
Citation: Yu, Z.; Duan, X.; Cong, X.;

Li, X.; Zheng, L. Detection of

Actuator Enablement Attacks by

Petri Nets in Supervisory Control

Systems. Mathematics 2023, 11, 943.

https://doi.org/10.3390/

math11040943

Academic Editor: Jiangping Hu

Received: 2 January 2023

Revised: 25 January 2023

Accepted: 28 January 2023

Published: 13 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Detection of Actuator Enablement Attacks by Petri Nets in
Supervisory Control Systems
Zhenhua Yu 1, Xudong Duan 1 , Xuya Cong 1,*, Xiangning Li 2,* and Li Zheng 3

1 College of Computer Science and Technology, Xi’an University of Science and Technology,
Xi’an 710054, China

2 School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China
3 School of Foreign Languages, Changji College, Changji 831100, China
* Correspondence: congxuya@xust.edu.cn (X.C.); lixn@xidian.edu.cn (X.L.)

Abstract: The feedback control system with network-connected components is vulnerable to cyberat-
tacks. We study a problem of attack detection in supervisory control of discrete-event systems. The
scenario of a system subjected to actuator enablement attacks is considered in this article. We also con-
sider that some unsafe places that should be protected from an attacker exist in the system, and some
controllable events that are disabled by a supervisor might be re-enabled by an attacker. This article
proposes a defense strategy to detect actuator enablement attacks and disable all controllable events
after detecting an attack. We design algorithmic procedures to determine whether the system can be
protected against damage caused by actuator enablement attacks, where the damage is predefined as
a set of “unsafe” places. In this way, the system property is called “AE-safe controllability”. The safe
controllability can be verified by using a basis diagnoser or a basis verifier. Finally, we explain the
approach with a cargo system example.

Keywords: Petri nets; discrete event systems; actuator enablement attacks; supervisory control

MSC: 93-02; 93-08; 93C65

1. Introduction

The cyber–physical system (CPS) is an intelligent system that integrates communi-
cation, control and computing. Safe and supervisory control against potential attacks
in cyber–physical systems has drawn extensive attention in recent years [1–7]. To better
describe system behaviors, cyber–physical systems are often abstracted as discrete-event
systems (DESs). Due to the significance of security concerns in cyber–physical systems, it is
necessary to consider attack detection under the framework with supervisory control in
discrete-event systems [8,9].

In this article, we explore the issue based on the closed-loop control system shown in
Figure 1, where the supervisor controls the system through actuators and sensors. However,
the actuators and sensors are often vulnerable to attacks in the process of delivering signals,
and attackers can potentially alter the transmitted signals. The object of our study is a
discrete-event system driven by events, where the supervisor disables some actuator events
according to a given specification. We study the intrusion detection of actuator enablement
attacks (AE-attacks) under a closed-loop control system. Specifically, some actuators in the
system are vulnerable to intrusion, and an attacker indirectly causes the system to enter
an unsafe state by changing control actions of the vulnerable actuators from “disabled”
to “enabled”.

Mathematics 2023, 11, 943. https://doi.org/10.3390/math11040943 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11040943
https://doi.org/10.3390/math11040943
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11040943
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11040943?type=check_update&version=1

Mathematics 2023, 11, 943 2 of 23

Plant

Sensors

Supervisor

Actuators

Control

signal

Measured

value

Attack
Modified

signal

Figure 1. The closed-loop control system architecture.

The study of attack detection in the context of DESs can be traced back as far as the
work in [10]. The work in [11] considers a problem of synthesizing a supervisor under
removal attacks and sensor insertion attacks. The approach in [12] considers the detection
and mitigation of actuator and sensor attacks. In [13], the authors discuss the robust control
problem under a sensor replacement attack. The work in [14] investigates integrated
sensor deception attacks in the context of DESs. The work in [15,16] focuses on intrusion
detection in which the supervisor determines the presence of an intruder by diagnosing
faulty behavior in the system. The study in [17,18] presents the issue of supervisory control
of DESs under malicious attacks using labeled Petri nets (LPN). In [19], the method of
constructing a resilient automaton is proposed by introducing the safety level of the system,
which transforms the resilient supervisory synthesis problem into a supervisory control
problem. The study in [20] proposes a new attacks mitigation strategy that maximizes the
scope of the normal specification while ensuring security. In [21], Rashidinejad et al. outline
the existing methods to prevent damage from cyberattacks in cyber–physical systems. The
work in [22] investigates joint sensor-actuator network attacks in DESs, defines upper and
lower bounds on the language to describe nondeterministic behavior, and successfully
solves the issue of supervisory control under network attacks.

The work in [23] proposes a generic attack detection framework with respect to four
different types of cyberattacks in supervisory control systems. An automaton model is used
to characterize behaviors of systems under attack. Essentially, the use of an automaton
model for the description of systems has worked well. However, with the scale of DESs
becoming larger and more complex, the state space of the system grows exponentially with
the increase of scale, i.e., there is an issue of “state space explosion”. The large scale of the
system leads to the increase of the probability of failure, and the “state space explosion”
also increases the difficulty of fault diagnosis [24]. The aim of our work is to compensate
for this drawback and improve the existing detection methods.

The fundamental framework of supervisory control systems in [23] is adopted. How-
ever, in contrast to the model in [23], we describe the behavior of a system using a Petri
net and construct a basis attack model. More specifically, we replace an automaton with
a Petri net and establish a supervisory control system for attack detection of AE-attacks.
A basis reachability graph (BRG) is proposed in [25] in which the transitions are divided
into two parts, and the net behavior is described by a subset of reachable markings. Our
approach is motivated by the research in [25]. However, the work in [25] only classifies
events as observable and unobservable. In this article, we use Petri nets to address the
issue of attack detection with the AE-attacks, which has never been addressed in the litera-
ture. The complexity class of the attack detection problem using Petri nets belongs to the
NP-complete problem. Finally, we indicate that only the AE-attacks are considered in this
article to present our main results.

Based on the above motivation, this article investigates the detection of AE-attacks
by using Petri nets in a control system. In a supervisory control system, there are places

Mathematics 2023, 11, 943 3 of 23

that are unsafe or critical and that should be prevented from being accessed externally, and
our goal is to build an attack model by using a Petri net. If the supervisor can block access
to unsafe places after an attack, then the system satisfies safe controllability. Note that the
traditional framework for detecting AE-attacks for the system using automata has the same
purpose as what we do. However, the BRG alleviates the problem of state explosion and is
an improvement to the original approach.

The main contributions of the article are outlined as follows:
(1) We modify the existing approach that originally uses automata to describe the

system behavior. In the article, we use Petri nets instead of automata. Compared with
automata, Petri nets can describe the system behavior in a more compact structure without
exhausting the entire state space. Moreover, we use semi-structural approaches to reduce
the computational burden in the attack detection problem.

(2) A new approach of constructing the BRG is proposed, where the explanation vector
is computed from controllable events, and uncontrollable events are omitted from the state
space, making it more efficient to analyze system behavior after an attack has occurred.

This article is divided into five sections. The necessary fundamental knowledge is
recalled in Section 2. The notion of AE-attacks and the approach to construct a basis attack
model are outlined in Section 3. Section 4 presents the notion of AE-safe controllability and
gives algorithms for analyzing AE-safe controllability. Section 5 is mainly concerned with
an example of cargo delivery to explain the approach. Section 6 concludes the whole article.

2. Preliminaries
2.1. Basics of Petri Nets

A Petri net (or Petri net structure) is a four tuple N = (P, T, F, W), where P is a finite
set of places, T is a finite set of transitions, P ∩ T = ∅ and P ∪ T 6= ∅. We denote by
F ⊆ (P× T) ∪ (T × P) the set of arcs from places to transitions and from transitions to
places in the graph. W: (P× T) ∪ (T × P) → N is a mapping that attributes a weight to
each arc, where N is a set of non-negative integers. We denote as •t = {p ∈ P | (p, t) ∈ F}
and t• = {p ∈ P | (t, p) ∈ F} the sets of input places and output places of a transition t,
respectively. Similarly, we define •p = {t ∈ T | (t, p) ∈ F} and p• = {t ∈ T | (p, t) ∈ F}.
The marking M of a Petri net N = (P, T, F, W) is a mapping from P to N.

A transition t is said to be enabled at a marking M if ∀p ∈ •t, M(p) ≥W(p, t), denoted
as M[t〉. When firing an enabled transition t, W(p, t) tokens are removed from every input
place p of t, and W(t, p) tokens are added to every output place p of t, then generating a
new marking M

′
such that ∀p ∈ P, M

′
(p) = M(p)−W(p, t) +W(t, p). Firing t at marking

M reaches marking M
′
, denoted as M[t〉M′. The incidence matrix C of N is a |P| × |T|

integer matrix with C(p, t) = W(t, p)−W(p, t). According to the firing rule of a transition,
a transition t is enabled at M, and firing t can reach a marking M′ = M + C(·, t). Conse-
quently, for any finite transition sequence σ of a Petri net (N, M0), we write M0[σ〉M′ to
represent that the sequence of transitions σ is enabled at M0 and after firing of σ yields M′.
The vector −→σ is the Parikh vector of σ ∈ T∗ [26], then

M′ = M0 + C−→σ . (1)

A Petri net is denoted as G = (N, M0), where M0 is the initial marking. We useR(G)
to represent the set of all markings that are reached by N from M0. A net N is bounded if
there is an integer K ∈ N such that ∀M ∈ R(G) and ∀p ∈ P, M(p) ≤ K holds.

2.2. Basis Markings and Basis Reachability Graph

We review several results on basis markings presented in [25,27]. In a basis partition
(Tc, Tuc), a set T is partitioned into the controllable transition set Tc , and the uncontrollable
transition set Tuc. Cuc is the incidence matrix restricted to P× Tuc and a Tuc-induced subnet
is a net (P, Tuc, F′, W ′), where F′ and W ′ are the restrictions of F and W, respectively. We
denote |Tc| = nc and |Tuc| = nuc.

Mathematics 2023, 11, 943 4 of 23

Definition 1. Given a marking M and a controllable transition t ∈ Tc, we define

∑(M, t) = {σ ∈ T∗uc | M[σ〉M′, M′ ≥ Pre(·, t)} (2)

as the set of explanations of t at M, and we define

Y(M, t) = {yσ ∈ Nnuc | σ ∈ ∑(M, t)} (3)

as the set of explanation vectors (or e-vectors).

Therefore, ∑(M, t) is a set of uncontrollable sequences whose firing at marking M can
enable transition t. Y(M, t) consists of firing vectors associated with the sequences from
∑(M, t).

Definition 2. Given a marking M and a transition t ∈ Tc, we define

∑min(M, t) = {σ ∈ ∑(M, t) | @σ′ ∈ ∑(M, t) : yσ′ � yσ} (4)

as the set of minimal explanations of t at M, and we define

Ymin(M, t) = {yσ ∈ Nnuc | σ ∈ ∑min(M, t)} (5)

as the corresponding set of minimal e-vectors.

With the above definitions, a basis marking can be defined as follows. Given a Petri
net G = (N, M0) with its reachability setR(G), the set of basis markingsM is a subset of
R(G) satisfying: (1) M0 ∈ M; (2) ∀M ∈ M, ∀t ∈ Tc, ∀yuc ∈ Ymin(M, t), it holds M′ ∈ M,
where M′ = M + Cuc · yuc + C(·, t).

Briefly, the set of basis markings consists of two parts: an initial marking and the
markings reachable from M0 by firing each controllable transition together with its minimal
explanation. All basis markings can be obtained by iterative computation starting from the
initial marking M0.

The BRG generated by a Petri net is a quadruple, denoted by B = (M, T , δ, M0),
representing a finite state automaton comprised of all basis markings, where: (1) the set
M represents all basis markings; (2) the set T represents the set of transitions t ∈ Tc;
(3) the transition function is denoted as δ : M× T → M, i.e., δ(M1, t) = M2, M2 =
M1 +Cuc · yuc +C(·, t), yuc ∈ Ymin(M1, t), the function δ can be extended toM×T ∗ →M,
where T ∗ is the Kleene closure of T [26]; and (4) the state M0 is the initial marking.

2.3. Supervisory Control Theory

It is assumed that the plant is modeled by a Petri net G = (N, M0). Assume that
T = To∪̇Tuo, where To and Tuo represent the sets of observable and unobservable transitions,
respectively. Similarly, T = Tc∪̇Tuc, where Tc and Tuc are the sets of controllable and
uncontrollable transitions, respectively. When the behavior of G needs to be restricted for
satisfying a specification K, we introduce a feedback control loop as well as a supervisor.
The language generated by G is defined by L(G) := {s ∈ T∗ : M0[s〉}, which is a set of
strings. The natural projection Po : T∗ → T∗o is defined such that: (1) Po(ε) = ε; (2)
Po(ω) = ω if ω ∈ To; (3) Po(ω) = ε if ω ∈ Tuo; and (4) Po(sω) = Po(s)Po(ω) for s ∈ T∗

and ω ∈ T, where ε denotes the empty word. Events of the plant are enabled or disabled
dynamically by the supervisor, limiting the closed-loop behavior within an acceptable
language. Generally, the plant is under partial observation; thus, the supervisor decides
to disable certain events on the basis of the projections from strings that are generated
by G. To be more specific, a partially observed supervisor is represented as a mapping
SP : Po[L(G)] → 2T ; the supervisor makes a decision based on Po(s) for any string s
generated by G. This kind of supervisor is called a P-supervisor. Consequently, when

Mathematics 2023, 11, 943 5 of 23

two different strings s1 and s2 have the same projection, they will cause the identical
control action.

A sublanguage K of L(G) is considered controllable with respect to L(G) and Tuc
if KTuc ∩ L(G) ⊆ K. Moreover, K is observable for L(G), Po and Tc if for all s ∈ K and
ω ∈ Tc, sω /∈ K and sω ∈ L(G) implies that P−1

o [Po(s)]ω ∩ K = ∅. Observability and
controllability are essential and sufficient for the presence of a P-supervisor who performs
the specification K [28].

3. Actuator Enablement Attacks
3.1. Attack Definition and Modeling

We graphically depict a control system architecture under attacks in Figure 2. The
control system is a plant G controlled by SP . The supervisor monitors the plant events
through the projection Po generated by the system. Without considering attacks, the closed-
loop behavior L(SP/G) = K, in which K is an observable with controllable sublanguage
of L(G). SP is a “nominal” supervisor that is designed to enforce the specification K.

Vulnerable actuators from the supervisor to the plant are frequently attacked. We use
Tc,v to denote the vulnerable actuator events, which is a subset of all actuator controllable
events Tc. Block AM in Figure 2 represents an attacker model in which the identical
observable events can be observed by Po, and the control actions of the supervisor on
vulnerable actuators can be overwritten. In fact, the controllable action affecting plant G
is a combination of the controllable behavior of supervisor SP and attacker AM on event
set Tc. The attack detection module is indicated as DA. It can also receive the occurrence
of observable events by Po, as the way to infer whether an AE attack has occurred and
inform the supervisor SP when an attack is detected. FM indicates that the system enters a
“defense module” when the supervisor SP receives the message that the system is attacked.
It will disable every controllable event. In this case, the system enters the “defense module”,
which corresponds to “expect the worst and put safety first”. Block UM denotes that the
system enters unmanageable conditions after being attacked.

G

Ƥo

AM

SƤ

DA

FM

UM

Tc

Tc,v

To

Figure 2. The control system architecture.

The main goal of this article is to build an accurate model for monitoring AE-attacks
in the system and to understand the impact of AE-attacks. First, the system is modeled by
using a Petri net. Then, basis markings are calculated to obtain a basis attack model, finally
a basis diagnoser and a basis verifier are constructed, which are used to judge whether the
system satisfies AE-safe controllability. Both methods have their advantages. The flowchart
of AE-attack detection is shown in Figure 3.

Mathematics 2023, 11, 943 6 of 23

Construction of the initial

Petri net system

Constructing a basis attack

model

Building a basis diagnoser Building a basis verifier

Does it satisfy AE-safe

controllability？

The system is safe The system is damaged

Start

YES NO

End

Figure 3. The flowchart of AE-attack detection.

We consider a closed-loop system with vulnerable actuators. The system is modeled
as a Petri net G = (N, M0). To represent the events occurring in a plant, we use the
transitions in a Petri net instead, i.e., each event is referred to a transition of a Petri net
in the article. When a string s contains an event ω, we write ω ∈ s. Equivalently, when
a string s contains an event in Tc, we write Tc ∈ s. The active event set at place p in G is
denoted by ΓG(p) = {t ∈ T : (p, t) ∈ F}.

In particular, the supervisor disables some actuator events to achieve the specification.
Then, the attacker intrudes into certain actuators and re-enables these events, overriding
the supervisor’s control behaviors. The attacker’s aim is to make the system arrive at an
unsafe state and be damaged through the events that it enables. This type of attack is
called an AE attack.

3.2. The Basis Attack Model Under AE-attacks

We consider a Petri net G = (N, M0), a pair π = (Tc, Tuc) is called a basis partition
of T, if (1)Tc ⊆ T, Tuc = T \ Tc, and (2) the Tuc -induced subnet is acyclic. If not, the
system will become unstable. In this basis partition, the sets Tc and Tuc are called the sets of
controllable transitions and uncontrollable transitions, respectively. The controllable events
(transitions) may be disabled or enabled by SP . The uncontrollable events are not affected
by the supervisor’s actions.

We use Ta
c,v = {ωa : ω ∈ Tc,v} to denote the actuator events intruded by an attacker.

We refer to it as the attacked actuator event set and define Ta = T ∪ Ta
c,v. More precisely,

ωa denotes the occurrence of ω that is disabled in the system by the supervisor and then

Mathematics 2023, 11, 943 7 of 23

enabled again by the attacker. The dilation operation is a mapping D : T∗ → 2T∗a with some
properties such as: (1) D(ε) = {ε}, (2) D(ω) = {ω} if ω ∈ T \ Tc,v, (3) D(ω) = {ω, ωa}
if ω ∈ Tc,v, and (4) D(sω) = D(s)D(ω) where s ∈ T∗ and ω ∈ T. We also define
the compression operator C: Ta → T that has the following operating characteristics:
(1) C(ω) = ω if ω ∈ T, and (2) C(ωa) = ω if ωa ∈ Ta

c,v. The operator of compression can
be extended to C: T∗a → T∗.

Assumption 1. The Petri net system used in this paper is a bounded net.

Assumption 1 means that the method of constructing the basis attack model in this
article is applied to a bounded net, since the BRG is finite for a bounded Petri net. Under
the condition of bounded nets, the maximum capacity of the places in a Petri net does not
exceed a fixed constant K. In this paper, we do not give a specific value of K, which can be
an arbitrarily large non-negative integer.

Assumption 2. All places in the system with uncontrollable transitions do not form a cycle.

Assumption 2 means that the Tuc-induced subnet in the system is acyclic, which allows
us to use the state equation to study the reachability of the uncontrollable subnet.

Assumption 3. The Tuc-induced subnet is backward-conflict-free.

Assumption 3 means that every place has at most one input transition in the Tuc-
induced subnet. Then, Ymin(M, t) is a singleton [25]. Thus, the BRG is considered to be a
deterministic finite-state automaton.

We construct a closed-loop system under AE-attacks in Algorithm 1. Let H be the
supervisor realized by using a Petri net. Review that a P-supervisor can capture the set
of events that are currently enabled. Particularly, enabled unobservable events can be
captured with self-loops at the current place in H. More precisely, a supervisor is able to
disable some events of G. First, we construct Ga by adding all possible attack behaviors to
G with the compression operator C on L(G). Specifically, Ga is constructed by adding a
parallel transition labeled by ωa ∈ Ta

c,v on G. Then, we construct the overall supervisor Ha
in the role of AE-attacks. Intuitively, Ha is constructed by adding self-loops to all places
with events in Ta

c,v, when the candidate event’s compression is not in the set of active events
at the place.

Then, we obtain the closed-loop system under attacks GM by taking the parallel
composition of Ha and Ga. GM simulates the system behavior in the case where AE-attacks
are always presented for all vulnerable actuators. We define a new set of events Φ in the
given Petri net, Φ = {t ∈ Tuc | ∃p ∈ Pu, (t, p) ∈ F}, where Pu represents the set of unsafe
places. The physical meaning of the set Φ is as follows: the set of basis markings is reachable
by firing a sequence σt, where t ∈ Tc and σ ∈ T∗uc. If the sequence σ contains transitions in
Φ, then the markings containing unsafe places may not belong to the set of basis markings.

In Algorithm 2, we modify the method of calculating the BRG. Given a marking M
and a transition t ∈ (Tc ∪Φ), we define ∑Φ(M, t) =

{
σ ∈ (T \ (Tc ∪Φ))∗ | M[σ〉M′, M′ ≥

Pre(·, t)} as the set of explanations of a transition t at a marking M. Correspondingly, the
sets of Y(M, t), ∑min(M, t) and Ymin(M, t) are modified to the sets of YΦ(M, t), ∑Φ

min(M, t)
and YΦ

min(M, t), respectively. The restriction of the incidence matrix to Tuc \Φ is denoted
as CΦ

uc. Finally, we compute the corresponding basis markings by using the minimal e-
vectors and the corresponding transitions in the set Tc ∪Φ from the initial marking. The
basis attack model GB is constructed subsequently, which allows a more precise analysis of
the attacker.

In the resulting basis attack model, states and arcs are drastically reduced as well
as the analysis of system behavior becomes more efficient. Since uncontrollable events
can always happen at any time, there is no need to display uncontrollable events in the

Mathematics 2023, 11, 943 8 of 23

generated basis attack model GB , and uncontrollable events are used as explanation vectors
to fire a certain event.

In the basis attack model GB , only the events in Tc are controllable, and the events in
Tc,v are the attacker’s behaviors. However, the events in Tc,v are also controllable, except
that the original control action is overwritten by the attacker. The observability of the
events in Tc,v inherits the observability of the corresponding events in Tc.

Algorithm 1 Algorithm for the closed-loop system under attacks

Input: A Petri net G = (N, M0) and a supervisor H = (Ph, T, Fh, M0,h, Wh).
Output: A closed-loop system under attacks GM = (Pm, Ta, Fm, M0,m, Wm).

1: Let Ga = (P, Ta, Fa, M0, Wa);
2: for all p ∈ P, ν ∈ Ta do
3: if (p,C(ν)) ∈ F then
4: Let Fa = Fa ∪ {(p,C(ν))} ∪

{
(C(ν), κ), ∀κ ∈ C(ν)•

}
;

5: Let Wa(p,C(ν)) = W(p,C(ν));
6: Let Wa(C(ν), κ) = W(C(ν), κ);
7: end if
8: end for
9: Let Ha = (Ph, Ta, Fh,a, M0,h, Wh,a);

10: for all p ∈ Ph, ν ∈ Ta do
11: if (p, ν) ∈ Fh then
12: Let Fh,a = Fh,a ∪ (p, ν) ∪ {(ν, κ) | (ν, κ) ∈ Fh};
13: Let Wh,a(p, ν) = W(p, ν);
14: Let Wh,a(ν, κ) = W(ν, κ);
15: else if (p, ν) /∈ Fh then
16: Let Fh,a = Fh,a ∪ (p, ν) ∪ (ν, p);
17: Let Wh,a(p, ν) = W(p, ν);
18: Let Wh,a(ν, p) = W(p, ν);
19: end if
20: end for
21: Compute GM = Ga ‖ Ha;
22: Output GM = (Pm, Ta, Fm, M0,m, Wm).

Algorithm 2 Construction of the basis attack model

Input: A closed-loop system under attacks GM = (Pm, Ta, Fm, M0,m, Wm).
Output: A basis attack model GB = (M, T , δ, M0).

1: LetM = ∅,Mnew = {M0};
2: Let Tc be the set of controllable transtions;
3: whileMnew 6= ∅ do
4: Select a state M ∈ Mnew;
5: for all t ∈ (Tc ∪Φ) do
6: Compute YΦ

min(M, t);
7: for all y ∈ YΦ

min(M, t) do
8: Let M̂ = M + CΦ

uc · y + C(·, t);
9: if @M̂ ∈ M∪Mnew then

10: LetMnew =Mnew ∪
{

M̂
}

;
11: end if
12: Let δ(M, t) = M̂;
13: end for
14: end for
15: LetM =M∪{M};
16: LetMnew =Mnew \ {M};
17: end while
18: Output GB = (M, T , δ, M0).

Mathematics 2023, 11, 943 9 of 23

Example 1. The plant G is shown in Figure 4 with Tc = {t1, t4, t5, t7, t8, t10, t11}, Tuc =
{t0, t2, t3, t6, t9}, Tc,v = {t8, t10}, To = {t0, t1, t2, t3, t4, t5, t6, t7, t8, t10, t11}, Tuo = {t9}. The
unsafe place in the plant is p11, represented by a square graphic, then Φ = {t9}. The supervisor H
is shown in Figure 5, which can control G. The supervisor disables transition t8 in place p8, thus
stopping the system from arriving at an unsafe place p11. Following Algorithm 1, we build the
closed-loop system under attacks by GM = Ga ‖ Ha in Figure 6. Following Algorithm 2, the basis
attack model GB is computed, starting from the initial marking M0.

The generated basis attack model GB is shown in Figure 7. There are seven states and eight
arcs in Figure 7, while there are twelve states and twelve arcs in the reachability graph of the plant.
As we can see, since the attacker enables vulnerable events, the system can reach the unsafe place
p11 through the event t9.

p2

p1

p0

p3

p4

P5

p6

p7
p8p9

p10

t0

p11

t2

t4

t5 t6

t7

t10

t8

t9

t3

t11

t1

Figure 4. The plant G.

p2

p1

p0

p3

p4

p5

p6

p7
p8p9

t0

t2

t4

t5 t6

t7

t3

t1

Figure 5. The supervisor H.

p2

p1

p0

p3

p4

P5

p6

p7
p8p9

p10

t0

p11

t2

t4

t5 t6

t7

t9

t3

t11

t1

8

at

10

at

Figure 6. GM: the closed-loop system under attacks.

Mathematics 2023, 11, 943 10 of 23

M0=p0

M1=p2+p3

M2=p3+p6M3=p3+p7

M4=p3+p8

M5=p3+p10

M6=p3+p11

t4

t1

t5

t7

t9

t11

8

at

10

at

Figure 7. GB : the basis attack model.

4. Detection of Actuator Enablement Attacks
4.1. Detecition Strategy

As mentioned above, under an AE attack, a plant may deviate from the supervisor-
enforced specification and arrive at an unsafe place. In order to prevent the impact of such
an attack, we design a model for attack detection. When the attack is detected, the system
switches to “defense module”. This strategy restricts the plant to stop the system from
reaching any place in a given set of unsafe places. While it is assumed that every place
reached by SP/G is safe, not all places other than those reached by SP/G are unsafe. We
use Pu to represent the set of unsafe places.

Our techniques are based on those developed in [29] for “safe controllability” and [10]
for “disable languages”. In particular, using the model built in the above section, we
describe the attack detection issue to be a fault diagnosis one in which a fault event is
an intrusion event on an actuator that is vulnerable to attacks. An intrusion detection
module is designed to monitor the situation of the plant and inform the supervisor when
an attack is diagnosed. When a message that the system has been attacked is received
from the DA, the supervisor switches to the “defense module” in which the supervisor
disables every controllable event. We point out that attack detection and safe controllability
strategies are equally applicable to online implementations, as they rely only on diagnosers
and supervisors.

4.2. AE-Safe Controllability

We review the AE-safe controllability in [23]. In particular, the set of unsafe places Pu ⊂
P is considered. The set of strings with the last event being the vulnerable controllable event
is denoted as Ψ(Tc,v) =

{
γ ∈ L(G) : γ = γ′ω, γ′ ∈ T ∗, ω ∈ Ta

c,v
}

. The basis attack model
GB generated by Algorithm 2 represents the system behaviors after AE-attacks. LetMu =
{M ∈ M | ∃p ∈ Pu : M(p) > 0} be the set of unsafe states in GB . When s′ is a rigorous
prefix of s, it is written as s′ < s. Given L ⊆ T∗, all subsequent strings starting with s in
L are defined as L/s := {γ : sγ ∈ L}. We define L(GB) := {s ∈ T ∗ : δ(M0, s)is defined}
as the language generated by GB . We define P a

o : T ∗ → (To ∪ D(Tc,v ∩ To))
∗. AE-safe

controllability will hold if an attack is detected and successfully stop the plant from arriving
at an unsafe state. In the following, we give a definition of AE-safe controllability.

Mathematics 2023, 11, 943 11 of 23

Definition 3. The basis attack model GB = (M, T , δ, M0) is from Algorithm 2. Language LB =
L(GB) satisfies AE-safe controllability on projection P a

o , attacked events Ta
c,v and unsafe statesMu,

if
(
∀s ∈ Ψ

(
Ta

c,v
))

(∀γ ∈ LB/s) {(δ(M0, sγ) ∩Mu 6= ∅) ∧ (∀s′ < sγ, δ(M0, s′) ∩Mu = ∅)}
⇒ (∃γ1, γ2 ∈ T ∗)

[
(γ = γ1γ2) ∧

(
(@µ ∈ LB)

[
P a

o (sγ1) = P a
o (µ) ∧ Ta

c,v /∈ µ
])
∧ (Tc ∈ γ2)

]
.

Briefly, we claim that the system satisfies AE-safe controllability if LB , P a
o andMu are

understood and Definition 3 holds. The definition of AE-safe controllability is illustrated in
Figure 8. In the above definition, the state is first arrived via the string s, whose final event
ωa

c,v of that string s is the actuator event under attacks. The string γ is a continuation of s
that first reaches the unsafe state. A system satisfies AE-safe controllability if for every pair
of s and γ, where γ can be divided as γ = γ1γ2 and where: (1) after sγ1, an attacked event
can be diagnosed, and (2) there exists a controllable event in γ2. Review above that every
event in Tc is controllable, while the attacked events in it are uncontrollable. In other words,
AE-safe controllability will hold if an attack is detected, then disable a controllable event
and successfully stop the plant from arriving at an unsafe state; this controllability holds
true if each attack cannot be missed. We should point out that the detection requirements
after string sγ1 is that an attack is detected at each vulnerable actuator (cf. Ta

c,v /∈ µ in
Definition 3). The module DA will inform SP to disable all controllable actuator events
after it is sure that an attack has been detected. The construction method of GB and the
requirements to determine AE-safe controllability yield the results shown below.

s

γ1

γ2

γ

Attack detected

Unsafe state

c

,

a

c v

Figure 8. Graphic representation of AE-safe controllability.

Theorem 1. Considering AE-attacks and the “defense module”, the plant G does not arrive at an
unsafe state if and only if it satisfies AE-safe controllability.

Proof of Theorem 1. (⇒) By contradiction, suppose that the plant will still arrive at an
unsafe state while satisfying AE-safe controllability. By Definition 3, if the system reaches
an unsafe state, it will violate the safety controllability requirement, which contradicts the
assumption.

(⇐) By contradiction, supposing that the system does not satisfy the safety controlla-
bility requirement, but also does not reach the unsafe state, according to Definition 3, if the
safety controllability is violated, the system reaches the unsafe state and suffers damage,
which contradicts the assumption.

4.3. Test of AE-Safe Controllability Using Basis Diagnoser

To determine whether a system satisfies AE-safe controllability, we formulate an
algorithm for constructing a diagnoser using the basis attack model. The diagnoser depends
on the calculation of an automaton observer, which is generated by a parallel composition of
a plant automaton and a label automaton, as mentioned in [26,30]. We propose algorithms
to verify that the module DA is able to detect attacks before the system arrives at an unsafe
state and the supervisor can disable controllable events to stop the system from arriving
at Pu. We first review the definition of first-entered certain states as described in [29]. The
diagnoser and related terms are explained in [26].

Mathematics 2023, 11, 943 12 of 23

Definition 4. The basis diagnoser is described as GD = (Md, To, Fd, M0,d), which consists of a
combination of the basis attack model GB and the label automaton Aξ . Three new sets are defined
as follows: QU = {q | q ∈ Md : q is uncertain}, QN = {q | q ∈ Md : q is normal}, and QY =
{q | q ∈ Md : q is certain}. The set of first-entered certain states is FC = {q | q ∈ QY : (∃q′ ∈
QU ∪QN , ∃ω ∈ To)[Fd(q′, ω) = q]}.

First, we build the label basis attack model Gξ with Algorithm 3. It can be seen by
the construction of GB that our aim is to determine the course of events in Ta

c,v, according
to the set of observable events. Specifically, the events in Ta

c,v are all “fault” events to
be detected, and they are considered to be the identical fault type. Thus, we want to
build a basis diagnoser GD. In Algorithm 3, we construct a label basis attack model
Gξ =

(
Mξ , Tξ , δξ , M0,ξ

)
by using the label automaton Aξ in Figure 9 and the attacked

actuator events in Ta
c,v.

(M0,N) (M1,Y)

(M2,U)

,

a

c vT

,

a

c vT

,

a

c vT

,

a

c vT

,\ a

c c vT T

Figure 9. Label automaton Aξ .

Algorithm 3 Building a label basis attack model

Input: Basis attack model GB = (M, T , δ, M0)
Output: Label basis attack model Gξ =

(
Mξ , Tξ , δξ , M0,ξ

)
1: Sign the initial marking M0 as “N”;
2: for all Mc ∈ M do
3: for all t ∈ T do
4: if δ

(
Mp, t

)
= Mc then

5: if Mp is labeled with “U” then
6: Sign Mc as “U”;
7: else if Mp is labeled with “Y” or t ∈ Tc,v then
8: Sign Mc as “Y”;
9: for all t′ ∈ T and t′ 6= t do

10: if δ
(

M′p, t′
)
= Mc and t′ /∈ Tc,v and M′p is not labeled with “Y” then

11: Sign Mc as “U”;
12: end if
13: end for
14: else
15: Sign Mc as “N”;
16: end if
17: end if
18: end for
19: end for
20: Output Gξ =

(
Mξ , Tξ , δξ , M0,ξ

)
.

Next, we introduce Algorithm 4, which is a diagnoser-based algorithm to verify AE-
safe controllability. We start constructing a basis diagnoser GD = Obs

(
Gξ , Ta,uo

)
, where

Obs
(
Gξ , Ta,uo

)
represents the observer of Gξ about the unobservable event set Ta,uo with

Ta,uo = Tuo ∪ D(Tc,v ∩ Tuo). In Step 2, we examine each uncertain state to determine

Mathematics 2023, 11, 943 13 of 23

whether it contains an unsafe state, and if so, the diagnoser will fail to detect the occurrence
of an attack before the system arrives at an unsafe state, thus violating AE-safe controllabil-
ity. Then, we calculate the set FC and examine each state in FC to determine whether it
contains an unsafe state in Step 6. If so, even though an attack is detected, the system has
already arrived at an unsafe state; therefore the system violates AE-safe controllability. In
Step 9, we consider a set of events T′ ⊆ T and a state M ∈ M. The set of reachable states
for T′ and M is Reach(GB , M, T′) =

{
M′ ∈ M :

(
∃s ∈ (T′)∗

)
[δ(M, s) = M′]

}
. Finally, the

set of reachable states is found from FC by attacked actuator events or uncontrollable
events. Then, the states in the set are examined at Step 10 to determine whether they
contain unsafe states. If so, even if an attack is diagnosed at this time, it cannot stop the
system from arriving at an unsafe state. Thus, it does not satisfy AE-safe controllability.
In Algorithm 4, the projection of q on the corresponding state set of GB is denoted as
q↓M := {M : (∃l)[(M, l) ∈ q]}.

Algorithm 4 AE-safe controllability test using basis diagnoser

Inputs: • Gξ : Label basis attack model
• Mu: set of unsafe states
• Ta

c,v: set of attacked actuator events
Output: AE-Safe Controllability ∈ {true, f alse}

1: The basis diagnoser GD = Obs
(
Gξ , Ta,uo

)
;

2: if there is uncertain state q =
{(

Mi1 , ξi1
)
· · · (Min , ξin)

}
in which there exists Mij ∈ Mu

then
3: AE-safe controllability=false;
4: else
5: Compute FC according to Definition 4;
6: if there is q =

{(
Mi1 , Y

)
· · · (Min , Y)

}
in which there exists Mij ∈ Mu then

7: AE-safe controllability=false;
8: else
9: ComputeMuc =

⋃
q∈FC

⋃
Mx∈q↓M

Reach
(
GB , Mx, Ta

c,v ∪Φ
)
;

10: ifMuc ∩Mu 6= ∅ then
11: AE-safe controllability=false;
12: else
13: AE-safe controllability=true.
14: end if
15: end if
16: end if

Proposition 1. Consider GB = (M, T , δ, M0) from Algorithm 2. The basis diagnoser GD is
constructed in Algorithm 4. Language LB does not satisfy AE-safe controllability for P a

o , Ta
c,v, and

Mu if and only if any of these conditions are true:
(1) There exists qU =

{(
Mi1 , ξi1

)
, · · · , (Min , ξin)

}
∈ QU such that ∃j ∈ {1, · · · , n},

Mij ∈ Mu and ξij = Y; (2) There exists qY =
{(

Mi1 , Y
)
, · · · , (Min , Y)

}
∈ FC such that

∃j ∈ {1, · · · , n}, Mij ∈ Mu; (3) There exists Mx ∈ Muc such that Mx ∈ Mu, whereMuc is
defined in Algorithm 4.

Proof of Proposition 1. (⇒) Suppose the plant LB is AE-safe controllable; there exists(
Mij , ξij

)
with ξij = Y, Mij ∈ Mu in the set of qU . It indicates that the system has detected

an attack occurrence at this time, while the plant has reached the unsafe state, According to
Definition 3, it is known that AE-safe controllability is violated, which is a contradiction.
The remaining two conditions are the same as above.

(⇐) By contradiction, suppose that there is no
(

Mij , ξij

)
with ξij = Y, Mij ∈ Mu in

the set of qU , and the plant LB violates AE-safe controllability. According to Definition 3, if
the plant does not satisfy AE-safe controllability, LB has reached an unsafe state Mij ∈ Mu

Mathematics 2023, 11, 943 14 of 23

after attacks, which is a contradiction. The remaining two conditions are the same as
above.

Note that since the event ωa is observable, the basis diagnoser can detect an attack
immediately when it occurs on the vulnerable actuator events in ω ∈ Tc,v ∩ To. In such a
case, the system might still arrive at an unsafe state and violate AE-safe controllability via
the attacked actuator events.

Example 2. Based on Example 1, the basis attack model GB is shown in Figure 7. Next, we
verify that the system satisfies AE-safe controllability according to Algorithm 4. In the first step,
we construct the label basis attack model Gξ on Ta

c,v =
{

ta
8, ta

10
}

in Figure 10. For convenience,
assuming Ta,uo = ∅, the basis diagnoser GD is the identical graph as Gξ . By checking states of the
diagnoser in Figure 10, we can find that an attacked actuator event will be detected in (M5, Y) before
the system arrives at the unsafe state M6. Finally, we can see thatMuc = {M5, M6} contains the
unsafe state M6 at Step 10, which means that although an attack can be detected in advance by the
diagnoser, the plant can still enter the unsafe state M6 ∈ Mu under the attack since event t9 is
uncontrollable, thus violating AE-safe controllability.

(M0,N)

(M1,N)

(M2,N)

(M4,U)

(M5,Y)

(M6,Y)

t1

t7

t9

t11

10

at

8

at

(M3,N)

t4t5

Figure 10. Label basis attack model Gξ .

4.4. Test of AE-Safe Controllability Using Basis Verifier

This subsection verifies AE-safe controllability by using a basis verifier, which is
another diagnostic method. The simple verifier-based approach was proposed and used
in [31–34]. Compared to the diagnoser presented in the above section, the verifier requires
lower complexity, but the verifier is not as suitable for online diagnosis as the diagnoser.
Both methods are suitable for different scenarios, and both have their own advantages.

Algorithm 5 shows in detail how AE-safe controllability can be tested by a basis verifier.
In the first step, the label basis attack model Gξ is constructed by using Algorithm 3. In the
second step, the basis verifier GV is constructed by using the method of [31]. GV is obtained
by computing GN and GF that denote the model of normal and faulty behavior, respectively.
At a state M, the active event set of GV is denoted as ΓV(M). In the process of constructing
GN , the state space is represented byMN , and then the unobservable events are renamed
using the renaming function R: T \ Ta

c,v → TR, where R(ω) = ω, if ω ∈ Ta,o and R(ω) =
ωR, if ω ∈ Ta,uo \ Ta

c,v. The observable event set is Ta,uo = {Tuo ∪ D(Tc,v ∩ Tuo)}. Therefore,
the unobservable events of GN and GF are considered to be “private” events. In Step 4,
all states in GV are judged for the presence of unsafe states, and if they exist, AE-safe

Mathematics 2023, 11, 943 15 of 23

controllability is violated. In Step 7, we present a new state set A that indicates the states
reached by the remaining observable events, which may contain unsafe states, and then
add a self-loop of uncontrollable events under A. After diagnosing the attack, the system
violates AE-safe controllability if there is a path to reach the unsafe state only by the
unobservable events. At Step 11, we compute the combined basis verifier GT = Gcd

V ‖ GF,
whose state space is represented byMT . In Step 12, if there is an unsafe state in GT , the
unsafe state was reached before the attack was detected.

Proposition 2. Let LB be the language generated by GB . Then, LB does not satisfy AE-safe
controllability with respect to P a

o : T ∗ → T∗a,o, Ta
c,v andMu if and only if any of these conditions

is true: (1) There exists MV = {(MN , N), (M, Y)} ∈ MV such that M ∈ Mu, where MN ∈
MN and M ∈ M; (2) There exists

{
Mcd

V , (M, Y)
}
∈ MT such that Mcd

V = A and M ∈ Mu,

where Mcd
V ∈ Mcd

V and M ∈ M.

Proof of Proposition 2. (⇒) By contradiction, let LB be AE-safe controllable. Then, there
exists MV = {(MN , N), (M, Y)} ∈ MV , M ∈ Mu. It means that the plant has detected an
attack occurrence at this time, while the plant has reached the unsafe state. According to
Definition 3, it is known that the AE-safe controllability is violated, which is a contradiction.
The remaining condition is the same as above.

(⇐) By contradiction, suppose that there is no MV = {(MN , N), (M, Y)} ∈ MV ,
M ∈ Mu and LB that violates AE-safe controllability. According to Definition 3, if the plant
does not satisfy AE-safe controllability, it indicates that the plant has reached an unsafe
state M ∈ Mu after an attack, which is a contradiction. The remaining condition is the
same as above.

Algorithm 5 AE-safe controllability test using basis verifier

Inputs: • GB = (M, T , δ, M0): basis attack model
• Mu: set of unsafe states
• Ta

c,v: set of attacked actuator events
Output: AE-Safe Controllability∈ {true, f alse}

1: Build Gξ according to Algorithm 3;
2: Build basis verifier GV = (MV , TR ∪ T , FV , M0,V) assuming Ta

c,v be the set of fault
events according to Algorithm 1 in [31];

3: Let ΓV(M) = {t ∈ TR ∪ T | ∃M′ ∈ MV , FV(M, t) = M′};
4: if there exists {(MN , N), (M, Y)} of GV such that M ∈ Mu then
5: Safe Controllability=false;
6: else
7: Build Gcd

V =
(
Mcd

V , TR ∪ T , Fcd
V , M0,V

)
, where

8: • Mcd
V =MV ∪ {A};

9: • Fcd
V (MV , τ) = FV(MV , τ), if τ ∈ ΓV(MV);

10: • Fcd
V (MV , τ) = A, if τ ∈ Ta,o ∧ τ /∈ ΓV(MV);

11: • Fcd
V (A, τ) = A for all τ ∈ Φ ∪ Ta

c,v;
12: Build GT = Gcd

V ‖ GF, where GF is defined in Algorithm 1 in [31];

13: if there exists
{

Mcd
V , (M, ξ)

}
in GT such that Mcd

V = A and M ∈ Mu then
14: Safe Controllability=false;
15: else
16: Safe Controllability=true.
17: end if
18: end if

Example 3. Again reviewing the system in Example 1, the basis attack model GB is shown
in Figure 7 in which the controllable events observable events and vulnerable events are Tc =
{t1, t4, t5, t7, t8, t10, t11}, To = {t0, t1, t2, t3, t4, t5, t6, t7, t8, t10, t11}, Tc,v = {t8, t10}, respectively.

Mathematics 2023, 11, 943 16 of 23

The model GN , which represents the normal behavior of the system, is shown in Figure 11a. The
model GF, which represents the fault/attacked behavior, is depicted in Figure 11b, and the basis
verifier GV is displayed in Figure 12. By Step 8 of Algorithm 5, a new state A needs to be added to
GV , which is added into the basis verifier under attacks Gcd

V . Each state in GV is linked to state A
by observable events except the self-loop of uncontrollable events under state A. The basis verifier
under attacks Gcd

V is shown in Figure 13. After that, GT is obtained by calculating Gcd
V ‖ GF, as

shown in Figure 14. According to the judgment condition of Step 13 in Algorithm 5, it is known
that the system violates AE-safe controllability, since the state {A, (M6, Y)} in GT consists of two
parts, state A and M6 ∈ Mu.

(M0,N)

(M1,N)

(M2,N)

(M4,N)

t1

t4

(M3,N)

t5

t7

(M0,N)

(M1,N)

(M2,N)

(M4,U)

(M5,Y)

(M6,Y)

t1

t7

t9

t11

t4

(M3,N)

t5

10

at

8

at

（a） （b）

Figure 11. (a) The system model under normal behavior GN and (b) the system model under attacked
behavior GF.

{(M0,N),(M0,N)}

{(M1,N),(M1,N)}

{(M2,N),(M2,N)}

{(M4,N),(M4,N)}

t4

t1

t7

Figure 12. The basis verifier GV .

Mathematics 2023, 11, 943 17 of 23

{(M0,N),(M0,N)}

{(M1,N),(M1,N)}

{(M2,N),(M2,N)}

{(M4,N),(M4,N)}

t4

t1

t7

A t9

t1 ,t5,t7 ,t8 ,t10 ,t11 , ,8

at 10

att1 ,t5,t7 ,t8 ,t10 ,t11 , ,8

at 10

at

t1 ,t4,t5 ,t8 ,t10 ,t11 , ,8

at 10

att1 ,t4,t5 ,t8 ,t10 ,t11 , ,8

at 10

at

t1 ,t4 ,t5,t7,t8 ,t10 ,t11, ,8

at 10

att1 ,t4 ,t5,t7,t8 ,t10 ,t11, ,8

at 10

at

t4 ,t5,t7 ,t8 ,t10,t11 , ,8

at 10

att4 ,t5,t7 ,t8 ,t10,t11 , ,8

at 10

at

Figure 13. The basis verifier under attacks Gcd
V .

{{(M0,N),(M0,N)},(M0,N)}

{{(M1,N),(M1,N)},(M1,N)}

{{(M2,N),(M2,N)},(M2,N)}

{{(M4,N),(M4,N)},(M4,N)}

{A,(M5,Y)}

{A,(M6,Y)}

t1

t7

t9

t11

t4

{{(M3,N),(M3,N)},(M3,N)}

t5

8

at
8

at

10

at

{A,(M4,Y)}

Figure 14. The combined basis verifier GT .

5. Computational Efficiency Analysis and Experiments

First, we consider the complexity of constructing a system network model by using
a Petri net. In this case, the relationship between the construction of the Petri net model
and the size of the actual system is linear. For the complexity of constructing a BRG, if all
the transitions in the system are controllable, then the basis marking set and the reachable
marking set are the same, i.e.,M = R(G). Therefore, in the worst case, constructing a BRG
has the same complexity as constructing a reachable graph. In this case, the complexity is
exponential with respect to the number of places and the initial marking. Next, we consider
the complexity of building the basis attack model. Since the basis attack model is built
based on BRG, the complexity of constructing the basis attack model is identical to the BRG.
Finally, in the detection of attacks using the basis diagnoser, the complexity of building
the basis diagnoser is exponential with respect to the number of states in the basis attack
model, and the basis verifier requires polynomial time with respect to the state space of
the BRG.

Mathematics 2023, 11, 943 18 of 23

For the attack detection method under the basis attack model mentioned above, we
give some numerical examples to validate the construction method and study the efficiency
of the model by experiments comparing the number of states of the basis attack model with
the number of states of the reachable graph. Finally, we determine whether AE-security
controllability is satisfied. From the experiments, the number of states under a basis attack
model is significantly reduced. The experiments are simulated on a laptop computer with
Core-i5 2.40 GHz/2.50 GHz CPU using Petri Net Basis Reachability Space Generator [35]. The
experimental comparison is shown in Table 1.

Table 1. Experimental comparison of the basis attack model and the traditional attack model [23].

Experimental
Index

Percentage of
Controllable
Transitions

Number of Basis
Markings

Number of
Reachable
Markings

Marking
Compression Rate

AE-Safe
Controllability

1 100% 16 16 0% True
2 97% 57 84 32% False
3 81% 58 72 19% True
4 62% 42 72 41% True
5 60% 39 81 51% False
6 51% 33 112 70% True
7 43% 23 124 81% False
8 35% 23 112 79% False

6. Example

A cargo transportation system under an AE attack is considered, which is represented
by a Petri net, as depicted in Figure 15. The system is responsible for warehousing,
processing, handling, packing and discharging cargoes from the factory. The places indicate
the location in the factory, the transitions indicate intelligent automatic processing machines,
and the arrow indicates the conveyor belt. The attacker modifies the actuator information
to force the machine to start, whose ultimate goal is to steal secret information when the
system reaches the unsafe state p33. The first batch of cargo enters the factory at p0, the
quality check is performed at t2, the unqualified products are sent to p4, and the qualified
products continue to be sent to p3 for the next check. The processing route is selected at p6
according to the number of cargoes. If the number is small, then t9 is enabled, otherwise t8
is enabled. The system arrives at p12 for classification, t13 is normally enabled for processing,
t12 is the alternate processing route, and it finally arrives at p19. When it arrives at p22, t23
is enabled to select the method of cargo transportation and print the transportation order.
Expedited transportation arrives at p23, and ordinary transportation arrives at p24. When
the system arrives at p33, the factory scans each cargo and registers the information in the
cloud platform. In the whole system, p33 is the most critical step and the most vulnerable to
intrusion, and the attacker wants to steal the secret information at p33. The goods are finally
released at p34. After a shipment is completed, it reverts to p0 for the next shipment.

The set of controllable events of the plant is Tc = {t1, t2, t5, t7, t8, t9, t17, t18, t19, t22, t23,
t28, t33, t34}, the set of remaining events Tuc = T \ Tc is uncontrollable, and the set of vulnera-
ble events is Tc,v = {t17, t28}. The set of observable events is To = {t0, t1, t2, t4, t5, t6, t7, t8, t9,
t10, t11, t12, t13, t14, t15, t16, t17, t18, t19, t20, t21, t22, t23, t24, t25, t26, t27, t28}. The set of unsafe places
is Pu = {p33}. The set Φ is Φ = {t32}. Let system G be controlled by the supervisor SP , who
always disables the set of events Tc,v in order to prevent damage to the system.

Mathematics 2023, 11, 943 19 of 23

p0
t0 t1 t2

t4

t5

t7

t13

t6

t8

t9

t10

t12

t11 t14

t15

t16

t17

t18
t19

t21

t22t23

t25

t26

t27

t28

t30t31t32

t33

t34

p1 p2

p3

p4

p5 p6

p7

p8p9

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

p20

p21

p22

p23

p24

p25

p26

p27

p28

p29p30
p31p32p33

p34

t3

t20

t24

t29

Figure 15. Petri net G.

We consider that K ⊂ L(G) is an observable and controllable behavior which is
realized by SP . The realization H of the supervisor is depicted in Figure 16. According
to Algorithm 1, we first construct Ga to represent the change of system state after being
attacked. Next, we build Ha to represent the supervisor after being attacked. Then, we
construct the closed-loop system GM under attacks by using parallel composition, as
shown in Figure 17. Finally, according to the algorithm presented above, the basis attack
model is generated, as depicted in Figure 18. We can see that the set of unsafe states is
Mu = {M20, M21}. After the attacked event t28, the plant state changes from M17 to M19,
and since the events in the set Φ are uncontrollable events, the system state continues to
run uncontrollably from M19 to the unsafe state M21.

p0
t0 t1 t2

t4

t5

t7

t13

t6

t8

t9

t10

t12

t11 t14

t15

t16

t18
t19

t21

t22t23

t25

t26

t27

t33

t34

p1 p2
p3

p4

p6

p7

p8
p9

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

p20

p21

p22

p23

p24

p25

p26

p27

p28

p34

t3

t20

t24

Figure 16. Supervisor H.

p0
t0 t1 t2

t4

t5

t7

t13

t6

t8

t9

t10

t12

t11 t14

t15

t16

t18
t19

t21

t22t23

t25

t26

t27

t30t31t32

t33

t34

p1 p2

p3

p4

p5 p6

p7

p8p9

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

p20

p21

p22

p23

p24

p25

p26

p27

p28

p29p30
p31p32p33

p34

t3

t20

t24

t29

17

at

28

at

Figure 17. The closed-loop system under attacks GM.

Mathematics 2023, 11, 943 20 of 23

M0=p0

M1=p2

M2=p3+p4

M3=p4+p6M4=p3+p9

M5=p6+p9 M6=p4+p10

t1

M7=p4+p11

M8=p9+p10 M9=p9+p11 M10=p4+p19 M11=p4+p18

M12=p9+p19

M16=p4+p23+p24

M15=p9+p22

M14=p4+p22M13=p9+p18

M17=p9+p23+p24

M18=p4+p29

M20=p4+p33

M19=p9+p29

M21=p9+p33

M22=p34

t2

t5
t7

t7 t8
t9t5

t9

t8

t7 t18t19

t7

t18

t19

t7

t22

t19

t7

t22

t19

t7
t23

t23

t7

t7

t32t32

t7

t33

t34

17

at

17

at

28

at
28

at

Figure 18. The basis attack model GB .

According to the safe controllability condition proposed in this article, we use Algo-
rithms 3 and 4 to determine whether the plant satisfies AE-safe controllability. Part of the
basis diagnoser GD is shown in Figure 19. It can be seen that the plant can still arrive at
state M19. At this point, the system detects that an attack has occurred. Next, the system
will continue to reach the state M21 via the event t32 ∈ Tuc. There is no controllable event
to interrupt the process between the attacked event and the unsafe state, thus violating
AE-safe controllability.

The detection of AE-attacks by constructing a basis diagnoser largely improves the
efficiency. By using the traditional automaton approach in this example, we generate
123 states and 234 arc relations,the state compression rate is 81.3%, and the arc relation
compression rate is 85.5%. Since the reachability graph is equivalent to a finite state
automaton, the above comparison is based on the reachability graph.

Mathematics 2023, 11, 943 21 of 23

(M0,N)

(M1,N)

(M2,N)

t1

(M19,Y)

(M21,Y)

t2

t5 t7

t32

t33

28

at

Figure 19. A part of the basis diagnoser GD.

7. Conclusions

In this article, we studied the attack detection of AE-attacks in a supervisory control
system. In a supervisory control system, actuator signals are vulnerable to manipulation
by an attacker. An attacker will enable events that have been disabled by a supervisor in
order to make the system reach unsafe states. We use the technique under Petri nets to
develop attack detection methods to protect the system by disabling all controllable events
after detecting an attack. First, we introduce a general framework for attack detection
that models the plant as a Petri net to describe the system behaviors. Second, we simplify
the attack model using basis markings to construct a basis attack model to analyze the
system behaviors after an attack occurs. The basis attack model satisfies the properties
of a closed-loop control system and reduces the number of states in the plant. Third, to
prevent the attack from causing damage to the system, we also build the basis diagnoser
to judge AE-safe controllability. After an attack is detected, the supervisor disables all
controllable events to prevent the system from reaching an unsafe state. If successful,
the system satisfies AE-safe controllability; otherwise, it does not. Compared with the
traditional method, our method improves the detection efficiency and alleviates the state
explosion problem. Finally, we also provide an offline solution to the attack detection
problem. In this article, we consider AE-attacks to explain our framework and results. In
fact, our method is general and available for other types of attacks. In future work, we
will extend the approach to unbounded nets and relax the assumptions and we will also
consider new types of attacks similar to the spread of viruses [36–38] in the framework
of DESs.

Author Contributions: Conceptualization, Z.Y.; methodology, Z.Y. and X.C.; formal analysis, X.C.;
investigation, X.D.; writing—original draft preparation, X.D.; writing—review and editing, X.C., X.L.
and L.Z.; funding acquisition, Z.Y. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grants 62273272 and 61873277, the Key Research and Development Program of Shaanxi
Province under Grant 2023-YBGY-243, the Natural Science Foundation of Shannxi Province under

Mathematics 2023, 11, 943 22 of 23

Grant 2022JQ-606, the Research Plan of Department of Education of Shaanxi Province under Grant
21JK0752, and the Youth Innovation Team of Shaanxi Universities.

Data Availability Statement: Not applicable.

Acknowledgments: The authors sincerely appreciate the editor and anonymous referees for their
careful reading and helpful comments to improve this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lin, L.; Zhu, Y.; Su, R. Synthesis of covert actuator attackers for free. Discret. Event Dyn. Syst. 2020, 30, 561–577. [CrossRef]
2. Yu, Z.; Gao, H.; Wang, D.; Alnuaim, A.A.; Firdausi, M.; Mostafa, A.M. SEI2RS malware propagation model considering two

infection rates in cyber–physical systems. Phys. A Stat. Mech. Appl. 2022, 597, 127207. [CrossRef]
3. Meira-Góess, R.; Kang, E.; Kwong, R.H.; Lafortune, S. Synthesis of sensor deception attacks at the supervisory layer of cyber–

physical systems. Automatica 2020, 121, 109172. [CrossRef]
4. Meira-Góess, R.; Kang, E.; Kwong, R.H.; Lafortune, S. Stealthy deception attacks for cyber–physical systems. In Proceedings

of the 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, VIC, Australia, 12–15 December 2017;
pp. 4224–4230.

5. Zhang, D.; Wang, Q.G.; Feng, G.; Shi, Y.; Vasilakos, A.V. A survey on attack detection, estimation and control of industrial
cyber–physical systems. ISA Trans. 2021, 116, 1–16. [CrossRef] [PubMed]

6. Yu, Z.; Sohail, A.; Jamil, M.; Beg, O.; Tavares, J.M.R. Hybrid algorithm for the classification of fractal designs and images. Fractals
2022, accepted. [CrossRef]

7. Hou, Y.; Shen, Y.; Li, Q.; Ji, Y.; Li, W. Modeling and optimal supervisory control of networked discrete-event systems and their
application in traffic management. Mathematics 2023, 11, 3. [CrossRef]

8. Yu, Z.; Wang, H.; Wang, D.; Li, Z.; Song, H. CGFuzzer: A fuzzing approach based on coverage-guided generative adversarial
networks for industrial IoT protocols. IEEE Internet Things J. 2022, 9, 21607–21619. [CrossRef]

9. Cong, X.; Fanti, M.P.; Mangini, A.M.; Li, Z. Critical observability of discrete-event systems in a Petri net framework. IEEE Trans.
Syst. Man Cybern. Syst. 2022, 52, 2789–2799. [CrossRef]

10. Thorsley, D.; Teneketzis, D. Intrusion detection in controlled discrete event systems. In Proceedings of the 45th IEEE Conference
on Decision and Control, San Diego, CA, USA, 13–15 December 2006; pp. 6047–6054.

11. Wakaiki, M.; Tabuada, P.; Hespanha, J.P. Supervisory control of discrete-event systems under attacks. Dyn. Games Appl. 2019, 9,
965–983. [CrossRef]

12. Wang, Y.; Pajic, M. Supervisory control of discrete event systems in the presence of sensor and actuator attacks. In Proceedings of
the 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, 11–13 December 2019; pp. 5350–5355.

13. You, D.; Wang, S.; Zhou, M.; Seatzu, C. Supervisory control of Petri nets in the presence of replacement attacks. IEEE Trans.
Autom. Control 2021, 67, 1466–1473. [CrossRef]

14. You, D.; Wang, S.; Zhou, M.; Seatzu, C. Supervisor synthesis to thwart cyberattack with bounded sensor reading alterations.
Automatica 2018, 94, 35–44.

15. Agarwal, M. Rogue twin attack detection: A discrete event system paradigm approach. In Proceedings of the 2019 IEEE
International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 1813–1818.

16. Fritz, R.; Zhang, P. Modeling and detection of cyberattacks on discrete event systems. IFAC-PapersOnLine 2018, 51, 285–290.
[CrossRef]

17. Wang, Y.; Li, Y.; Yu, Z.; Wu, N.; Li, Z. Supervisory control of discrete-event systems under external attacks. Inf. Sci. 2021, 562,
398–413. [CrossRef]

18. Zhang, Q.; Seatzu, C.; Li, Z.; Giua, A. Stealthy sensor attacks for plants modeled by labeled Petri nets. IFAC-PapersOnLine 2020,
53, 14–20. [CrossRef]

19. Ma, Z.; Cai, K. On Resilient Supervisory Control Against Indefinite Actuator Attacks in Discrete-Event Systems. IEEE Control
Syst. Lett. 2022, 6, 2942–2947. [CrossRef]

20. Yao, J.; Yin, X.; Li, S. On attack mitigation in supervisory control systems: A tolerant control approach. In Proceedings of the 2020
59th IEEE Conference on Decision and Control (CDC), Jeju, Republic of Korea, 14–18 December 2020; pp. 4504–4510.

21. Rashidinejad, A.; Wetzels, B.; Reniers, M.; Lin, L.; Zhu, Y.; Su, R. Supervisory control of discrete-event systems under attacks: An
overview and outlook. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28 June 2019; pp.
1732–1739.

22. Zheng, S.; Shu, S.; Lin, F. Modeling and control of discrete event systems under joint sensor-actuator cyberattacks. In Proceedings
of the 2021 6th International Conference on Automation, Control and Robotics Engineering (CACRE), Dalian, China, 15–17 July
2021; pp. 216–220.

23. Carvalho, L.K.; Wu, Y.C.; Kwong, R.; Lafortune, S. Detection and mitigation of classes of attacks in supervisory control systems.
Automatica 2018, 97, 121–133. [CrossRef]

http://doi.org/10.1007/s10626-020-00312-2
http://dx.doi.org/10.1016/j.physa.2022.127207
http://dx.doi.org/10.1016/j.automatica.2020.109172
http://dx.doi.org/10.1016/j.isatra.2021.01.036
http://www.ncbi.nlm.nih.gov/pubmed/33581894
http://dx.doi.org/10.1142/S0218348X23400030
http://dx.doi.org/10.3390/math11010003
http://dx.doi.org/10.1109/JIOT.2022.3183952
http://dx.doi.org/10.1109/TSMC.2021.3056693
http://dx.doi.org/10.1007/s13235-018-0285-3
http://dx.doi.org/10.1109/TAC.2021.3063699
http://dx.doi.org/10.1016/j.ifacol.2018.06.314
http://dx.doi.org/10.1016/j.ins.2021.03.033
http://dx.doi.org/10.1016/j.ifacol.2021.04.048
http://dx.doi.org/10.1109/LCSYS.2022.3168926
http://dx.doi.org/10.1016/j.automatica.2018.07.017

Mathematics 2023, 11, 943 23 of 23

24. Cong, X.; Fanti, M.P.; Mangini, A.M.; Li, Z. Decentralized Diagnosis by Petri Nets and Integer Linear Programming. IEEE Trans.
Syst. Man Cybern. Syst. 2018, 48, 1689–1700. [CrossRef]

25. Ma, Z.; Tong, Y.; Li, Z.; Giua, A. Basis marking representation of Petri net reachability spaces and its application to the reachability
problem. IEEE Trans. Autom. Control 2017, 62, 1078–1093. [CrossRef]

26. Cassandras, C.G.; Lafortune, S. Introduction to Discrete Event Systems, 3rd ed.; Springer: Cham, Switzerland, 2021.
27. Cabasino, M.P.; Giua, A.; Pocci, M.; Seatzu, C. Discrete event diagnosis using labeled Petri nets. An application to manufacturing

systems. Control Eng. Pract. 2011, 19, 989–1001. [CrossRef]
28. Wonham, W.M.; Cai, K. Supervisory Control of Discrete-Event Systems, 1st ed.; Springer: Cham, Switzerland, 2019.
29. Paoli, A.; Sartini, M.; Lafortune, S. Active fault tolerant control of discrete event systems using online diagnostics. Automatica

2011, 47, 639–649. [CrossRef]
30. Sampath, M.; Sengupta, R.; Lafortune, S.; Sinnamohideen, K.; Teneketzis, D. Diagnosability of discrete-event systems. IEEE Trans.

Autom. Control 1995, 40, 1555–1575. [CrossRef]
31. Moreira, M.V.; Jesus, T.C.; Basilio, J.C. Polynomial time verification of decentralized diagnosability of discrete event systems.

IEEE Trans. Autom. Control 2011, 56, 1679–1684. [CrossRef]
32. Yoo, T.S.; Lafortune, S. Polynomial-time verification of diagnosability of partially observed discrete-event systems. IEEE Trans.

Autom. Control 2002, 47, 1491–1495.
33. Jiang, S.; Huang, Z.; Chandra, V.; Kumar, R. A polynomial algorithm for testing diagnosability of discrete-event systems. IEEE

Trans. Autom. Control 2001, 46, 1318–1321. [CrossRef]
34. Cong, X.; Fanti, M.P.; Mangini, A.M.; Li, Z. Critical observability of labeled time Petri net systems. IEEE Trans. Automat. Sci. Eng.

2022, Early Access. [CrossRef]
35. Zou, M.; Tong, Y.; Ma, Z. PNBA: A software for marking estimation and reconfiguration in Petri nets using basis marking analysis.

IFAC-PapersOnLine 2022, 55, 180–187. [CrossRef]
36. Yu, Z.; Sohail, A.; Arif, R.; Nutini, A.; Nofal, T.A.; Tunc, S. Modeling the crossover behavior of the bacterial infection with the

COVID-19 epidemics. Results Phys. 2022, 39, 105774. [CrossRef]
37. Yu, Z.; Sohail, A.; Nofal, T.A.; Tavares, J.M.R. Explainability of neural network clustering in interpreting the COVID-19 emergency

data. Fractals 2022, 30, 2240122. [CrossRef]
38. Yu, Z.; Ellahi, R.; Nutini, A.; Sohail, A.; Sait, S.M. Modeling and simulations of COVID-19 molecular mechanism induced by

cytokines storm during SARS-CoV2 infection. J. Mol. Liquids 2020, 327, 114863. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TSMC.2017.2726108
http://dx.doi.org/10.1109/TAC.2016.2574120
http://dx.doi.org/10.1016/j.conengprac.2010.12.010
http://dx.doi.org/10.1016/j.automatica.2011.01.007
http://dx.doi.org/10.1109/9.412626
http://dx.doi.org/10.1109/TAC.2011.2124950
http://dx.doi.org/10.1109/9.940942
http://dx.doi.org/10.1109/TASE.2022.3193493
http://dx.doi.org/10.1016/j.ifacol.2022.10.341
http://dx.doi.org/10.1016/j.rinp.2022.105774
http://dx.doi.org/10.1142/S0218348X22401223
http://dx.doi.org/10.1016/j.molliq.2020.114863

	Introduction
	Preliminaries
	Basics of Petri Nets
	Basis Markings and Basis Reachability Graph
	Supervisory Control Theory

	Actuator Enablement Attacks
	Attack Definition and Modeling
	The Basis Attack Model Under AE-attacks

	Detection of Actuator Enablement Attacks
	Detecition Strategy
	AE-Safe Controllability
	Test of AE-Safe Controllability Using Basis Diagnoser
	Test of AE-Safe Controllability Using Basis Verifier

	Computational Efficiency Analysis and Experiments
	Example
	Conclusions
	References

