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Honey is a frequent target of adulteration through inappropriate production practices and origin mislabelling. Current
methods for the detection of adulterated honey are time and labor consuming, require highly skilled personnel, and lengthy
sample preparation. Fluorescence spectroscopy overcomes such drawbacks, as it is fast and noncontact and requires minimal
sample preparation. In this paper, the application of fluorescence spectroscopy coupled with statistical tools for the detection of
adulterated honey is demonstrated. For this purpose, fluorescence excitation-emission matrices were measured for 99 samples
of different types of natural honey and 15 adulterated honey samples (in 3 technical replicas for each sample). Statistical t-test
showed that significant differences between fluorescence of natural and adulterated honey samples exist in 5 spectral regions:
(1) excitation: 240–265 nm, emission: 370–495 nm; (2) excitation: 280–320 nm, emission: 390–470 nm; (3) excitation: 260–
285 nm, emission: 320–370 nm; (4) excitation: 310–360 nm, emission: 370–470 nm; and (5) excitation: 375–435 nm, emission:
440–520 nm, in which majority of fluorescence comes from the aromatic amino acids, phenolic compounds, and fluorescent
Maillard reaction products. Principal component analysis confirmed these findings and showed that 90% of variance in
fluorescence is accumulated in the first two principal components, which can be used for the discrimination of fake honey
samples. *e classification of honey from fluorescence data is demonstrated with a linear discriminant analysis (LDA). When
subjected to LDA, total fluorescence intensities of selected spectral regions provided classification of honey (natural or
adulterated) with 100% accuracy. In addition, it is demonstrated that intensities of honey emissions in each of these spectral
regions may serve as criteria for the discrimination between natural and fake honey.

1. Introduction

Honey is a pure natural food produced by bees from the
nectar of flowers. Its main components are different types of
carbohydrates, water, and some minor constituents, such as
pollen grains, proteins, amino acids, lipids, alkaloids, en-
zymes, and flavoring components. *e composition and
concentrations of minor constituents are unique charac-
teristics of honey, and some of them can be used to dif-
ferentiate honey samples by their geographical and botanical
origins, as well as to define their quality and authenticity [1].

According to European Union standards [2], honey
is a pure product, in which no components can be added

or removed from. According to the botanical origin, honey
can be categorized into two groups: honeydew and nectar
honey types. Nectar honey in turn is divided into polyfloral
and monofloral honey. Polyfloral honey contains nectar
from different plant species, while monofloral is from single
plant species with more than 45% of the total pollen in
honey [3]. However, a minimum percentage of pollen in
monofloral honey may be different for various types of
honey. For example, the Sunflower pollen should not
be less than 45% of the total pollen, but for acacia and
linden, it should not be less than 30% in honey [4]. Euca-
lyptus honey and chestnut honey, having overrepresented
pollen grains, can show a pollen frequency of 70% to 90% [5].
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According to the Serbian regulations, acacia honey, linden
honey, and sunflower honey are defined as monofloral when
pollen concentration is over 20%, 25%, and 40%, respectively.

As a relatively expensive food product, honey is a frequent
target of adulteration through inappropriate production
practices and its origin mislabelling [6]. *is presents a serious
issue on markets and violates consumer rights. Much effort,
thus, is nowadays directed for the development of charac-
terization methods for honey to fight this problem. For ex-
ample, to prove the geographical and botanical origin of honey,
the microscopic analysis of pollen grains [7–9] is a common
method. However, it is time-consuming method and requires
work of an experienced operator. Other methods, according to
European Union legislation [2], include physicochemical
analysis [10–12], proton nuclear magnetic resonance (1H
NMR) imaging [13], sensory analysis [14], chromatography
[15–17], and electric-tongue analysis [18, 19]. Unfortunately,
these methods are time and labor consuming, require highly
skilled personnel, and lengthy sample preparation.

Optical spectroscopy methods are less demanding in this
respect, and many of them are successfully applied in food
analyses [20, 21]. Near infrared (NIR) spectroscopy in com-
bination with chemometric methods was used for the quan-
titative and qualitative detection of beet syrup adulteration of
honey [22], adulteration of honey with mixtures of fructose
and glucose [23], and adulteration of honey with HFCS (high-
fructose corn syrup) [24]. *e application of mid-FTIR
spectroscopy coupled with the SVM (support vector ma-
chine) algorithm provided the determination of the botanical
origin of Serbian unifloral honey [25]. Fluorescence spec-
troscopy offers advantages over classic methods of food
analysis, such as minimal sample preparation, high sensitivity
and specificity of classification [26], and rapid and relatively
simple use of instrumentation. *is technique is suitable for
the analysis and authentication of food products such as milk
[27], cheese [28], cereal flours [29], and wine [30]. Geo-
graphical and botanical origin of honey samples have been
authenticated by fluorescence spectroscopy [31]. Recently,
parallel factor analysis (PARAFAC) has been used to fully
describe fluorescence of honey [32] and cereal flour [33].
Since there is no quantitative fluorescence marker for the
detection of fake honey, fluorescence of honey intrinsic
fluorophores must be utilized for the analysis.

Here, we aimed at exploring differences in fluorescence
between natural honey and adulterated honey which arise due
to dissimilar composition of fluorescence species that are
present in them. For this purpose, we measured fluorescence
excitation-emission matrices of 114 samples of natural and
fake honey samples (in three technical replicas) aiming at
developing the fluorescence-based technique for the fast and
nondestructive detection of honey adulteration. Principal
component and linear discriminant analysis of characteristic
honey emission features were utilized to describe observed
differences and to build and test the classification model.

2. Materials and Methods

2.1. Samples. In this research, a total of 114 samples, 99
natural honey samples (45 acacias, 11 lindens, 14 sunflowers,

and 29 meadow mixes) and 15 fake honey samples, were
obtained from the Association of the Beekeeping Organi-
zations of Serbia (SPOS, www.spos.info). Fake honey
samples were manufactured during winter feeding of bee
colonies with a sucrose solution, which was later converted
into artificial honey by bees. Honey samples were stowed in
the original packages at 20–22°C until analysis.

2.2. Measurements of Fluorescence Excitation-Emission
Matrices. Room temperature fluorescence excitation-
emission matrices (EEMs) were obtained by a Perkin
Elmer Fluorescence Spectrophotometer LS45 in a front face
measurement configuration. *e instrument was equipped
with a Xe lamp for excitations and a R928 PMT for the
detection of emission radiation. EEMs were recorded over
the 270–640 nm emission range (at 0.5 nm intervals) and
240–500 nm excitation range (with a 5 nm step). Emission
intensities were automatically normalized to the excitation
intensity by the instrument. Honey samples were liquefied at
40°C and pipetted into 3mL quartz cuvettes before mea-
surements. Contributions to measured signal intensity from
the first and second order Rayleigh scattering were removed
and replaced with interpolated values. *e use of in-
terpolated values to remove scattering contribution has been
shown to provide better and more meaningful results when
dealing with EEMs compared to the data deletion [34].

2.3. Data Analysis. Data analyses comprised the calculation
of spectral domain volumes below EEM intensity surfaces,
testing of the statistical significance of differences observed
between spectral characteristics of natural and fake honey
samples by a t-test, investigating differences by principal
component analysis (PCA) and the classification of samples
using a linear discriminant analysis (LDA) of EEM data.
Analyses were performed using the R software package
(R Foundation for Statistical Computing, Vienna, Austria).

Spectral domain volumes (spectral domain being rep-
resented by maximal and minimal values of excitation and
emission wavelengths, λ) are numerically calculated from
the measured emission intensity I(λexc, λem) using the fol-
lowing formula [35]:

∫λmax
exc

λmin
exc

∫λmax
em

λmin
em

I λexc, λem( ) dλem dλexc

� ΔλemΔλexc∑
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j�1

∑
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I λjexc, λ
i
em( ),

(1)

where λjexc � λmin
exc + jΔλexc, λ

i
em � λmin

em + iΔλem,Δλexc �

(λmax
exc − λmin

exc )/M, Δλem � (λmax
em − λmin

em )/M, andM andN are
the numbers of measurement intervals for excitation and
emission, respectively.

Principal component analysis (PCA) is a method used
for reducing data dimensionality and identifying differences
between analysed samples as well as investigating and vi-
sualizing variations found in a data set [36]. To apply PCA,
three-way data array must be unfolded into two-dimensional
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(2D) matrix. *is is achieved by unfolding initial data array
(114 samples× 741 emissions× 53 excitations) into a 2Dmatrix
(114 samples× 39273 parameters (emissions× excitations)).
After the analysis, the calculated loadings can be refolded back
into a three-way data array. PCAwas applied on unfolded EEM
spectra to explore differences between natural and fake honey
and to determine which parts of EEM spectrum contribute the
most to those differences. *is was carried out by investigating
calculated PCA scores and loadings.

Linear discriminant analysis (LDA) is a linear classification
method with a goal to find one or more linear functions of the
input variables which, then, can be used for the sample classi-
fication. Fisher’s algorithm [37] is used for the building LDA
classification model utilizing the spectral domain volumes as
input data. K-fold cross-validation was used to calculate classi-
fication error. Samples were divided three times in such way that
two thirds of samples were used for the training of the classi-
fication model, while the one third was used for model testing.
From three tastings, the mean classification error was derived.

3. Results and Discussion

Figure 1 shows EEM spectra of natural and fake honey samples
as well as the difference spectrum in forms of contour maps.

Intrinsic fluorophores and their specific microenviron-
ments in honey produce a complex excitation-emission
pattern which varies among samples. As presented in
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Figure 1: Fluorescence excitation-emission matrices of (a) natu-
raland (b) fake honey and (c) their difference spectrum. *e dis-
cussedspectral regions are marked with a full line

Table 1: Spectral regions showing characteristic fluorescence of
honey fluorophores.

Spectral domain λex (nm) λem (nm) Fluorophore

1st 240–265 370–495 Phenolic compounds
2nd 280–320 390–470 Phenolic compounds
3rd 260–285 320–370 Aromatic amino acids
4th 310–360 370–470 Phenolic compounds

5th 375–435 440–520
Maillard reaction

products

Table 2: Statistical analysis mean values, standard deviation: SD,
and statistical significance of difference between means: p of five
spectral domain volumes (marked on Figure 1) in EEMs of 99
natural and 15 fake honey.

Spectral domain Honey Mean∗ SD∗ p∗∗

1st
Natural 1.38×105 3399

4.90×10−13
Fake 6.13×104 8688

2nd
Natural 9.42×104 2580

2.03×10−11
Fake 4.14×104 6597

3rd
Natural 5.70×104 1895

7.97×10−12
Fake 1.73×104 4844

4th
Natural 3.37×105 6844

5.44×10−13
Fake 1.83×105 17494

5th
Natural 3.08×105 5191

3.12×10−21
Fake 1.40×105 13268

∗Values are in counts× nm2. ∗∗Decision on statistical significance is made
in a traditional way based on a probability value for the null hypothesis.
p: >0.05, not significant; 0.05 to 0.01, significant; 0.01 to 0.001, very sig-
nificant; <0.001, extremely significant.
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Table 1, fluorescence EEMs of honey are characterized by 5
spectral regions of high emission intensities: (1) excitation:
240–265 nm, emission: 370–495 nm; (2) excitation: 280–
320 nm, emission: 390–470 nm; (3) excitation: 260–285 nm,
emission: 320–370 nm; (4) excitation: 310–360 nm, emis-
sion: 370–470 nm, and (5) excitation: 375–435 nm, emission:
440–520 nm (marked on Figure 1 with a full line). *ese
emissions come from the aromatic amino acids, phenolic
compounds, and fluorescent Maillard reaction products,
such as furosine and hydroxymethylfurfural [32]. One
should note that hydroxymethylfurfural is an indicator for
the evaluation of honey storage and heat damage and that its
concentration varies between natural and adulterated honey.
*e total emission intensities over these spectral regions are
quantified according to (1) for each sample, and differences
between natural and fake honey samples are tested on the
statistical significance using t-test (Table 2).

Differences in fluorescence of natural and fake honey
samples are extremely significant in all spectral regions
(p< 0.001). *erefore, the total fluorescence intensity in
each spectral regionmay serve as a criterion for the detection
of fake honey.

PCA was performed for the further study of differences
between fluorescence responses of honey and fake honey
samples; results are presented in Figure 2. Loadings of the
first and second principal components are given in Figures
2(a) and 2(b) as contour plots (PCA analysis was applied to
unfolded spectra; the obtained loadings were transformed
into two-dimensional matrix for the presentation). *ese
plots confirmed that variations of fluorescence between
samples are largest in the selected spectral regions. Varia-
tions in the first, third, and fourth regions are described by
the first principal component (Figure 2(a)), while variations
in the second, third, and fifth are described by the second
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Figure 2: Results of PCA of unfolded honey EEM spectra: (a) loadings of the first principal component, (b) loadings of the second principal
component, (c) cumulative variance plot, and (d) the PCA score plot.
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principal component. From the cumulative variance plot
(Figure 2(c)), one can observe that the first and second
principal components account for almost 90% of variations
in honey EEM data. *e score plot of the first and second
principal components of natural and adulterated honey
samples’ EEMs (Figure 2(d)) clearly demonstrates the dis-
tinctive separation between two groups of samples.

*e quality of fluorescence-based discrimination be-
tween natural and fake honey samples was evaluated by
a linear discriminant analysis (LDA) of 5 spectral domain
volumes. LDA is a method used to find one or several linear
functions (linear latent variables) of the data features that
can be used for separation between two or more groups
[37, 38]. For estimation of classification performance, LDA
classification errors were obtained and are given in Table 3.
For this study, the 3-fold split of data were used as the cross-
validation method (data set was divided differently three
times, while each time two thirds of the samples were used
for the classification training and one third for the model
testing). Perfect classification and cross-validation (0% er-
ror) is achieved for the set of 114 honey samples. *erefore,
as expected from the previous results, the obtained confu-
sion and prediction matrix showed correct classification of
all natural honey samples (99/99) and fake (15/15) honey
samples. *ere were zero samples misclassified. *is result
was expected since all spectral domain volumes showed
extremely significant differences between natural and fake
honey samples. As mentioned before, standard methods
used for detection of honey adulteration such as isotopic,
chromatographic, or thermal analysis are often destructive,
time-consuming, and usually expensive. *erefore, based on
our results, one can conclude that fluorescence EEMs can be
used to detect fake honey in fast and nondestructive manner
and that this method has a potential for the detection of
adulteration of lower percentages. *is would be the subject
of the future study.

4. Conclusions

To conclude, fluorescence excitation-emission spectroscopy
can be effectively used for the nondestructive and fast detection
of adulterated honey specimens. Differences in fluorescence of
natural and adulterated honey samples are extremely signifi-
cant in five spectral regions due to differences in concentrations
and local environments of aromatic amino acids, phenolic
compounds, furosine, and hydroxymethylfurfural, as is dem-
onstrated by statistical testing and PCA. By quantifying fluo-
rescence responses and subjecting them to the statistical
classification technique, for example, LDA, it is possible to
detect adulterated honey with 100% accuracy. Such accuracy
suggests that fluorescence excitation-emission spectroscopy

may be a promising method for the low-level adulteration of
honey, which is the subject of our future work.
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