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1. Introduction

In recent years many techniques have been proposed for the detection of
abrupt chnages in dynamic systems. ' These offorts have been motivated by a
wide variety of applications including the detection of sensor and actuator
failures [1, 2, 4, 19, 26-35] the tracking of maneuvering vehicles (20, 21,
23, 25], and numerous signal analysis problems (electrocardiogram analysis
{5, 6], geophysical signal processing [7], edge detection in images [8, 9],
freeway monitoring (10, 11],...). A key to the development of any technique
for the detection of abrupt changes is the modeling of how the abrupt change
affects the observéd signals. In some applications the effect of the abrupt
change is direct and simple -~ e.¢. a bias developing in an output sigral.
In guch problems the primary focus of research is on the precise nature of
the decision rule (see, for example [8, 9, 26]). In other applications (such
as those described in (1, 2, 4, 10; 11, 19, 21)), the effect on the observ-
ables is described in a more complex, indirect way -- for example, in terms
of an abrupt change in the dynamics of a system. In such problems one is
presented in essence with two problems: the processing of the observed sig-
Aals.in'order to accentuate (and simplify) the effect of the abrupt change
and the definition of decision statistices and rules in terms of the processed
outputs. The techniques described in this paper in principle address‘both'
of these issues in that they produce sufficient statistics for
optimum detection. However; we will focus for the>ﬁost part on the firsﬁ
task of change detection, that is, the problem of producing signals which make
subsequent detection as easy as possible. As discussed bere énd in more
deéail in [27-25}5 this is an exceedingly important perspective in the design
of detection methods which are robust to uncertain details of the dynamic
mcdels on which they are based.

In [1) a variety of methods and structures are described for change
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detection. In this paper we focus oﬁ two basic and ex/;remely inmportant
structures. Tho\firsc of these is the multiple filter structuré depicted
in Figuré' 1. Here the observations, y, are processed by a bank of filters
each oZ°vtich is based on a particular hypothesis (e.q. filter #1 assumes no
. change has occurred, Filter #2 assumag a part;cul;r type of change has
occurred possibly at a particular time, etc,) The Sucpues of the filters, Y/
. represent signals which should typically be small if the corresponding hypo-
theses are in fact correct, and thus the decision mechanism in essence is
based on dete¢rmining which of the filters is doing the "best" job of keeping
the corresponding y's small. There are several methaﬂé that have beer de-
veloped which fit the general form of Figure 1. In particular, hard (33]
and soft [34] voting systeﬁs can be interpretedvin this fashion. Another
example is the multiple observer design degeribed in [36). In thevnext
section we describe in detail a third technique of this general<§y§e; namely
the multiple model method. o

A second general structure for the detection of abrupt changeu is the
residual-based structure illustrated in Figure 2. In this case a filter is
.designed based on the assumption that no abrupt change has ocqurred or will
occur. The filter produces a g?edicﬁion § of the output signal y baséd on
this assumption and the past history of the output, and this prediction is
subtracted from the‘actual output to produce a residual signaly. If no
abrupt change hag occurred, Y should be smali.'~Consequent1y deviations
from this behavior are indicative of failure, aﬁ%}i%xié on this fact that
the decision mechanism is based. ' Again there a?g aivariety of techniques
of this‘géneral form. In [35) a variety of st%iistical tests (chi-@ﬁﬁared,

whiteness, etc.) are proposed for the detection of abirupt changes vhen the

Y are the innovations from a Kalman filter. In [30-32) a meﬁﬁga'is described

for the choice of gain in an observer-like filter in order to guarantee that

the decoupling of the steaay-state effects ony of a given set of possible
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abrupt changes. In Section 3 wo discuss a third technique of this general
type, namely the generalized likslihood ratio method.
2. The Multiple Model (MM) Method
The MM method was originally developed for problems of systom identifi-
cation and adaptive control [12-17, 24], and in the initial part of this
sect:.on we follow these early treatments. Subsagquently we will look more
closcly at the issues that arise and possible adaptations that may be
nece;;sary for the use of MM for the detection of abrupt events (see {1, 2, 5,
10, 18, 19, 22, 23] for further developments), |
The basic MM method deals with the follcwing problem. We obnérve the
inputs u(k), k = 0,1,2,.., and outputs y(k), k = 1,2,... of a system which
is assumed to obey one of a given finite set of linear stochastic models,

indexed by 1 = 1,...,N:
xﬂHU=%&MﬁH+%mmm+wﬁM+%&) (2.1)
yik) = C; (K)x, (k) + v, (k) + b, (k) (2.2)

where wi(k) and vi(k) are independent, zero-mean Gaussian white noise pro-

cesses, with
E[wi(k)wi(j)'] 5 Qi(k}ij {2.3)
E[Vi(k)vi(j)'] = Ri(k)djk ' (2.§)

The initial state xi(O) is assumed to be Gaussiap, independent of w.

and vy with mean ﬁi(O‘O) and covariance Pi(QIO) (the meaning of this nota-

tion will become clear iﬁ a moment). The matrices A, (k), Bi(k)¢ Ci(k),
Qi(k), and Ri(k) are assumed to be known. Alsoi bi(k) and-gi(k) are given
deterministic functions of time (corfesponding to bhiases, lipearizatigné
about different operating points, etc.). In addition, the state vectors

Xy (k) may be of different dimensions for different values of i (correspond-

"ing to assuming that the different hypothesxzed models represent different
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order; for the dynamics of the rxeal system). There are a number of issues
that can be raised concerning this formulation, and we defer our critique of
the MM metitod until after we have developed its basic strugture. We note
here only one technical point which is that we will focus on a discrete-
time formulation of the MM method. Continuous-time versions can be found

in the literature (see [24]), and they differ from their discrete-time
counterparts only in a technical and not in a conceptual or structural
manner.

Assuming that one of these N models is correct, we now have a standard
multiple hypothesis testing problem. That is, let Hy denote the hypothesis
that the real system corresponds to the ith model, and let pi(o) denote the
a priori probability that Hi is true, Similarly, let pi(k) denote the
probability that Hi ig true based on measurements through the kth meésurn-
ment, i.e. given I, = {u(@),...u(k=)), y(1),...,y(k)}. Then Bayes' rule
vields the following recursive formula for the pi(k)

ply (k+1) |1, , 1, ,u(k))p, (k)
Py L) = (2.5)
jglp(y(k+l)|Hj:Ik,u(k))pj(k)

Thus, the quantities that must be produced at each time are the conditional
probability dengities p(y(k+l)IHi,Ik,u(k)) for i=l,...,N. However, con-
ditioned on Hi;“this probzbility density is precisely the one step prediction
density produced by a Kalman‘filter based on the ith model.

That is, let ﬁi(k+1|k) be the one-step predicted estimate of x, (k1)
based on I, and u(k), assuming that'Hi is true. Also let ﬁi(k+1|k+l) denote
the filtered estimate of x,(k+l) based on Ik+1?{1k,u(k),y(k+l)f and the ith
model. Then these quantities are computed sequentially from the following

equatiors:

&, 0:+1]1) = A (0%, (k[k) + B, (k) u(k) + g, (k) - (2.6)
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R, Okt |k+1) = &, (k+1]k) + Ky (k+1)Y, (k+1) (2,7)

vhere Yi(k+l) is the measurement innovations process

Y; (k1) = y(kal) = €, (k) %, (ke1]k) | (2.8)

and K(k+l) is calculated off-line from the following set of equations:

Py (ktd[k) = A, (k) (kKIS (k) + 0 (k) (2,9)
v, (kt1) = ci(k)Pi(kﬂlk;'ci(k) + R, (k) (2.10)
K, (k#1) = Pi(k+l|k)ci(k)vzl (k+1) (2,11)
P, (k+1kr) = B (ks1[k) = K, (k1)C, ()P, (ktL{K) (2.12)

Here Pi(k+l[k) denotes the estimatior. error covarinace in the estimate
ﬁi(k+1lk) (assuming H, to be true), and Pi(k+1|k+l) is.the covariance of
the error x, (k+l1) - ﬁi(k+1|k+L), again based on H . Also under hypothesis
Hi’Yi(k+l) is zero mean with covariance vi(k+1), ;nd it is normally dis-

. tributed (since we have assumed that all noises awe Gaussian). Furthermore,
conditioned on H,, I+ and u(k}, y(k+l) is Gaussian, has mean Ci(k)ﬁ*(kfllk)

and covariance vi(k+1). Thus, from (2.8) we deduce that

l T

Py (k+l) Ixi,xk,u(x)) = 1
[detvi(k+1)]

) 1 . -1
- exp {~ = v!(k41)V, "  (k+1)
(2n)m/2 1/2 2 i i

-y ()} (2.13)
where m is the dimension of y.
Equations (2.5) - (2.8) and (2.13) define the MM algorithm. The inputs
to the procedure are the y(k) and u(k), and the outputs are the pi(k). The
implementation of the algorithm can be viewed as cinsisting of a bank of N

i
Kalman filters, one based on each of the N possible models. The outputs of

these Kalman filters are the innovations sequeyéés Yi(k+1), yhich ef:gcti-
vely measure how well each of the filters can track and predict the behavior

of the observed data. Spécifically, if the ith model iscorrect, then the
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one-step prediction error Yi(k) should be a white sequence,rasulting only
from the intrinsic uncertainty in the ith model, However if the ith model
is not correct, then v, (k) will not be white and will include errors due to
the fact that the wrediction is based on an erroneous model, Thus the pro-
bability calculation (2,5), (2.13) basically provides a quantitative way in
which to assess which model is most likely to be correct by comparing the
performances of predictors based on these modsls.

Let us now address several of the most important questions that arise

in understanding how the MM algorithm should be used. Clearly a very

important question concerns the uss: of MM in problems in which the real
system is nonlinear and/or the noises are non-Gaussian. The answer to this
problem is extremely application-dependent. The Gaussian assumption is -
basically used in one place--i.e. in the evaluation of p(y(k+l)|Hi,Ik,u(k))
in (2.13). It has been our experiehce that using this formula, even when
Yi(k+l) is non-Gaussian, causes essentially no performance degradation. As
we have pointed out, what MM really attempts to do is to calculate a measure

of how well each of the Kalman filters is tracking by looking at the predic-

" tion errors Yi(k+1), and the pi(k) are simply measure of how well each of the

models are tracking relative to each other and to how well we would expect

them to be tracking. The critical term in (2.13) in general is
-1
Yi(k+1)vi (k+1)yi(k+l) (2.14)

which is the sdquare of the tracking error normalized by the predicted co-
variance of these errors assuming Hi ;s true. Thus if this quantity is
large, we would tend to disregard the ith model, while if this is small, the
ith filter is tracking well.. The p, (k) exhibit exactly this type of be-
havior, and thus we can expect MM to be reasonably robust to non~Gaussian
étatistics. Of course this depends uporn the application, but we have had

good success in several applications [5, 10] in which the noises were
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As far as the ronlinearity of th. real system is concerned, an obvious
approach is to lir;earize the system about a number of operating points for
each possible model and use these lincarized models to design extended Kal-
man filters which would be used in place of Kalman Ffilters in the MM algor-
ithm. Again the utility of this approach depends very much on the particu-
lar application. Essentially the issue is whether the tracking errsr from
the extended Kalman filter corresponding to the lineaxized model "closest
to” the true, nonlinear system is markedly smaller thén the errors from
filters based on "m¢re distent” models, This is basicall? a signal-to-noise
ratio problem, similar to that seen in the idealized ﬁM algorithm in which
everything is linear. In that case the noise is measured by the Vi(k+1).
The larger these are, the harder it will be to distinguish the models (the
quantity in (2.14) hecomég smaller as Vi is increased,; and this in turn
tends to flatten oul. (as a function of i) the probabilities in (2.13)). In
the nonlinear case, the inaccuracies nf the extended Kalman filtexs effecti-
vely increase the Vi(k+1) thus reéﬁcing their tracking capabilities and
making it more difficult to distinguish among them. Therefore, the perfor-
mance of MM in this case will depend upon how "far apart" the different
models are, as compared to how well each of the trackers tracks. The fasther
apart the models are, the more signal we have; the 'poorer the tracking
pgrformance is, the more difficult it is to distihquish among the hypotheses.

Even if the true system is linear, there is clearly thg question of the
. utility of MM given the inevitability of disctepand{gs between the actual
system and any of the N hypothesized models. Again %his is a question of
signal-to-noise ratio, but in the linear case a number of results and ap-
proaches have been developed for dealing with this problem. For example,

Bram [16) has developed a precise mathematicil procedure for calculat%ng
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the distance between differcent linear models,and hz has shown that the MM
procedure will converge to the model closest to the real model (i.c. pi(k)+l
for the model nearest the true syszesi, This can be viewed as a technique
for testing the robustness of MM or as a tool that enables us to decide what
models to chouse. That is, if the real system is in some set of models that
may be infinite or may in fact represent a continuum of models (corresponding
to the precise values of certain paramcters), then Baram's results can be
used to decide upon a finite set of these models that span the original set
and that are far enough apart so that MM can distinguish among them. For
example, in adaptive f£light control (reference {17]) we may be interested
in detexrmining the flight condition (operating point) of an aircraft, and
we can think of using MM by hypothesizing a set of linearized models that
spgh the f£light envelope.

Let us now turn explicitly to the problem of detecting abrupt changes.
In such problems one must deal with onc key issue that we have not yet
drscussed. Specifically, in change detection we are not simply attempting
to determine whaich of the models given in (2.1) ~ (2.4) is the correct one,
but rather we are trying to detect a gshift from one model to another. That

is, fn this case the actual system obeys a model of the form

x(k+l) = A(k)x(k) + B{k)u(k) + w(k) + g(k) (2.15)

y(k) = C(k)x(k) + vik) + b(k) ‘ (2.16)

where for each k the parameters of the model correspond to one of the hy-

pothesized models in (2.1) - (2.4), but the model may change with time.

While this possibility is not directly taken into account in the MM method
as described to this point, this algorithm often does work well in detecting
shifts'without any major modification to take this possiblity into account

(see, for example [5, 10]. The important issue in this is the adaptability

o o e i
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of M4 rnd the purposes of the particular application,

To elaborate on -his, let us first note that MM will, theoretically,
eventually indicate a shift from one model to another. Two things, however,
must be taken into ac:ount. In the first place, we see from (2,5) that if
p; (k) is small, the p (k+1) wil® grow only’sléwly at best. In fact, in
practice we have found that num¢rical roundoff often leads to pi(k) being
set to zero if the ith model is not valid up to time k. 1In this case pi(j)
wil) be zero for all ) > k. In order to aveid this drastic effect and also
the extremely sluggis. response of MM to a change in models, a lower bound
is usually set on the pi(k). In different applications we have found bounds

from 10™° down to 10™

to be satisfactory, with very little sensitivity to
the precise value of the bound. As a second point we note that if a parti-
enlar model iz not cosrsct up until time k the Kalman filtér based-on this
moﬂél may develop larje erroxs. If then this model becomes correct at time
k., it may take a long time before the prediction errors (2.8) decrease to
reflect the validity of the model. From (2.13) and (2.5) we see that this

in turn means that MM may not rcspond to this change for some time. In pra-
tice we have found that this is not a particularly bad problem if the errors
in all of the Kalman filters rer ain bounded evén when the model on which they
are based is incorrect. If a pirticular real system-mismatched Kalman fil-
ter cbmbinacion is wunstable, th(n therec may be problems if the system switch-
es to the model corresponding te this filter. What we have found is a
workable solution to this'problem is to reset the estimates of potentially
divergent Kalman filters to the estimate of the most probable model, and

this is done whenaver the probability of possibly diverging filters ‘falls
below a threshold (such as 10-2).

With these modifications MM will respond more quickly to model changes.

Whetﬁ&x this is adequate depends upor the application. 1In particular, if
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fast response is needrd for contrul purposaes or because additional model
shifts are possible, then one may wish to consider a problem formulation
that explicitly includes model switches. Furthermore, in some applications
the time at which a shift occurs is exceedingly important, and in such a
case one may again prefer to use such an explicit foxmulation, as one must
in applications such as multi~object tyacking [37] in which keeping track
of large numbers of possibilities is crucial,

In the next section we describe one such formulation, and in the
remainder of this section we indicate how the MM formulation can be modified
to incorporate model changes and what the cost is for this modification.
Specifically suppose that the real system does correspond to one of the
models (2.1) - (2,4) for each k but that the model may change from time to
tiﬁe. Clearly there are sevaeral different constraints that we can place on
the possible sequences of models. For example, if there are no constraints{
then there are Nk+l possible sequences of models over the first k time steps
(any of N at k=0, any of N at t=l1,.,.). Such a sjtuation arises, for ex-
ample, if one assumes that the scquence of models {s governsd by a finite-
state Markov processes. Such models have becn considered by several authors.
See for example [40-42] in which, in addition to considering the problem of
estimation, these authors also consider the problem of identifying the
transition probability matrix for the finite-state process.

on the other hand, in many problems one is interested in detectihg
individual abrupt changes which are sufficiently separated in time so tﬂat
they can be detected and accounted for separately. 1In such a case it'is
reasonable to allow only:those sequences that start with one particuler
model (the "normal" model) ané have a single shift to any of the other
models. 1In this case there are (kN-k+1) possible sequences up to time k ~--

essentially we must account for all possible failure times.
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The MM solution for any such set of possible sequences of models is
conceptually identical to that discussod previously, oxcept here in principle
we must design a Kalman filter for eagh allowable sequence of models. The
residuals from these filters arxo then Qsed uxactly ag described earlier to
compute the probabilities for all hypothesized sequancas} 5ince the number
of posslble_sequencea and thus filters grows in time, some method for prun-
ing the tree of hypotheses is needed, For vxample, wo can think of throw=-
ing away vexy unlikely medels, A variety of techniques for handling such
MM trees have been considered in the literanure [18, 19, 37). while this
may at first glance appear to be a hopelessly complex solution to the change
detection problem, this approach is not without merit. Specifically, as in
{19) this approach often provides a grecat deal of insight. Also, the imple-
mentation of Kalman filter trees is not only within the realm of feasibility
for implementation using high speed digital hardware, but it is also un~
avsidabiy ia problems such as multi-object tracking.

3, The Generalized Likelihood Ratio (GLR) Method

The starting point for the GLR method is a model describing normal
operation of the observed signals or of the system which generated them.
Abrupt changes are then modeled as additive disturbances %o this model that
begin at unknown times. While there are strong similarities between the GLR
and MM formulations -- indeed in many cases one can use either approach with
success -~ the structure of the GLR algorithm is significantly different
'than that for the MM technique. As just discussed for MM, we will look at
the case of a single such change, the assumption being thét abrupt changes
are sufficiently separated to allow for individual detection gnd compensa=
’tion. The solution to the problem just described and applications of the
method can be found in (1, 3, 5, 10, 20, 21; 25). In this section we outline

the basic ideas behind the technique and discuss some of its properties.

*.
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We assume that the system under consideration can be modeled as

x(k+1) = A(KIx(k) + B(k)u(k) + w(k) + fi(k;O)V (3.1)

yik) = C(K)x(k) + v(k) + qi(k,ﬁ)\‘ (3.2)

where the nurmal model consists of these equations without the fi and g,
terms. These terms, fi(kla)v and g, (k,f)V, represent the presence of the
ith type of abrupt change, i=l,...,N. MHere O is the unknown time at which
the failure occurs (so fi(k,ﬁ) = qi(k,ﬂ) = 0 for k <8, and £, and g, are

the gpecified dynamic profiles of the ith charge type. For example, if

fiwo and g;=a vector whose compenents are all zero except for the jth one
which equals 1 for k > 0, ther this corresponds to the onset of a bias in
the jth component of y. Finally, the scalar . denotes the magnitude of the

failure (e.q. the size of a bias) which we can model as known (as in MM

- and as in what is called simplifind GLR (SGLR)) or unknown.

e A TP Ao e st .

Assume that we design a Kalman filter based on normal operation, i.e.

by neglecting £, and g9;+ From the previous section we have that this filter

is given by
G(k+1lk) = ARk + B(K)u(k) (3.3)
R(k+l|ktl) = R(k+1]K) + K (K+1)7Y (k+1) (3.4)
Y(k+l) = y(k+l) = C(k)R(k+1]|k) ‘ (3.5)

where K, P, and V are calculated as in (2.9) - (2.12). Suppose now that a
type i change of size V occurs at time 6. Then, because of the linearity

of (2.1) - (3.5) we can write

x(k) = xN(k) + ai(k;e)v (3.6)
Riklk) = R (k[k) + B (k,0)V ; (3.7)
Rikelk) = B (kL[R) 4w, (k41,00 | (3.8)
Yk) = v (k) + p, (k,B)V (3.9)

where xN, ﬁN’ and YN are the responses if no abrupt change occurs, and the
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other terms are the responses due golely to the abrupt change. Straight-

forward calculations yield recursive oquations for theses ibantities:
o, (k41,00 = A(K)ay (k,0) + £, (0% o, (0,0) = 0 (3,10)

Bi(k+l,0) = [x-x(k+1)c(k+nlu§k+1,0) + K(k+1)e

'lc(k+1)mi(k+1,6) + qi(k+1,6)] . (3.11)
Py (ke ®) = C(k) 0 (k,0) - W, (k,0)] + g, (k,0) (3.13)

The important point about these quantities is that they can be gre-
computed. Furthermore, by its definition, YN(k) is the innovations under
normal conditions, i.,e. it is zero-mean, white, Gaussian with covariance
V(k). Thus we now have a standard detectionAproblem in white noise: we
observe the filter residuals Y(k), which can be modeled as in (3.9), .and we
want to detect the presence of a change (i.e. that k > 8) and perhaps -de-
texmine its identity i and estimate its time of occurrence 6 and size V,
if the latter is modeled as being unknown. The solution to this problem
involves matched filtering operations. First, define the precomputable

quantities
k -1
alk,8,i) = I pi(3,00V "(3)p,(3,0) (3.14)
3=8 |
This has the interpretation as the amount of information present in

y{(8),..,y(k) about a type i change occurring at time 6.

The on~line GLR calculations consist of /the calculation of

ko |
atk,8,4) = I 13,0V () Y(G) (3.15)
3=0 ~

which are essentially correlations of the observed residuals with the

abrupt change signatures pi(j,e) for different hypothesized types, i, and
‘ v ‘
times, 6. Xf v is known (the SGLR case), then the likelihood of a type i

change having occurred at time 0 given data y(1) ,.ee v (k) is
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L (k,8,4) = 2va(k,0,1) = vialk,0,4) (3.16)
If v is unknown, then the generalized likelihood for this change is
2
. 4 (k,0,i)
L(k,0,1) YRR (3.17)

and the maximum likelihood estimate of v assuming a change of type i at

time 0 is

A . d(k,0,1)
vik,0,i) = ;T;fgjzy | (3.18)

Thus the GLR algorithm consists of the single Kalman filter (3,3) ~
(3.5), the matched filter operations of (3.15), and the likelihood calcu-
lation of (3.16) ér (3.17). The outputs of the method are these likeli-
hoods and the estimates of eq. (3.18) if V is modeled as unknown. The
basic idea Sehind GLR is that different types of abrupt changes produce
different kinds of effects on the filter innovations -~ i.e. different
signatures ~- and GLR calculates the likelihood of each possible event by
correlating the innovations with the corresponding signature.

As with the MM method a number of issues can be raised about GLR.
some of these, such as th® effect of nonlinearities and robustness to model
errors, are very similar to the MM case. Essentially it still can be viewed
as a signal-to-noise ratio problem: in ‘the nonlinear case the additive de-
composition of (3.9) is not precisely valid, but it may be approximately
correct. Also, different failure modes can be distinguished even in the pre+
sehce of modelling errors if their signatures are different enough. Again
these issués depend very much on the particular application. We refer the
reader to [4, 6, 10, 11, 21, 25) for discussiaons of seve¢ral applications of
GLR to applications in which these issues had to be addiessed.

GLR has been successfully arplied “o a wide variety of applications,
such as failure detection {1, 4], geophysicalxsignal analysis [7], detecting

.arrhythmias in electrocardiograms 61, freewéy;‘-r*dgnt detection [10, 11],

14
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and maneuver detection [20, 21, 25), Note that the model used in (3.1),
(3.2) for ?uch changes is an additive model, Thus it appears on the surface
that the types of abrupt changes that can b detected by GLR are a special
subset of those that can be detected by MM, since (2.1), (2.2) allow para-
metric changes (in A, B, C, Q, R) as well as additive ones. There are
several points, however, that must be taken into account in assessing ahd
comparing MM and GLR:

(1) The price one pays for allowing parametric changes in MM is the

, necessity of implementing banks: of Kalman filters, and actually

' ‘trees of such filters to account *or switches between models. GLR,

on the other hard, requires a single Kalman filter and a growing
number of correlation calculations as in (3.15), which in principle .
must be calculated for i=l;...;N and O=1,.:.,k. We will commént
shortly on the computational issues concerned with these correla-
tions, but for now we simply point out that they are typically far
less involved than the calculations inherent in Kalman filters
(see [4, 6, 7] for examples of how simple these calculatioﬂs can
be). Also, because it operates on the outputs of a normal mode
filtér, GLR can be easily implemented and attaéhed‘ag a monitoy: to
an already existing éystem.

(2) Extensions to the GLR method can he developed for‘the detection of
parametric changes [38]. This extended GLR bears some similarity
to extended Kalman filtering and iterated extended Kalman filtering.

(3) It has been our experience that a th system based on the detection
of additive effents can often also detect parameter failures. For
example, a gain change in a sensor does look like a sensor bidg,
albeit one that is modulated by the value of the variable being

sensed. That is, 4ny detectable change will exhibit a systematic
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deviation between what is obscrved and what is predicted to be

obsexrved. Obviously, the ability of GLR to detect a parametri:

change when it is looking for additive ones is again a guestion

of robustness. If the effect of the parametric change is "close

enough” to that of the additive one, the system will work. This

has been the case in all of our experience.

In particular we

refer the reader to (4] for an additive-failure-based design that

has done extremely well in detecting gain changes in sensors. Note

¢f course that in this mode GLR is essentially only indicating

el
an alarm -~ i.e. the estimate V of the "bias" is meaningless, but

in many detection problems ‘our primary interest is in simply

identifying which of several types of changes has occurred.

There are several final issues that should be mentioned in discussing

GLR. The first concerns the calculation of statistical measures of per-

formance of GLR. As mentioned in the preceding section, Baram (16] has

developed a method for measuring the distance between models and hence a

measure of the detectability and distinguishal ility of different failure

modes. Similar calculations can be performed for GLR, but in this case it is

actually simpler to do and interpret, as we can use standard detection-

theoretic

ideas. Specifically, a direct measuie of the detectability of a

particular type of change is the informati&n'u(k,e,i) defined in (3.14).

This quantity can be viewed as the corrclation of pi(j,e) with itself at

zero lag.

similarly, we can determine the relative distinguishability of a

type i change.at two times 61 and 62 as the correlation of the corresponding

signatures

.

a(klelrezli) =

k
-1
X P! (3,0.)V " ()p, (3,8,)
j=max(91,62) AT J’ 1. 2

(3.19) .
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and the relativs distinguishability of type i and m changes at times 6; and

62 similarly: .
k

alk,0y,0,,4,m = & FG0V e (3,6,)  (3.20)
meax(ﬂl,ﬂz)

These quantities provide us with cxtremely useful information. For example,
in some applications [6-9]) the estimation of the time 0 at which the change
occurs is critical, and (3.19) provides information about how well one can
resolve the onset time. In faillure detection applications these guantities
directly provide us with informétion 2bout how system redundancy is used to
detect .and distinguish failures and can be used in deciding whether addition-
al redundancy (e.gq. moie sensors) are needed. BAlso, the quantities in (3.14)}
(3.19), and (3.20) directly give the statistics of the likelihoéd measures
(3.16), (3.17). For the SGLR case of (3.16), %s is Gaussian, and its mean
undexr no failure is -vza(k,G,i); while if a type m failure occurs at time ¢,

its mean is

EIL, (k,0,4) | (m,$)1 = v [2a0k,0,8,4,m) - alk,8,4)] (3.21)

For example if (m,{) = (1,8) -- i.e. if the precise failure and time assymed
in the calculation of ks(k,ﬁ,i) are true, then its mean is +v2a(k,9,i). In
the case of (3.17), under no failure 2(k,0,i) is a chi-squared random vari-
able with 1 degree of freedom, while if a failure (m,§) of size V occurs
2(k,0,1) in non-central chi-squared with mean

vialk,8,6,d,m) >
“a(k,0,1)

E[R(k,0,1) | (m,9)) = 1 + (3.22)

Clearly these quantities can be very useful in evaluating the performance of
GLR detection algorithms aéd for determiming decision rules based on the

GLR outputs, If one were to follow the precise GLR phiiosophy'[39lp the
decision rule one would use is to choose at each time k the largestvbi the

ES(R,G,i) or %(k,0,i) over all possible change types i and onset times 6.
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This largest value would then be compared to a threshold for changz detec-
tion, and if the threshold is exceeded the corresponding maximizing values
of 6 and i are taken as the estimates of change type and time. While such

a simple rule works in some cases [6, 21), it is worthwhile often to consider
more complex rules based »n the %'s. Fo; example, persistance tests (i.e.

£ must exceed the threshold over some time period) are often used to cut
down on false alarms due to spurious and unmodcled events., See [4, 7, 9, 26)

for more discussion of decision rules.

A final issue to be mentioned is the pruning of the tree of possibiw

t

\

lities. As in the MM case in principle we have a growing number of calcu-
lations to perform, as d(k,0,1) must be calculated for i=l,...,N and all
pd§sible change times up to the present, i.e. O=l,...,k. What is usually

done is to look only over a sliding window of possible times:

t - < - -
k=M, < 8 < k=M, (3.23)

where Ml and M2 are chosen based on the a's -~ i.e. on detectability and
distinguishability considerations. Basically after Mztimes steps from the
onset of change we have collected enough information so that we may make

a detection with a reasonable amount of accuracy. Further, after M (time
4

1
steps we will have collected a sufficient amount of information so that
detection performance is as good as it can be (i.e. there is no point in

1 2

information collection, but we want them small for fast response and for

, M_ large to allow for maximum

computational simplicity. fhis is a typical tradeoff that arises in all

change'detection problems.



1.

2,

3.

10.

11.

12,

13.

: ~a1- N "
ORIGINAL PAGE 19
OF POOR QUALITY
REFERENCES

willsky, A.S., "A Survey of Several Failurc Detection Methods," Automatica,
Nov. 1976, pp. 601-611. '

willsky, A,S,., "Failure Detection in Dynamic Systems," AGARD Lecture
Series No. 109 on Fault Tolerance Design and Redundancy Management
Technqiues, Athens, Rome; and London, Oct, 1980. :

Willsky, A.S., and Jones, H.L., "A Generilized Likelihopd Ratio hpproéch
to the Detection and Estimation of Jumps in Linear Systems," IEEE Trans.
Automatic Centrol, Vol. AC>21l, No. 5, Febh. 1976, pp. 108-112, '

Deckert, J.C., Desai, M.N., Deyst, J.J. and Willsky, A.S., "F8-DFBW
Sensor Failure Identification Using Analytic Redundarcy,” IEEE Trans.
on Automatic Control, Vol. AC-22, No. 5, Oct. 1977, pp, 795-803.

Gustafson, D.E., Willsky, A.S., Wany, J.~Y., Lancaster, M.C., and
Triebwasser, J.H., "ECG/VCG Rhythm Diagnosis Using Statistical Siqgnal Ana-
lysis I: Identification of Persistent Rhythms," IEEL Trans, Biomed. Eng.,
Vol. BME-25, No. 4, July 1978, pp. 344-353. ,

Gustafson, D.E., Willsky, A.S., Wang, J.~Y., Lancaster, M.C., and
Triebwagser, J.H., "ECG/VCG Rhythm Diagnosis Using Statistical Signal Ana-

lysis IX: Identification of Transient Rhythms,” IEEE Trans. Biomed. Eng.,
Vol. BME-25, No. 4, July 1978, pp. 353-36l. '

Basseville, M. apd Benvensite, A., "Desigh and Comparative Study of Sone
Sequential Jump Detection Algorithms for Digital Signals," IEEE ‘Trans.
Acous., Speech, Sig. Proc., Vol. ASSP-31, June 1983, np. 521-534.

B§nseville, M., Espiﬁn, B., and Gasnier, J., "Edge Detection Using Sequen-
tiinl Methods for Clalige in Level, Part I: A 3equential Edge Detection Al-

go::ithm," IEEE Trans, Acous., Speech, Signal Processing, Vol. ASSP-29,
NO. 1, Febn 1981, ppa 24"310 ’

Basseville, M., "Edge Detection Using Sequential Methods for Change in
Level, Part II: Sequential Detection of Change in Mean," IEEE Trans,
Acnus., Speech, Signal Processing, Vol. ASSP-29, No. 1, Feb. 1981,

pp. 32-50.

willsky, A.S., Chow, E.Y., Gershwin, §.B., Creene, C.S., Houpt, P.K., and
Kurkjian, A.L., "Dynamic Model-Based Techniques for the Detection of
Incidents on Freeways," IEEE Trans. Automatic Control, Vol. ac-25,

June 1980,

Kurkjian, A.L., Gershwin, S.B., Houpt, P.K., Willsky, A.S.; Greene,’C:S;,
and Chow, E.Y., "Estimation of Roadway Traffic Density on Freeways Using
Presence Detector Data," Transportaticn Sciences, 1980.

Lainiotis, D.G., *"Joint Detection, Estimation, and System Identification,"”
Information and Control, Vol. 19, Aug. 1971, pp. 75-92.

Willner; D., Observation and Control of Partially Unknown Systems;
Ph.D., Thesis, MIT, May 1973,




14.

15,

16.

l?l

ls.

19,

20.

21.

22.

23,

24.

26,

27.

23,

ORIGINAL PAGE I8
OF POOR QUALITY

Magill, D,T., "Optimal Adaptive Estimation of Sampled Processes,”
IEEE Trans. on Automatic Control, Vol. AC~-10, pp. 434~439, Oct., 1965,

Lainiotis, D.G., "Partitioning: A Unifying Framework for Adaptive
Systems, I: Estimation," Proc. of IEEE, Vol. 64, No. B, pp. 1126-1142,
1976.

Baram, Y., Information, Consistent [stimation and Dynamic¢ System
Identification, Ph.D. Thesis, MIT, Nov . 1976,

Athans, M., et., al., "The Stochastic¢ Control of the F-8C Alrcraft
Using a Multiple Model Adaptive Contxol (MMAC) Method Part I: Equili-
brium #light", IEEE Trans. oh Automatic Control, Vol. AC-22, No. 5,
pp, 768-780, 1977. ’

Buxbaum, P.J. and Haddad, R.A., "Recursive Optimal Lstimation for a
Class of Nongaussian Processes," Proc. Symp. on Computer Processing in
Communications, Polytech. Insc. of Brooklyn, April £-10, 1969,

Willsky, A.S., Deyst, J.J., and Crawford, B.S., "Two Self-Test M: hods
Applied to an Inertial System Problem," J. Spacecr. Rockets, Vol.: 'l2,
No. 7, July 1975, pp. 434-437,

Mchulay, R.J. and Denlinger, E., "A Decision-Directed Adaptive Tracker,"
IEEE Trans. on Aero. and Elee¢. Sys., Vol. AES-9, March 1973, pp. 229-236.

Dowdle, J.R., Willsky, A.S., and Gully, $.W., "Nonlinear Generalized
Likelihood Ratio Algorithms f>r Mancuver Detection and Estimation,"
Proc. of 1982 American Control Conf; Arlington, Virginia, June 1983.

Newbold, P.M. and Ho, Y.C. "Datection of Changes in the Characteristics
of a Gauss-Markov Process," IREE Trans. Acrospace Elec. Sys., Vol. AES-4,
No- 5’ Septn 1968, pp- 707"718‘

Athans, M,, Whiting, R.H., and Gruber, M., "A Suboptimal Estimation
Algorithm with Probabilistic Bditing for False Measurements with
Applications to Target Tracking with Wake Phenomena," IEEE Trans. Aut.
Control, Vol. AC-22, June 1977, pp. 372-384.

Greene, C.S., "An Analysis of the Multiple Model Adpative Control Algor-
ithm," Ph.D. Dissertation, Report No. ESL-TH-843, M.I.T., Elec, Sys.
Lab., Cambridge, Mass., August. 1978.

Tenney, R.R., Hebbert, R.S., and Sandell, N.R., "A Tracking Filter for
Maneuvering Sources," IEEE Trans. Aut. Control, Vel. AC-22, April 1977,
pp. 246-251. L

Basseville, M., "Contribution a la Détection Sequentielle de Ruptures de
Modeles Statistiques,” Thése d'Etat, Univ. de Rennes, France, June 1982.

Chow, E.Y. and Willsky, A.S., "Analytical Redundancy and the Design of
Robust Failure Detection Systoems," IEEE Trans. Aut. Control, to appear.

Lou, X.-C,, Willsky, A.S., and Verghese, G.C., "Failure Detection with
Uncertain Models," Proc. 1983 American Control Conference, San Franclsco,
Calif., June 1983.

I



29,

30.

31.

3z2.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

 pp. 477-481.

w2 B

ORIGINAL PAGE |8
OF POOR QUALITY

Lou, X,-C., Willsky, A,S., and Verghesc, 6¢.C., "Optimally Robust Redun-
dancy Relations for Failure Detection in Uncertaln Systems," M.I.T. lLab.

for Inf, and Dec, Sys. Rept. LIDS~P~12497, april 1983; submitted to
Automatica.

Beard, R.V., "Fa'lure Accommodation in Lincar Systems Through Self-
Reorganization," Rept. MVT=71l-1; Man Vehicle Laboratory, M.I. T.,
Cambridge, Mass. Feb. 1971.

Jones, H.L., "Failure Detection in Lineayr Systems,” Ph.D. thesis,
Dept. of Aero. and Astro., M.I.T., Camtridge, Mass,, Sept. 1973.

Meserole, J.5., "Detection °‘ilters for Fault-Tolerant Control of Turbofan
Engines," Ph.D. thesis, Dept. of Aero. and Astro., M.I.T., Cambridge, MA.,
June 1981,

Gilmore, J. and McKern, R,, "A Redundart Strapdown Inertial System
Mechanization -- SIRU," presented at the AIAM Guidance, Control, and
Flight Mechanics Conf., Santa Barbara, Calif., Aug, 1970,

Broen, R.B., "A Nonlinear Voter - Estimator for Redundant Systems,"
Proc. 1974 IEEE Conf., on Dec¢. and Control, Phoenix, Arizona, pp., 743-748.

Mehra, R.K. and Peschon, J., "An Innovations Approach to Fault Detection
in Dynamic Systems," Automatica, Vol. 7, 1971, pp. 637-640.

Clark, R.N., Fosth, D.C., and Walton, V.M., "Detecting Instrument
Malfunctions in Control Systems," IEEE Trans. Aero. and Blec. Sy§3,
Vol. AES-1ll, No. 4, July 1975, pp. 465-473.

Keverian, K. and Sandell, N,R., "Multiobject Tracking by Adaptive
Hypothesis Testing," Rept. LIDS-R-959, Lab. for Inf. and Dec. Sys.,
M.I.T., Cambridge, Mass., Dec. 19792,

willsky, A.S., "Status Report Number One on the Development of a
Me~hodology for the Detection of System Failure and for the Design of
Fault-Tolerant Control Systems," Rept., ESL-SR-781, Lab. for Inf, and
Dec. Sys., M.I.T., Cambridge, Mass. Nov. 1977, '

Van Trees, H.L., Detection, Estimation, and Modulation Theory, Part I,
John Wiley and Sons, Inc., New York, 1971. :

Tugnait, J.K. and Haddad, A.H., "A Detection~Estimation Scheme for State
Estimation in Swmtchxng Environments,® Automatica, VOl 15, July 1979,

.

Tugnait, J.K., "Detection and Estimation for Abruptly Changing Systems,"
Proc. 20th IEEE Conf. on Decision and Control, San Diego, Calif.,
bec. 1981, pp. 1357-1362,

‘Tugnait, J.K., "Adaptive Estimation and Identification for Piscrete

Systems with Markov Jump Parameters," IEEE Trans. Aut. Control,
Vol. AC-27, No. 6, Oct., 1982, pp. 1054-1065, '




	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf

