by Kremer et al.17, in which one
sample is compared against all others within the dataset and no control for latent
sources of sample covariation is considered. Second, the LeafCutterMD method20,
which is an advancement of LeafCutter by modeling splicing outliers directly. And
third, the SPOT approach21, which uses Mahalanobis distance-based empirical P
values to capture splicing outliers. All three approaches were run with their default
parameters.

Enrichment analysis. For the GTEx enrichment analysis, we obtained all rare
variants (MAF < 0.05 within all 635 GTEx samples and in gnomAD32) from
the GTEx whole-genome sequencing genetic variant data (V6p)24. From this rare
variant set, we extracted all annotated splicing variants (splice_donor, spli-
ce_acceptor, and splice_region) according to the sequencing ontology and VEP33,34.
This covers all variants surrounding the exon-intron and intron-exon boundary,
which is 1–3 bases within the exon and 1–8 bases within the intron. We also
extracted variants predicted to affect splicing by MMsplice10. To this end, we
scored all variants within 100 bp of an annotated exon (GENCODE release 3028)
using MMSplice in an exon-centric way. Subsequently, variant-exon pairs with a
score of jΔlogitðψÞj>2 were selected. We then computed enrichments for rare
splicing variants found within outlier genes as the proportion of outliers having a
rare splicing variant over the proportion of non-outliers having a rare splicing
variant.

Enrichment analysis of reproducible splicing outliers. The enrichment analysis
of reproducible splicing outliers was performed on the gene level and on the variant
sets described above. Before computing the enrichment, we filtered down our
splicing outlier call set. First, we selected any individual from the GTEx dataset that
was sequenced in at least 20 tissues (195 individuals remained). From this subset,
we only considered individual-gene pairs that were tested and hence passed the
expression filters as described in the counting section in at least 10 tissues. Based on
this subset, we call a splicing outlier in a given tissue reproducible if it is detected in
one or more other tissues at a nominal P value <10−3. The enrichment was then
computed on the full dataset but only with reproducible splicing outlier calls.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The GTEx dataset is available through dbGaP (accession number: phs000424.v6.p1). The
same sequencing data as described by Kremer et al.17 was used (https://doi.org/10.1038/
ncomms15824). Split-read data for the Kremer et al. dataset17 produced in this study can
be accessed through Zenodo: https://doi.org/10.5281/zenodo.4271599.

Code availability
The FRASER package developed in this study is released on Bioconductor: https://doi.
org/10.18129/B9.bioc.FRASER. The analysis pipeline used throughout this study can be
accessed through GitHub at: https://github.com/gagneurlab/FRASER-analysis.
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