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Detection of air and surface contamination by
SARS-CoV-2 in hospital rooms of infected patients
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Understanding the particle size distribution in the air and patterns of environmental con-

tamination of SARS-CoV-2 is essential for infection prevention policies. Here we screen

surface and air samples from hospital rooms of COVID-19 patients for SARS-CoV-2 RNA.

Environmental sampling is conducted in three airborne infection isolation rooms (AIIRs) in

the ICU and 27 AIIRs in the general ward. 245 surface samples are collected. 56.7% of rooms

have at least one environmental surface contaminated. High touch surface contamination is

shown in ten (66.7%) out of 15 patients in the first week of illness, and three (20%) beyond

the first week of illness (p= 0.01, χ2 test). Air sampling is performed in three of the 27 AIIRs

in the general ward, and detects SARS-CoV-2 PCR-positive particles of sizes >4 µm and

1–4 µm in two rooms, despite these rooms having 12 air changes per hour. This warrants

further study of the airborne transmission potential of SARS-CoV-2.
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Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) causing coronavirus disease 2019 (COVID-19) has
spread globally and many countries are experiencing

ongoing local transmission despite varying levels of control
efforts. Understanding the different transmission routes of SARS-
CoV-2 is crucial in planning effective interventions to break the
chain of transmission. Although extensive surface contamination
with SARS-CoV-2 by a symptomatic patient has been demon-
strated1, little is known about airborne transmission of SARS-
CoV-2. It is also unknown if asymptomatic individuals pose the
same environmental contamination risk as symptomatic ones,
although viral shedding has been demonstrated to continue
even after clinical recovery of COVID-19 patients2. There are
multiple reports of asymptomatic patients testing positive for
SARS-CoV-23,4, and the potential transmission of the virus by an
asymptomatic person has been described5. Therefore, viral con-
tamination of the air and surfaces surrounding asymptomatic or
recovering COVID-19 patients could have serious implications
for outbreak control strategies. This knowledge gap is recognized
in the Report of the WHO-China Joint Mission on Coronavirus
20196.

The primary objective of our study is to identify potential
patient-level risk factors for environmental contamination by
SARS-CoV-2 by sampling the air and surfaces surrounding
hospitalized COVID-19 patients at different stages of illness.

Results
Air and environmental sampling. Environmental sampling was
conducted in three airborne infection isolation rooms (AIIRs) in
the ICU and 27 AIIRs in the general ward. Air sampling was
performed in three of the 27 AIIRs in the general ward. All
patients reported COVID-19 symptoms. Seven patients (23%)
were asymptomatic at the time of environmental sampling. Of the
23 symptomatic patients, 18 (78%) had respiratory symptoms, 1
had gastrointestinal symptoms, 1 had both respiratory and gas-
trointestinal symptoms, and 3 patients (10%) had fever or
myalgia only (Supplementary Table 1).

Air samples from two (66.7%) of three AIIRs tested positive for
SARS-CoV-2, in particle sizes >4 µm and 1–4 µm in diameter
(Table 1). Samples from the fractionated size <1 µm were all
negative, as were all non-size-fractionated SKC polytetrafluor-
oethylene (PTFE) filter cassette samples. Total SARS-CoV-2
concentrations in air ranged from 1.84 × 103 to 3.38 × 103 RNA

copies per m3 air sampled. Rooms with viral particles detected in
the air also had surface contamination detected.

There were no baseline differences between patients with
environmental surface contamination and those without, in terms
of age, comorbidities, and positive clinical sample on the day of
sampling. Median cycle threshold (Ct) values of the clinical
specimens for patients with and without environmental surface
contamination were 25.69 (IQR 20.37–34.48) and 33.04
(28.45–35.66), respectively (Table 2).

Of the rooms with environmental contamination, the floor was
most likely to be contaminated (65%), followed by the air exhaust
vent (60%, n= 5), bed rail (59%), and bedside locker (47%)
(Fig. 1). Contamination of toilet seat and automatic toilet flush
button was detected in 5 out of 27 rooms, and all 5 occupants had
reported gastrointestinal symptoms within the preceding 1 week
of sampling. We did not detect surface contamination in any of
the three ICU rooms.

Presence of environmental surface contamination was higher
in week 1 of illness (Fig. 2) and showed association with the
clinical cyclical threshold (P= 0.06, Wilcoxon rank-sum test).
Surface environment contamination was not associated with the
presence of symptoms (Table 2). In a subgroup analysis, the
presence and extent of high-touch surface contamination were
significantly higher in rooms of patients in their first week of
illness (Fig. 2). The best fit curve with the least-squares fit (Fig. 3)
showed that the extent of high-touch surface contamination
declined with increasing duration of illness and Ct values. There
was also no correlation between the Ct values of clinical samples
and the Ct values of environmental samples across the days of
illness (Supplementary Fig. 3).

Discussion
Surface sampling revealed that the PCR-positivity high-touch
surfaces was associated with nasopharyngeal viral loads and
peaked at approximately day 4–5 of symptoms. Air sampling of
the AIIR environments of two COVID-19 patients (both day 5 of
illness with high nasopharyngeal swab viral loads) detected the
presence of SARS-CoV-2 particles sized 1–4 µm and >4 µm. The
absence of any detection of SARS-CoV-2 in air samples of
the third patient (day 9 of illness with lower nasopharyngeal viral
load concentration) suggests that the presence of SARS-CoV-2 in
the air is possibly highest in the first week of illness.

Recent aggregated environmental sampling and laboratory
experiments have examined the particle size distribution of

Table 1 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detections in the air of hospital rooms of infected
patient.

Patient Day of
illness

Symptoms reported on day of
air sampling

Clinical Ct
valuea

Airborne SARS-CoV-2 concentrations
(RNA copies m−3 air)

Aerosol
particle size

Samplers used

1 9 Cough, nausea, dyspnea 33.22 ND >4 μm NIOSH
ND 1–4 μm
ND <1 μm
ND – SKC filters

2 5 Cough, dyspnea 18.45 2,000 >4 μm NIOSH
1,384 1–4 μm
ND <1 μm

3 5 Asymptomaticb 20.11 927 >4 μm NIOSH
916 1–4 μm
ND <1 μm

ND none detected.
aPCR cycle threshold value from patient’s clinical sample.
bPatient reported fever, cough, and sore throat until the day before the sampling. Patient reported no symptoms on the day of sampling, however was observed to be coughing during sampling.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16670-2

2 NATURE COMMUNICATIONS |         (2020) 11:2800 | https://doi.org/10.1038/s41467-020-16670-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


SARS-CoV-2 in the air. A study from Wuhan, China sampled
three different environmental settings and detected aerosol size
range particles.7 Additionally, a recent laboratory study demon-
strated the ability of SARS-CoV-2 to remain viable in aerosols for
up to 3 h8. Although limited in subject numbers, our study
examined this issue at the individual patient-level, thus enabling
correlation of particle size distribution in the air with symptoms
duration and nasopharyngeal viral loads. The absence of aerosol-
generating procedures or intranasal oxygen supplementation
reduces the possibility of our current findings being iatrogenic in
nature. Larger individual patient-level studies examining the
droplet and aerosolizing potential of SARS-CoV-2 over different
distances and under different patient and environmental

conditions are rapidly needed to determine the generalizability of
our current findings.

Contrary to the study from Wuhan, China that detected SARS-
CoV-2 in aerosols 0.25–1.0 µm in diameter7, the smallest aero-
dynamic size fraction that contained detectable levels of
SARS-CoV-2 in our study was 1–4 µm. The non-detection of
SARS-CoV-2 in particles <1 µm could have been due to the
reduced efficiency of extracting viruses from filters as compared
with extracting viruses adhered to the wall of the 1.5 mL and
15 mL centrifuge tubes, where particles 1–4 µm and >4 µm in
diameter are captured using the NIOSH aerosol sampler. Fur-
thermore, to our knowledge, this is the first time the NIOSH
samplers have been used to capture coronaviruses. Therefore, no
baseline data exist for airborne coronavirus sampling using these
samplers, limiting our understanding of the negative results in the
<1 µm size fraction.

The extent of environmental contamination we found in our
study could be attributable to direct touch contamination by
either the patient or healthcare workers after contact with
infected respiratory fluids. However, contamination through
respiratory droplets emitted through coughing and sneezing, as
well as through respiratory aerosols, is also plausible. Con-
tamination of surface sites not frequently touched (air exhaust
vents and floor) support this latter hypothesis.

In the current analysis, the presence and concentration of
SARS-CoV-2 in air and high-touch surface samples correlated
with the day of illness and nasopharyngeal viral loads of COVID-
19 patients. This finding is supported by multiple observational
clinical studies, which have demonstrated that SARS-CoV-2 viral
loads peak in the first week among COVID-19 patients2,9,10, with
active viral replication in the upper respiratory tract in the first
5 days of illness11. This finding could help inform public health
and infection prevention measures in prioritizing resources by
risk stratifying COVID-19 patients by their potential to directly
or indirectly transmit the SARS-CoV-2 virus to others.

Our study was limited in that it did not determine the ability of
SARS-CoV-2 to be cultured from the environmental swabs and
the differentially sized air particles, which would be vital to
determining the infectiousness of the detected particles. Another
study from Nebraska attempted virus culture on SARS-CoV-2
PCR-positive air samples, however could not isolate viable
virus12. The difficulty in culturing virus from air samples arises
from low-virus concentrations, as well as the compromised
integrity of the virus due to air sampling stressors. Future studies
using enhanced virus culture techniques could be considered13,
and efforts to design a culture method to isolate virus from our
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Fig. 1 Percentage of contaminated swabs from surface samples, in rooms
with any contamination. All sites were n= 17, except for air exhaust vents
where n= 5.

Table 2 Baseline clinical characteristics of COVID-19 patients with environmental contamination.

Characteristics of COVID-19 patients Rooms with surface environment
contamination (n= 17)

Rooms without surface environment
contamination (n= 13)

P value

Median age (IQR) 52 (42–62) 44 (36–55) 0.75
Male Sex (%) 6 (46%) 8 (47%) 0.96
Median Age Adjusted Charlson’s Comorbidity
Index (IQR)

1 (0–2) 1 (0–1) 0.69

Median day of Illness (IQR) 5 (4–9) 13 (5–20) 0.17
Median day of stay in room (IQR) 3 (3–8) 4 (2–16) 0.95
Oxygen requirement (%) 0 4 (31) 0.03
Symptomatic (%) 12 (71) 11 (85) 0.43
Respiratory symptoms (%) 11 (65) 7 (54) 0.55
Gastrointestinal symptoms (%) 1 (6) 1 (8) >0.99
Clinical Cycle threshold value, median (IQR)a 25.69 (20.37–34.48) 33.04 (28.45–35.66) 0.06

aPCR cycle threshold value from patient’s clinical sample.
χ2 or Fisher’s exact test was used to compare categorial variables; and Student's t test or nonparametric Wilcoxon rank-sum was used to compare continuous variables.
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samples is underway. Second, sampling in an AIIR environment
may not be representative of community settings and further
work is needed to generalize our current findings. Third, we
sampled each room at a single timepoint during the course of
illness and did not track environmental contamination over the
course of illness for individual patients. Fourth, as clinical results
were within 72 h of environmental testing, it is plausible that
during the day of testing, viral load was actually low or negligible,
hence limiting environmental contamination.

Current evidence does not seem to point to aerosolization as
the key route of transmission of SARS-CoV-2, and there have
been reports of healthcare workers not being infected after
exposure to confirmed patients despite not using airborne pre-
cautions14. Detailed epidemiologic studies of outbreaks, in both
healthcare and non-healthcare settings, should be carried out to
determine the relative contribution of various routes of trans-
mission and their correlation with patient-level factors.

In conclusion, in a limited number of AIIR environments, our
current study involving individual COVID-19 patients not
undergoing aerosol-generating procedures suggests that SARS-
CoV-2 can be shed in the air from a patient in particles sized
between 1 and 4 microns. Even though particles in this size range
have the potential to linger longer in the air, more data on

viability and infectiousness of the virus would be required to
confirm the potential airborne spread of SARS-CoV-2. Addi-
tionally, the concentrations of SARS-CoV-2 in the air and high-
touch surfaces could be highest during the first week of COVID-
19 illness. Further work is urgently needed to examine these
findings in larger numbers and different settings to better
understand the factors affecting air and surface spread of SARS-
CoV-2 and inform effective infection prevention policies.

Methods
Study design, patient selection, and data collection. We conducted this cross-
sectional study in AIIRs at the National Centre for Infectious Diseases, Singapore.
These rooms had 12 air changes per hour, an average temperature of 23 °C, relative
humidity of 53–59%, and exhaust flow of 579.6 m3/h.

Patients with a SARS-CoV-2 infection confirmed by a polymerase chain reaction
(PCR)-positive respiratory sample within the prior 72 h were included. Clinical
characteristics, including the presence of symptoms, day of illness, day of stay in the
room, supplemental oxygen requirement, and baseline characteristics, were collected.
One patient from a previously published pilot study on environmental sampling in
the same facility (Patient 30; Supplementary Table 1) was also included in the current
analysis1.

Air sampling. Six NIOSH BC 251 bioaerosol samplers were placed in each of three
AIIRs in the general ward to collect air samples (set-up depicted in Supplementary
Fig. 1). Particles collected with the NIOSH sampler are distributed into three size
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fractions. Particles >4 μm in diameter are collected in a 15 mL centrifuge tube,
particles 1–4 μm in diameter are collected in a 1.5 mL centrifuge tube, and parti-
cles <1 μm in diameter are collected in a self-assembled filter cassette containing a
37-mm diameter, PTFE filter with 3 μm pores. All NIOSH samplers were con-
nected to either SKC AirCheck TOUCH Pumps or SKC Universal air sampling
pumps set at a flow-rate of 3.5 L/min and run for 4 h, collecting a total of 5040 L
of air from each patient’s room.

In the room of Patient 1, three NIOSH samplers were attached to each of two
tripod stands and situated at different heights from the ground (1.2 m, 0.9 m, and
0.7 m) near the air exhaust to capture particles from the unidirectional airflow in
the room. Throughout the 4-hour sampling period, Patient 1 was intermittently
facing the NIOSH samplers, whereas seated 1 meter from the first tripod and 2.1
meters from the second tripod. Four SKC 37mm PTFE filter (0.3 μm pore size)
cassettes were also distributed throughout the room and connected to SKC
Universal air sampling pumps set at a flow-rate of 5 L/min, each collecting an
additional 1200 L of air from the room.

In the rooms of Patients 2 and 3, three NIOSH samplers were attached to each
of two tripod stands and situated at different heights from the ground (1.2 m,
0.9 m, and 0.7 m). Throughout the 4-hour sampling period, Patients 2 and 3
remained in bed within 1 meter from all six NIOSH samplers (Supplementary
Fig. 1). Patient 3 was also talking on the phone for a significant proportion of time
during sampling. Additional SKC pumps with PTFE filter cassettes were not used
in the rooms of Patient 2 and 3.

The six NIOSH samples from each room were pooled prior to analysis, but the
particle size fractions remained separated. Each sample pool was representative of
5040 L air.

Surface sampling. Surface samples were collected with Puritan EnviroMax Plus
pre-moistened macrofoam sterile swabs (25-88060). Eight to 20 surface samples
were collected from each room. Five surfaces were designated high-touch surfaces,
including the cardiac table, entire length of the bed rails including bed control
panel and call bell, bedside locker, electrical switches on top of the beds, and chair
in general ward rooms (Supplementary Fig. 1). In ICU rooms, the ventilator and
infusion pumps were sampled instead of the electrical switches on top of the beds
and chair (Supplementary Fig. 2). Air exhaust outlets and glass window surfaces
were sampled in five rooms, including the three rooms in which air sampling was
performed. Toilet seat and automatic flush button (one combined swab) were
sampled in AIIR rooms in the general ward. Supplementary Table 2 lists all surface
samples.

Sample transfer and processing. All samples were immediately stored at 4 °C in
the hospital prior to transfer to a BSL-3 laboratory where samples were immedi-
ately processed and stored at −80 °C unless directly analyzed. Prior to RNA
extraction, NIOSH aerosol sample tubes and filters were processed as previously
described15, with slight modification due to the pooling of samples.

Laboratory methods. The QIAamp viral RNA mini kit (Qiagen Hilden, Germany)
was used for sample RNA extraction. Real-time PCR assays targeting the envelope
(E) genes16 and an orf1ab assay modified from Drosten et al.17 were used to detect
SARS-CoV-2 in the samples18. In brief, for the envelope gene assay, a 20 µl reaction
mix was prepared with 12.5 µl of SuperScript III Platinum One-Step qRT-PCR Kit
(Thermofisher Scientific, USA) buffer, 0.75 mM Mg2 SO4, 5 µl of RNA, 400 nM
each of the forward primer (E_Sarbeco_F1- ACAGGTACGTTAATAGTTAATAG
CGT) and reverse primer (E_Sarbeco_R2- ATATTGCAGCAGTACGCACACA)
with 200 nM of probe (E_Sarbeco_P1- (FAM) ACACTAGCCATCCTTACTGCGC
TTCG (BHQ1)). Thermal cycling conditions included reverse transcription at
55 °C for 10 min, an initial denaturation at 95 °C for 5 min, followed by 45 cyles of
95 °C for 15 s, 58 °C for 1 min. For the orf1ab assay, a 20 µl reaction mix was
prepared with 12.5 µl of SuperScript III Platinum One-Step qRT-PCR Kit (Ther-
mofisher Scientific, USA) buffer, 0.5 mM Mg2 SO4, 5 µl of RNA, 800 nM each of
the forward primer (Wu-BNI-F- CTAACATGTTTATCACCCGCG) and reverse
primer (Wu-BNI-R- CTCTAGTAGCATGACACCCCTC) with 400 nM of probe
(WU-BNI-P- (FAM) TAAGACATGTACGTGCATGGATTGGCTT (BHQ1)).
Thermal cycling conditions included reverse transcription at 55 °C for 10 min, an
initial denaturation at 95 °C for 5 min, followed by 45 cyles of 95 °C for 15 s, 60 °C
for 1 min. All samples were run in duplicate and with both assays. Positive
detection was recorded as long as amplification was observed in at least one assay.

Cleaning regimen of rooms. Routine environmental cleaning of the rooms was
carried out by a trained team of housekeeping staff. High-touch surfaces (e.g., bed
rail, cardiac table, switches) were cleaned twice daily using 5000 parts per million
(ppm) sodium dichloroisocyanurate (NaDCC), reconstituted using Biospot Effer-
vescent Chlorine Tablets. The floor was cleaned daily using 1000 ppm NaDCC. All
surface sampling was performed in the morning before the first cleaning cycle for
the day.

Statistical analysis. Statistical analysis was performed using Stata version 15.1
(StataCorp, College Station, Texas) and GraphPad Prism 8.0 (GraphPad Software,
Inc., San Diego). P < 0.05 was considered statistically significant, and all tests were

two-tailed. For the surface environment, outcome measures analyzed were any
positivity by room and pooled percentage positivity by day of illness and
respiratory viral load (represented by clinical cycle threshold (Ct) value). We
analyzed the factors associated with environmental contamination using the Stu-
dent t test, or the nonparametric Wilcoxon rank-sum test was used for continuous
variables depending on their distribution. The χ2 or Fisher exact test was used to
compare categorical variables. We plotted the best fit curve by least-square method
to study the environmental contamination distribution across various the days of
illness and clinical Ct value.

Ethics statement. Informed consent was waived as clinical data were collected as
part of outbreak investigation under the Infectious Diseases Act, authorized by the
Ministry of Health, Singapore. The clinical data were collected by a study team
member who was appointed by the Ministry of Health, Singapore as a Public
Health Officer and authorized for the collection of anonymized clinical data as part
of the outbreak investigation. All clinical data were collected using a standardized
anonymized structured case report form with no patient identifiers recorded, and
stored on a secured server.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data sets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request. The source data underlyling Figs. 1,
2a–c, 3a–c, and Supplementary Fig. 3 are provided as Source Data file. Source data are
provided with this paper.
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