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ABSTRACT

Topological determinants of the protein structures can be obtained by modeling them as
undirected network, which may relate to functionally important residues. In this study, we aim to
analyze the Bovine rhodopsin structure (PDB ID: 1U19A) a GPCR family protein. We modeled the
protein structure as, an undirected network and network parameters were calculated and
compared with the control random networks. Our findings show that the protein contact network
possesses a small world property. The functionally important residues in the protein contact
network were identified using residue centrality. The statistical significance of the central residues
was determined using the Z-score values of the residue centrality. Results show that residues with
high Z-score values are highly conserved, are in close proximity with the ligand and are also
situated closer to the centre of mass of the protein.
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INTRODUCTION

Proteins are biological macromolecules synthesized in the cell as a linear chain of amino acids,
which then folds into a three-dimensional structure comprising of different secondary structural
elements, such as helices, sheets and coils, by making short and long contacts between the amino
acid residues along the chain. They perform diverse biochemical functions and also provide
structural  basis  in  living  cells.  It  is  important  to understand how proteins fold into their
native-state structures and the relevance of these structures to their function. Network analysis
of protein structures is one such attempt to understand possible relevance of various network
parameters to protein structure and functioning.

Biological systems have been studied to understand protein interaction network (Jeong et al.,
2001),  networks  of interacting   components  of   living  cells  possessing  scale-free  properties
(Wolf et al., 2002), metabolic and biochemical pathway networks (Ravasz et al., 2002; Holme et al.,
2003) and gene regulatory networks (Shen-Orr et al., 2002). Network representation of protein
structures has also been useful in analyzing interactions between amino acids in studies on protein
folding (Heringa and Argos, 1991; Vendruscolo  et al., 2002), identifying the functional residues
(Amitai et al., 2004) and in understanding protein dynamics (Atilgan et al., 2004). It has further 
been  shown  that  protein  structures can be represented as graphs  corresponding to small-world
networks (Greene and Higman, 2003; Bagler and Sinha, 2005) and how residues contributed to
protein-protein  binding  free  energy  in  given  complexes  (Del  Sol  and  O'Meara,  2005).  These
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networks are usually highly clustered with a few links connecting any pairs of nodes (Watts and
Strogatz, 1998) and recently, there have been many  reviews  on  protein  contact  networks
(Greene, 2012; Hu et al., 2013; Khor, 2014).

For our study, we are interested in analyzing the G-protein coupled receptor. They are the
integral membrane proteins characterized by seven membrane-spanning (transmembrane, TM)
regions. They are involved with signal transduction across cell membranes. Many medically and
pharmacologically important proteins are included in this super-family: e.g., Acetylcholine
receptors,  Dopamine  receptors  and  Opioid  receptors. The structure/function relationships for
G-Protein Coupled Receptors (GPCR) are of vital importance (Wilson and Bergsma, 1999) as, they
regulate a wide range of cellular processes, including the senses of taste, smell and vision and
control a myriad of intracellular signaling systems in response to external stimuli. Many diseases
are linked to GPCRs deficiency. Due to the difficulty in crystallizing GPCRs for X-ray
crystallography the available X-ray crystallographic analyses on bovine rhodopsin are reviewed as
the only available high-resolution structures for any GPCR.

Rhodopsin, a well known member of the G-protein-coupled receptor family, is located in the disk
membranes of the outer segment of rod photoreceptor cell, where it is responsible for the
visualization of dim light. Rhodopsin is the most extensively studied G-protein-coupled receptor,
(Klabunde and Hessler, 2002; Sakmar, 2002) and knowledge about its structure serves as a
template for other related receptors such, as light-sensitive compounds, odors, pheromones,
hormones and neurotransmitters. A new high-resolution structure is reported for bovine rhodopsin.
The new structure completely resolves the polypeptide chain and provides further details of
chromophore binding site including the configuration about the C6-C7 single bond of the 11-cis
retinal. The new X-ray structure has been improved to 2.2 Å (Okada et al., 2004).

To apply the small world concept to our protein bovine rhodopsin structure, we modeled our
protein structure as an undirected graph, where amino acids are considered to be the nodes and
the interaction between them as edges. Residues i and j are considered to be in contact if at least
one atom corresponding to residue i is at a distance of #5.0 Å to an atom from residue j. This cut-off
distance determines the upper limit for attractive London-van-der-Waals forces (Tinoco et al.,
1995). The network parameters for the protein contact network were calculated and compared with
the random controls. The closeness centrality values for each residue were computed and their
statistical significance was determined using the z-score values.

MATERIALS AND METHODS

Network representation of protein structure: The crystal structure for Bovine Rhodopsin
(PDB ID: 1U19) was obtained from the PDB database. Since, the X-ray structure contains two
molecules of bovine rhodopsin, we have considered only the A-chain that comprises of 348 residues.
The protein structures were then represented as an undirected graph, where amino acids/residues
are denoted as the nodes and the interactions between them as links. Residues i and j are said to
be in contact with each other when atoms between the two residues are at a distance of #5.0 Å.
Distance between residues determine the intensity of London-Vander Waals forces (Atilgan et al.,
2004). Random Control Networks are used to generate a given number of Nodes (N) and Edges (E)
(Bollobas, 2001). They have a bell-shaped degree distribution indicating that the majority of nodes
have degrees closer to the average degree <k>. Control random networks help us in identifying
network variation by comparing the network parameters and analyzing differences between
networks.
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For the Protein Contact Network (PCN), 100 random controls were generated while
maintaining the same number of nodes and edges. The connectivity distribution as well as the
individual connectivity of the PCNs was also conserved. The Network parameters were calculated
by using computer programs specifically written in Perl v5.10.1 and by using the Lenovo work
station S20. The values obtained were then compared with that of the Protein Contact Network
(PCN).

Network parameters

Degree   of   the   network:   The   most   elementary   characteristic  of  a  node  is  its  degree
(or connectivity), ki, which tells us how many links the node has to other nodes. The average degree
K of the network with N nodes is computed as:

N

i 1 i
1K K

N  

Degree distribution: The degree distribution, P (k), gives the probability that a selected node has
exactly k links. The P (k) is obtained by counting the number o f nodes N (k) with k = 1, 2… links
and dividing by the total number of nodes N. The degree distribution allows us to distinguish
between different classes of networks. For example, By contrast, a power-law degree distribution
indicates that a few hubs hold together numerous small nodes.

Shortest path length and average shortest path length: Distance in networks is measured
with the path length, which tells us how many links we need to pass through to travel between two
nodes as there are many alternative paths between two nodes, the shortest path is the path with
the smallest number of links between the selected nodes. The mean path length represents the
average over the shortest paths between all pairs of nodes and offers a measure of a network’s
overall navigability.

  N 1 N

i 1 j i 1 ij
1L 1 N 1 L

N

     

where, Lij is the shortest path length between node i and j. We have used Hedetniemi’s Algorithm
(Arlinghaus et al., 1990) for calculating the shortest path distance between every pair of nodes in
the network.

Clustering coefficient of the network: In many networks, if node A is connected to B and B is
connected to C, then it is highly probable that A also has a direct link to C. This phenomenon can
be quantified using the clustering coefficient Ci = 2ni/k(k-1), where ni is the number of links
connecting the ki neighbors of node i to each other and where k (k-1)/2 gives the fraction of these
possible links that actually exist (Watts and Strogatz, 1998). The average clustering coefficient of
the network is calculated using:

o k

C n 1/ d(i, k)


  

Where:
Ci = Clustering coefficient for a node i
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These measures are 1 if every neighbours connected to ni also connected to every other node
with in the neighbourhood and 0 if no node connected to ni, connects to any other nodes that is
connected to ni.

Closeness centrality: Centrality is a network measure of nodal importance quantifying how
prominent a node is relative to others (Wasserman and Faust, 1994). Closeness centrality (Ci)
measures how close a node i is to all others in the same network (Jordan et al., 2006). The closeness
centrality value Ck for residue k is defined as:

Where:
d (i, k) = Shortest path distance between node i and k
n = Number of nodes in the network

Statistical analysis: The statistically significant central residues were evaluated using the z-score
values of the residue closeness centrality, defined as:

kZ Ck C /  

Where:
Ck = Closeness centrality of residue k
C = Closeness centrality average value over all protein residues and σ is the corresponding 

standard deviation (Del Sol et al., 2006)

Determination of center of mass of a protein: To estimate the physical location of the residues,
the centre of mass needs to be determined first. The center of mass of the protein whose position
coordinates (xCM, yCM, zCM) were calculated by:
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Where:
xi,yi,zi = Cartesian coordinates of the i-th atom
mi = Atomic mass

The distance of a particular residue j (whose position coordinates are assumed to be same as
that of the C-α atom within it) from the protein center of mass is given by:

      2 2 2

CM j CM j CM j CMD x x y y Z z     

66



Trends Bioinform., 8 (2): 63-74, 2015

Functionally important residues: The conservation score for each amino acid residue in a
protein is obtained using the Consurf server (http://consurf.tau.ac.il), which is a relative measure
of the evolutionary conservation at each sequence site of the target protein with the lowest score
representing the most conserved position. It uses ClustalW Multiple Sequence Alignment for
calculating the scores of all residues and then  performs  a  normalization  to  make  the  mean
score = 0 with standard deviation = 1 (Glaser et al., 2003; Landau et al., 2005). From the PDBsum
database (Laskowski et al., 1997) the ligand binding residues were obtained.

RESULTS AND DISCUSSION

Visualization of the networks: The constructed protein contact network consists of 348 nodes
and 1930 edges. Figure 1a represents a circular layout in which the amino acids are arranged
sequentially and the interactions between the residues are represented as lines. The circular layout
places graph nodes in such a manner that they connect to many other nodes thus increasing the
graph  density.  This  helps  you find out in an intuitive way, the critical nodes of your graph.
Figure 1b represents the Kamada-Kawai graph layout (Kamada and Kawai, 1989), which is an
algorithm for drawing undirected graph. The layout attempts to position nodes on the space so, that
the geometric (Euclidean) distance between them is similar to that of the theoretical distance.

Out of 100 control random network generated, we have represented one of them. These
networks are found to have the same number of nodes and the edges but the connections between
nodes are randomized while maintaining the degree distribution in the protein contact network.
Figure 2a represents the circular layout and Fig. 2b represents the kamada-Kawai graph layout
of the control random network.

Fig. 1(a-b): Protein contact network (a) Circular layout and (b) Kamada-Kawai graph layout

Fig. 2(a-b): Control random network, (a) Circular layout and (b) Kamada-Kawai graph layout
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Degree distribution: From Fig. 3, the average degree of the protein contact network was found
to be 11.09 and the mean value of the 100 control random network’s average degree was also found
to be 11.09. This indicates that the degree distribution of the protein contact network was
maintained in their random counter parts. A peaked degree distribution is seen in control random
networks indicating that the system has a characteristic degree and that there are no highly
connected nodes (which are also known as hubs). By contrast the shape of the protein network
distribution obtained is also found to be Gaussian (Greene and Higman, 2003).

Shortest path distribution: Figure 4a represents the shortest path distribution for protein
contact network and Fig. 4b represents the distribution of the mean shortest path lengths of the
control random networks. The shortest path distribution is the probability distribution of the short
path distances in the network. The average shortest path length for the PCN is found to be 4.78
and  the  mean  value  of  100 shortest path lengths for the control random networks is found to be
networks. The standard deviation for the 100 control random networks is calculated to be
2.71±0.003. Atilgan  et al. (2004) have analyzed numerous globular proteins and they shown that 

Fig. 3: Represents the degree distribution for both PCN and the mean degree distribution of control
random networks

Fig. 4(a-b): (a) Shortest path length distribution for PCN and (b) Mean shortest path length
distribution for control random networks
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residue fluctuations are highly correlated with the shortest path lengths. The highly connected
residues, which are in turn connected to the rest of the molecule, on average, in a shorter number
of steps (Atilgan et al., 2004). Similarly, the membrane protein rhodopsin also have a shorter
number of steps in path lengths.

Clustering coefficient distribution: The clustering coefficient is an important domain for each
graph vertex, it ranges from 0 and 1. Figure 5 represents the clustering coefficient distributions for
PCN and random control networks. The protein contact network has an average clustering
coefficient value of 0.51 and the 100 control random networks have an average of 0.03. The
standard deviation for the 100 control random networks is found to be 0.03±0.002. Our findings
show that the protein contact network is highly clustered than the control random network.
Similarly, study done by Yan  et al. (2014) shown that the network clustering coefficient had a
significantly  positive  and  negative  correlation  with  the  protein secondary structure density
(Yan  et al., 2014). Thus higher the coefficient value, better the secondary structure density in the
protein structures. In this case, the rhodopsin protein contact network is found to have a higher
value of clustering coefficient in comparison with the random network.

L-C plot: The mean shortest path length distribution L and the mean clustering coefficient
distribution C for the protein contact networks is found to be 4.78 and 0.51. For the control random
network the L and C values are found to be 2.71 and 0.03. The L-C values for PCN is highly
significant  than  the  random  control  network.  The  standard deviation for the L and C for the
100 random control networks is found to be 2.71±0.003 and 0.03±0.002. Watts and Strogatz (1998)
characterized the small world networks with two parameters namely the average shortest path
length L and the clustering coefficient C. Regular networks have large L and large C values than
random networks.  Small-world  networks  have  small  L  and  large  C  values (Watts  and
Strogatz, 1998). In this study, the L and C values for the rhodopsin PCN were found to be higher
in comparison with the random control networks. Suggesting that the structures of rhodopsin
proteins can be conveniently analyzed by using the small-world networks approach.

Closeness centrality: The closeness centrality for each residue in the protein contact network was
calculated and then the statistical significance of the central residues was determined using the 

Fig. 5(a-b): (a) Clustering coefficient distribution for the PCN and (b) Mean distribution of the
control random networks
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z-score values. Figure 6 shows the plot of z-score values with the distance from the Center Of Mass
(COM)  of the protein structure of 348 amino acids. The correlation coefficient between the z-score
values and distance from COM, is -0.9644 (p<0.0001). This suggests that z-score values have a
negative correlation with the distances from the COM. Our findings indicate that statistically
significant  central  residues  are  closer  to the COM of the protein structures. Study done by
Amitai  et al. (2004) have shown that the residues with high closeness centrality value are present
in the active site, ligand-binding and evolutionary conserved (Amitai et al., 2004).

To understand the significance of the residues belonging to the high z-score values, we analyze
their  degree  of  conservation (that measures its rate of evolutionary change) as a function of the
z-score intervals (from lower to higher). As the changes in different positions in a protein are not
homogeneous but rather differ significantly, with some residues mutating rapidly (called “variable”
positions) relative to others (termed as “conserved” positions), we are thus interested to understand
if residues belonging to the high Z-score values are more conserved than those belonging to the low
z-score values.

As shown in Fig. 7, conservation plot for each Z-score interval are plotted against the percentage
of  amino  acids.  Highly conserved residues (conservation score 9) are more numerous in the high
Z-score intervals (1-2). On the contrary, highly variable residues (conservation score 1) are less in 

Fig. 6: Plot of Z-score values with distance from COM (Center of mass)

Fig. 7: Histogram representation of conservation scores in z-score intervals
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Table 1: List of amino acids having z-score>1.5 with conservation score and distance from the center of mass of the protein structure
Amino acid names Chain Amino acid no. Z-score (>1.5) Conservation score (1-9) Distance from center of mass (Å)
Leu A 79 1.63 8 9.07
Ala A 117* 1.64 9 5.51
Thr A 118* 1.51 9 6.01
Gly A 121* 1.69 9 2.09
Glu A 122* 1.69 2 5.83
Ile A 123 1.70 5 6.83
Ala A 124 1.58 1 5.91
Ser A 127 1.53 7 10.83
Met A 257 1.60 9 12.48
Ala A 260 1.53 1 11.30
Phe A 261* 1.85 3 8.55
Cys A 264 1.89 6 8.77
Trp A 265* 1.80 9 8.41
Lys A 296* 1.86 9 6.83
Ser A 298 1.67 6 5.02
Ala A 299 1.68 1 6.06
Val A 300 1.60 1 9.30
Tyr A 301 1.83 4 10.17
Asn A 302 1.72 9 9.91
*Amino acids are in contact with ligand molecule

Fig. 8(a-b): (a) Structure of the bovine rhodopsin (PDB code: 1u19A), predicted central residues are
represented in blue color and the ligand in red and (b) Amino acids are in contact with
the ligand (RETINAL) and are depicted in green color

number in the low z-score interval (-3 to -1). Our findings confirm that the residues falling in the
range of high z-score values are highly conserved.

From Table 1, it is seen that centrally conserved residues tend to be buried in the structure.
Statically significant residues are closer to the center of the mass and are also highly conserved
through evolution. Amino acids with high z scores are also seen to be in close proximity with the
ligand molecule. Different approaches have been proposed based on the structural features for
identifying  the  active  sites  in  various proteins (Lichtarge  et al., 1996; Aloy  et al., 2001;
Landgraf  et al., 2001; Ondrechen  et al., 2001). It was further shown that active site residues tend
to have high centrality values for most of the enzymes (Amitai  et al. 2004). Thus, we may
understand that closeness centrality is a global topological characteristic and it provides more
information than just a local analysis of residue centrality (Vendruscolo et al., 2001). High closeness
residues tend to be clustered around those cavities containing functionally important residues.

The bovine rhodopsin structure is represented as a ribbon model using PyMOL (0.99rc6)
software  as  show  in  Fig.  8a.  The  extracellular  n-terminal amino acid methionine (1) and the
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cytoplasmic or intracellular amino acid alanine (348) are represented. Residues with high z-score
values (>1.5) are depicted in blue and the retinal ligand molecule in red. It is found that residues
with high statistical significance are buried in the structure and are also closer to the center of
mass of the protein. In Fig. 8b, the predicted central residues are represented as a stick model with
the retinal ligand represented as a spherical shape. The ligand interacting residues are shown in
green color. From this we understand that, predicted central residues are located in the binding
pockets of the retinal ligand molecule and are also seen to be highly conserved through evolution.

CONCLUSION

In this study, we have applied network principles to the native protein structure of the Bovine
rhodopsin (PDB ID: 1U19) belonging to the family of G-protein coupled receptor. Our results show
that the seven trans-membrane helices of this protein can be visualized with signature patterns
in the contact map of the network. The rhodopsin protein contact network has a clustering
coefficient value C = 0.51, which is significantly higher than the average of 100 control random
network and the average shortest path length L = 4.78 for the PCN and this is again seen to be
higher in comparison to the random control networks. This shows that the protein contact network
possesses the “Small World Network” property. We also report that the residues with high
closeness centrality values tend to be clustered together with functionally important amino acids
situated in the protein cavities. The results shows that the residues with high z-score values are
closer to the center of mass of the protein are closer to the ligand molecule and also contain more
percentages of conserved amino acids.
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