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Abstract: Several factors can affect the allergen content and profile of a specific food, including
processing procedures often leading to a decrease in allergenicity, although no change, or even
an increase, have also been reported. Evaluation of the effectiveness of a processing procedure
requires the availability of reliable methodologies to assess the variation in molecules able to induce
allergic reactions in the analyzed food. Conventional and innovative strategies and methodologies
can be exploited to identify allergenic proteins in foodstuffs. However, depending on the specific
purposes, different methods can be used. In this review, we have critically reviewed the advantages
of an innovative method, the multiplex allergen microarray-based immunoassay, in the detection
of allergens in foodstuffs. In particular, we have analyzed some studies reporting the exploitation
of an IgE-binding inhibition assay on multiplex allergen biochips, which has not yet been reviewed
in the available literature. Unlike the others, this methodology enables the identification of many
allergenic proteins, some of which are still unknown, which are recognized by IgE from allergic
patients, with a single test. The examined literature suggests that the inhibition test associated with
the multiplex allergen immunoassay is a promising methodology exploitable for the detection of
IgE-binding proteins in food samples.

Keywords: food allergens; IgE binding; IgE-binding inhibition; ISAC test; FABER test; multiplex
allergen microarray

1. Introduction

Food allergy is a growing worldwide public health problem affecting 5–10% of the
population in developed nations [1]. It has a relevant effect on the well-being of patients
and imposes a significant financial burden. Although the estimation of exact costs is not
easy and can depend on the examined population, a systematic review of the literature
measuring the costs of food allergy reports mean household-level out-of-pocket and oppor-
tunity costs of $3339 and $4881, respectively [2]. Actions capable of reducing its impact
on human health and the associated social and economic implications are under inves-
tigation [3]. Food allergy is a pathological reaction of the immune system triggered by
the ingestion of food allergenic proteins in sensitized individuals. The mechanism can be
classified, on the basis of the involvement of immunoglobulins E (IgE), in three possible
routes: IgE mediated, non-IgE mediated (cell-mediated) or a combination of both [4].

Here we have focused our attention on molecules causing food allergic reactions that
are classified as type I hypersensitivities (IgE-mediated), whose symptoms vary from mild
localized to severe ones, and include oral allergy syndrome (OAS), urticaria, angioedema,
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respiratory and gastrointestinal symptoms, anaphylaxis and eczema [5]. They are immedi-
ate reactions determined by the production of IgE antibodies towards otherwise innocuous
compounds, defined as allergenic proteins. The detection of these proteins allows the
estimation of the allergen profile showing the possible allergenicity of the food under
investigation [6]. Therefore, the methods useful to detect individual protein molecules can
be exploited to achieve this goal and provide the profile of allergenic proteins of a food.

Several factors can affect the allergen content and profile of a specific food, including
cultivar, cultivation conditions, climate, post-harvest treatments and processing [7,8]. In
particular, food processing often leads to a decrease in allergenicity [9–12], although no
change, or even an increase, have also been reported for foods such as fish [13] and
peanut [14,15]. Therefore, the combination of different factors and different types of
processing methods can be exploited to obtain foods with lower allergenicity having a
lower sensitizing power [16], which can also be consumed by some specific sub-populations
of allergic patients. In fact, an increasing number of studies are currently in progress to test
the effectiveness of several classic and emerging processing methods in the reduction of
the allergenicity of specific foods [17,18]. However, a reliable evaluation of the allergenic
proteins in specific foods is of critical importance in order to estimate the efficacy of
processing procedures and to select those that are much more effective in the treatment
of each food [10]. Several methodological procedures are available and can be used to
analyze the allergenicity of a food, and the obtained results strongly depend on the selected
methods [19].

In this context, a large amount of the literature that has been produced describes
several methods useful for allergen detection in foodstuffs. Allergens that can be detected
with conventional methods such as ELISA, protein biosensors, DNA-based techniques
and mass spectrometry have been reviewed and listed by several authors, although we
are citing only a few representatives of them [20–22]. In addition, several commercial test
kits, which can be exploited by the food industry for the detection of the most common
allergens, have been developed and also reported in the literature [20]. At any rate, a
systematic and comprehensive review of the available literature on the classical methods
useful for allergen detection in foods is not the aim of this paper. In this review, we have
rather focused our attention on the use of a new method, the multiplex allergen microarray-
based immunoassay, in the detection of food allergenic proteins. In particular, we have
analyzed some studies using an inhibition assay on a multiplex allergen biochip, namely
the single point highest inhibition achievable assay (SPHIAa) [8,23]. The use of this method
to detect and identify allergens in foods has not yet been reviewed in the available literature,
probably because it is a quite recent and little exploited procedure. However, this new
method could provide a contribution to the allergen control in food processing. An overall
description of the classical methods used in this field is here reported with the only aim to
make a comparison with the SPHIAa procedure on the multiplex allergen biochip system
and to highlight some advantages and disadvantages of the different procedures.

Food Extract Composition

Allergens cannot be directly analyzed in food samples. It is necessary to prepare
food extracts where the allergens are available as soluble molecules that can subsequently
be analyzed. In the extracts, the allergenic proteins are mixed with a complex matrix
made with many components, which are solubilized during the extraction procedure,
including other non-allergenic proteins, sugars, vitamins, salts, polyphenols, etc. The total
amount and the relative abundance of each component are strongly dependent on the
type of food [24,25] and the features of the starting material [26]. In addition, different
extraction protocols can be used and they will provide samples with different features and
compositions. For instance, a recent study by Nugraha et al. [27] reported that, compared
to low-pH buffers, a higher concentration of proteins was recovered using high-salt or high-
pH buffers, revealing more IgE-reactive bands on subsequent immunoblotting. High-salt
buffers were also reported to extract with higher efficiency some proteins bound to the cell
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wall, such as kiwellin and pectin methylesterase [28,29]. The extraction protocols available
in the literature can be modified in order to find the best conditions to obtain samples more
suited for specific purposes.

In addition, proteins, including the allergenic ones, can interact with the matrix com-
ponents and this feature can modify their immunological behavior. For instance, the
conformation and epitope exposure could change, thus hindering the recovery of allergens
or masking the protein epitopes involved in the detection [24,30,31]. Keshavarz et al. [32]
demonstrated that parvalbumins purified from mullet and salmon are thermostable pro-
teins. Conversely, the presence of a natural matrix induces thermal instability mainly
due to physical (i.e., hydrophobic effect) and chemical interactions (i.e., thiol-disulfide
interchange) compromising the extractability and immunodetection. Therefore, even with
the same food sample, the matrix components can show variations depending on the
protocol used to prepare the extract, thus affecting the results in terms of allergen profile
and concentration [33].

Methods used for food processing can include conventional thermal methods and
non-thermal ones [13,34,35]. The thermal methods include pasteurization, sterilization,
drying and roasting, whereas the others include treatments at high pressure [36], with
electric field [37] and irradiation [38], applications of cold plasma [39], enzymatic hydrolysis
and fermentation [40]. Protein molecules are sensitive to processing conditions, which can
induce modifications such as denaturation [15,41], sometimes associated with aggregation
and precipitation, thus generating protein insolubility and low extraction levels [42,43], or
can increase their solubility. Protein modifications also include molecule fragmentation [40],
cleavage of disulfide bonds [41], formation of covalent intermolecular bonds [42] and
Maillard reactions [43]. These modifications can strongly affect the capacity of allergenic
molecules to interact with IgE and induce allergic reactions, by reducing or enhancing
conformational and sequential epitopes [44]. In fact, following the application of some
processing procedures, some allergenic proteins can still be present in the food, although
they are no longer able to bind IgE and cause allergic reactions, or their allergenic capacity
is changed, due to the generation of new epitopes or to the exposure of otherwise hidden
ones. Clearly, the detection of modified allergens, both able and no longer able to bind
IgE, depends on several factors, including their extractability associated with solubility
and extraction buffers, and on the method used for their analysis. Therefore, depending
on the specific aim (detection of IgE-binding or non-IgE-binding allergens) the method
to be used can be selected. When the ability of a food processing method to change the
allergenicity is under investigation, we can assume that the allergenic proteins, or the
DNA coding for allergenic proteins, which are contained in the untreated food, are still
present in the processed food, although they could be modified/damaged. To evaluate the
effectiveness of the processing procedure we should perform a comparative analysis of
allergenicity between treated and untreated food samples. Therefore, we should detect the
allergenic proteins able to bind specific IgE before the treatment and analyze whether they
can still be recognized after the treatment. In fact, IgE binding represents a precondition for
allergenicity, although the sensitization (production of IgE recognizing the allergen) is not
a sufficient condition to generate allergic reactions [45,46].

2. Classical Analytical Methods Generally Used for Allergen Detection in Foods

Several methods have been used for the detection of allergens in foodstuffs. They
include genetic- and mass-spectrometry-based analysis and immunological assays [10,47].
As widely reported [20–22], each method has advantages and disadvantages (Table 1), and
the choice of one or the another is generally driven by the specific target and/or objective.
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Table 1. Analytical methods for allergen detection in foods.

Methodology References Comments Best Suited for . . .

DNA-based methods [48–55]

• Identify one or a few allergens for
each test

• It is an indirect method because the
presence of DNA is not proof of the
allergenic protein presence

• Some foods do not have DNA

• Detection of preselected
individual contaminations

Biosensors [56–64] • Generally singleplex detection
• Detection of preselected

individual allergens for which
specific tests, or commercial
kits, are available

Mass-spectrometry-
based

methods
[23,65–72]

• Expensive equipment
• Needs high and specific expertise
• Best suited for research
• No discrimination between IgE-binding

and non-IgE-binding allergens
• Does not detect allergens missing in the

searched protein database
• Multiplex detection

• Detection of many proteins in
the absence of preselection

• Detection of proteins
independently of their ability
to be recognized by specific
IgE

ELISA [73–86]

• Generally singleplex detection
• Detection of IgE- and/or IgG-binding

allergens

• Detection of preselected
allergens for which specific
antibodies/commercial kits
are available

LFIA [87–89]

• Generally singleplex detection
• Does not detect non-IgE- and/or

IgG-binding allergens

• Detection of preselected
allergens for which specific
antibodies/commercial kits
are available

Multiplex allergen
technology [90–102]

• Multiplex detection with a single test
• Detection of IgE-binding allergens
• Detection of still unknown

IgE-binding proteins

• Detection of many selected
and/or unselected allergens
with a single test

2.1. DNA Detection

The detection of DNA encoding an allergenic protein or DNA representing a marker of
the presence of an allergenic source can be used to reveal potential allergens in foodstuffs. It
involves the measurement of DNA amplified by polymerase chain reaction (PCR) following
the use of appropriate polynucleotide probes [48,49]. This method is based on molecular
biology techniques and it is very specific and sensitive. Although DNA-based methods
show these qualities, their accuracy can be strongly affected by the processing of the
food product. For instance, several studies have reported that heat treatments and other
processing procedures often cause damage, such as DNA fragmentation [50,51], which
affects the results of PCR analysis, underestimating its concentration and the health risk
declared on the label [52,53].

Actually, the presence of DNA does not mean that the allergenic protein is really avail-
able in the food, therefore this is an indirect indicator, which does not reveal the presence of
allergenic proteins ready to react with IgE. Furthermore, DNA sequence markers, such as
16S rRNA or mitochondrial gene sequences, can be used to detect the contamination of food
products by allergenic sources [54,55] rather than to estimate the amount and the type of
allergens in a food sample. In addition, we need to remember that some food components,
such as egg white, do not have DNA. Therefore, in this case the detection of allergenic
sources by DNA-based methods is not possible. Definitely, this method is not suited to
assess the effectiveness of a processing method in the reduction of food allergenicity.
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2.2. Mass-Spectrometry-Based Technology

Several mass-spectrometry-based methodologies and strategies can be used to identify
proteins in food extracts [23,65–68]. The simultaneous identification and quantification
of traces of allergenic proteins in complex mixtures such as processed foods can also be
achieved [69–71]. Very often the approach known as “bottom-up proteomics” is used. It
is based on the generation and analysis of a “peptide mass fingerprinting” obtained by
digestion of the proteins with a specific protease, usually trypsin, followed by separation
and identification of the fragments by the appropriate mass spectrometer. The mass pattern
is then used to search appropriate protein-sequence databases with specific software. The
obtained results allow the identification of many proteins/allergens contained in the extract
sample with a single experiment. Often mass spectrometry approaches use denatured
and fragmented proteins for their identification. Sometimes the extracts are separated
by SDS-PAGE before the proteolytic digestion [23]. This procedure often allows the use
of not-so-mild extraction conditions, which can include extreme pH and the presence of
denaturing and reducing agents. This aspect can represent an advantage because these
harsh conditions allow more efficient extraction of, for example, denatured and otherwise
insoluble proteins [72]. Therefore, the extracts for mass spectrometry analysis can con-
tain more protein components (including otherwise insoluble or not extracted molecules),
compared to those prepared for other types of investigations, such as immunochemical
methods. A limitation of mass-spectrometry-based methods can be due to the availability
of protein sequences in the searched database. In fact, only the proteins having the cor-
responding sequence available in the database can be identified in the analyzed sample
by mass spectrometry. In addition, mass-spectrometry-based methods allow the detection
of proteins even if they were damaged by the processing and are no longer able to bind
IgE. Since these methods are not able to discriminate between allergens recognized by IgE
and those no longer recognized, they do not appear to be the best choice for a comparative
analysis of the effectiveness of a processing procedure in the reduction of food allergenicity.
Nevertheless, mass-spectrometry-based methods can contribute to the elucidation of the
allergen profile of a food, providing indications about allergens that are not identified by
other methods.

2.3. Biosensor Technology

A biosensor is a device that measures biological or chemical reactions by generating
signals proportional to the concentration of an analyte present in the reaction [56]. It is
generally described as a device with three components; namely (i) a biological receptor
(enzyme/antibody/cell/nucleic acid/aptamer) that reacts with (ii) a specific analyte, and
(iii) a transducer converting the bio-recognition event into a measurable signal [47,57].
On the basis of the type of the transducer used, biosensors can be classified as optical,
electrochemical and piezoelectric ones. When the biological receptor is a specific antibody
and the analyte is an allergen recognized by that antibody, then the biosensor can be used
to detect an allergen in a sample [58]. For instance, biosensors have been used to detect
several individual allergens in food samples with high specificity and sensitivity, such as
porcine albumin [59], peanut Ara h 1 [60] and Ara h 6 in commercially processed foods [61],
Sin a 1 in mustard seeds [62], β-lactoglobulin in dairy products [63] and hazelnut Cor a
14 [64]. Biosensors are sensitive, specific, easy to use, fast and can be used multiple times. In
the context of processed foods, depending on the specific molecule considered, biosensors
can sometimes contribute to the analysis of an allergen. A disadvantage of this method is
that generally only an individual allergen for each test can be analyzed.

2.4. ELISA Assay

Immunochemical methods are based on allergen recognition by a specific antibody,
which is generally IgG or IgE. The enzyme-linked immunosorbent assay (ELISA) [73] is the
most used immunoassay for allergen detection in foods. It can be performed to evaluate
either the presence of antigens or the presence of specific antibodies in a sample. Therefore,
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it finds application in the detection of antibodies in sera and allergens in food samples.
ELISA shows high sensitivity, specificity and good potential for standardization [74,75].
This method requires allergen-specific antibodies, which can be monoclonal or polyclonal
ones. ELISA can be performed using two different approaches, namely the “direct ELISA”
and the “sandwich ELISA” [49].

The first one is the direct coating approach and it is implemented when the allergen
is directly attached to a solid support (usually a polystyrene microtiter plate) by passive
adsorption. For instance, a food extract containing many molecules can be attached to
the wells and then the presence of a specific allergen can be analyzed by adding a labeled
detection antibody (primary antibody) specifically recognizing the searched allergen.

The direct ELISA can also be used to investigate the presence of IgE antibodies in the
sera of allergic subjects [76]. In this case, a specific IgE represents the primary antibody
recognizing the immobilized allergen and then a secondary labeled antibody is used for
detection purposes. This procedure can be also exploited to perform a competitive ELISA
(which is an IgE-binding inhibition test) allowing the detection of a specific allergen in
liquid samples, such as food extracts [77]. In this case, a specific allergen is incubated with
the serum containing IgE antibodies, thus allowing the formation of a complex between
the allergen and its specific IgE. The result is that the IgE is no longer available to interact
with the allergen immobilized on the solid support of the ELISA plate. Therefore, the IgE
binding to the spotted allergen is inhibited and a positive signal (present in the control)
will no longer be detected. This missed or reduced signal demonstrates the presence of the
allergen, which worked as an IgE-binding inhibitor, in the analyzed sample [78,79].

The sandwich ELISA [80] is carried out by adsorbing the antigen-specific antibody into
the wells. This antibody is generally a specific IgG and will capture the antigen contained
in the applied sample [81,82], which can be represented by a food extract. Then, a primary
antibody (generally IgG) specific for the searched allergen is added, and it binds to the
antigen. Next, the complex is revealed by adding a secondary labeled detection antibody.
This procedure is more sensitive than the direct one, and it is commonly used when the
antigen to be detected is present in small amounts, or its physicochemical properties do not
allow sufficient adherence to the wells.

The ELISA assay has been used for many years to detect a great number of different
allergens using either in-house-performed tests or an increasing number of commercially
available kits. For instance, ELISA commercial kits have been developed for the detection of
individual allergens in foods, such as peanut Ara h 1, milk caseins, crustacean tropomyosin,
etc. [83–85]. Commercial multiplex kits, providing the same high specificity associated with
sandwich ELISA and allowing the detection of more than one allergen, are also available
and exploit IgG antibodies specific for some foods, such as nuts, egg, milk and gluten [80].
At any rate, comprehensive lists of detectable food allergens and available commercial kits
based on the ELISA method have been reviewed and are available in the literature [20–22].

ELISA is a fast and sensitive procedure. It is capable of detecting the allergens con-
tained in a sample by revealing the allergenic proteins bearing antigenic epitopes recognized
by specific antibodies. Therefore, this immunochemical method cannot detect allergenic
proteins that are damaged or unfolded, for instance after the application of processing
procedures. A disadvantage of this method is that generally only an individual allergen for
each test can be analyzed, although in some cases the detection of more than one allergen
can be possible [86].

2.5. LFIA

The lateral flow immunoassay (LFIA), also known as a lateral flow immunochromato-
graphic assay, is a simple device that is useful for detecting the presence of a molecule in
a food sample [87]. It uses a strip where, in addition to a control, antibodies IgG specific
to the target molecule are spotted to form a line. When the liquid sample, which can be
a food extract, is loaded in the appropriate space, it will passively flow along the strip. If
the searched molecule/allergen is present in the sample, it will reach the specific antibody
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and will bind it, following the principles of affinity chromatography. Then, a reporter
compound will show a signal indicating the formation of the antigen-antibody complex
due to the presence of the searched allergen in the analyzed sample. The strip can include
one lane (singleplex) or more than one lane (multiplex). LFIA shows advantages and
disadvantages similar to those associated with the ELISA assay, but it is quicker than ELISA
and has successfully been used for allergen detection in food samples [88,89].

3. Multiplex Allergen Microarray-Based Immunoassay for the Detection and the
Identification of IgE Binding Proteins

In recent years we have seen the spread of multiplex systems using microarrayed
allergens for allergy diagnosis based on the detection of specific IgEs in patients’ sera
samples [90–93] towards already known or new allergens, such as Mor n 3, Ara h 9, Art v 3,
Pru ar 5, Act d 5, Act d 11, Pru p 7, Pun g 7, Sola l 7k-LTP and Pun g 14 [5]. The multiplex
systems allow the simultaneous measurement of IgE antibodies specific for different in-
dividual allergens with the same serum sample, thus improving the diagnostic approach
to allergic patients, whose sensitization to, and co-recognition of, other food and inhalant
allergens would otherwise remain unknown [94] or might not be well evaluated [95,96].

This methodology can also be considered an additional tool useful to detect allergens in
a mixture, such as a total protein extract coming from an untreated or processed food sample
(Figure 1). In fact, it is possible to perform competition experiments, namely inhibition
tests, by preincubating the sera of allergic subjects (or specific antibodies including IgG)
with the protein extract. IgE contained in the sera will bind the allergenic proteins of the
extract, thus becoming unavailable for the interaction with the microarrayed molecules
for which the reactivity with the sera IgE had already been established. Therefore, IgE
binding to the proteins in solution is evaluated by recording the residual IgE binding to
the allergen(s) spotted on the solid phase [8,97]. Unlike other immunochemical methods,
such as IgE immunoblot and ELISA, an advantage of this approach is that the test provides
information on many allergens with a single test and gives indications on the identity of
the detected IgE-binding proteins.
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About 10 years ago, a comparative analysis of the potential allergenicity of 12 ap-
ple cultivars, performed with a multiplex biochip-based immunoassay, was reported by
Pasquariello and collaborators [8]. This study was focused on the characterization of 10
ancient and 2 commercial widespread apple cultivars and allowed the selection of some
hypoallergenic fruits. Their allergenicity was estimated by exploiting the multiplex inhibi-
tion method single point highest inhibition achievable assay (SPHIAa) [98] on the ISAC
system (Phadia Multiplexing Diagnostics (PMD), Vienna, Austria), by performing IgE-
and IgG-binding inhibitions in a single run with a very low amount of allergic patients’
sera and extract preparations. In this study, the version ISAC 103 microarray, containing
103 purified individual allergens spotted on a solid phase, was used (at present the ISAC
system includes 112 allergenic proteins, as shown in Table 2, and it is produced by Thermo
Fisher Scientific Phadia AB, Uppsala, Sweden). Among the 103 allergens, only one (Mal d
1) was from apple. However, the inhibition experiments also provided information on the
presence in the apple extracts of other important allergens, including those belonging to
the families of LTP, profilin and thaumatin, by analyzing the inhibition values recorded
on homologous molecules from other sources. In addition, indications about the presence
in the apple extracts of not yet known apple allergens could be recorded on the basis of
the inhibition results on homologous proteins from other allergenic sources, such as 11S
globulins, 2S albumins, vicilins, etc.

Table 2. List of 122 allergenic extracts and 122 purified allergens contained in the FABER microarray,
and 112 purified allergens contained in the ISAC microarray.

Allergen Source FABER Extracts * FABER Allergens * ISAC Allergens *

Gold kiwifruit Act c (fruit) Act c 11, Act c chitinase IV –
Green kiwifruit Act d (fruit) Act d 1, Act d 2, Act d 5, Act d 10 Act d 1, Act d 2, Act d 5, Act d 8
Mosquito Aed c (saliva) – –
Onion All c (bulb) – –
Leek All p (bulb) – –
Garlic All s (bulb) – –
Alder – – Aln g 1
Alternaria – Alt a 1, Alt a 6.0101 Alt a 1, Alt a 6
Amaranth Ama cr (seed) – –
Ragweed Amb a (pollen) Amb a 1 Amb a 1
Pineapple – Ana c 2 –
Cashew Ana o (seed) Ana o 3 Ana o 2

Duck Ana p (egg yolk), Ana p
(egg white) _ _

Anisakis parasite Ani pe (larva) Ani s 1, Ani s 3 Ani s 1, Ani s 3
Celery Api g (stalk) Api g 1.0101 Api g 1
Honey bee Api m (venom) Api m 1, Api m 4 Api m 1, Api m 4

Peanut Ara h (seed)
Ara h 1, Ara h 2, Ara h 3, Ara h 6,
Ara h 8.0101, Ara h 9, Ara h
agglutinin

Ara h 1, Ara h 2, Ara h 3, Ara h 6,
Ara h 8

Horseradish – Arm r horseradish peroxidase –
Mugwort Art v (pollen) Art v 1 Art v 1, Art v 3
Aspergillus Asp f (whole body) Asp r 1 Asp f 1, Asp f 3, Asp f 6
Asparagus Aspa o (stem) – –
Brazil nut Ber e (seed) – Ber e 1
Birch Bet v (pollen) Bet v 1.0101, Bet v 2.0101 Bet v 1, Bet v 2, Bet v 4
Common beet Beta v (leaf) – –
German cockroach Bla g (whole body) Bla g 1, Bla g 2, Bla g 4, Bla g 5, Bla g 1, Bla g 2, Bla g 5, Bla g 7
Blomia Blo t (whole body) – Blo t 5

Cow Bos d (milk), Bos d (muscle)
Bos d 4, Bos d 5, Bos d 6, Bos d 8,
Bos d carbonic anhydrase, Bos d
gelatin, Bos d lactoferrin

Bos d 4, Bos d 5, Bos d 6, Bos d 8,
Bos d lactoferrin

Buffalo Bub b (milk) – –
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Table 2. Cont.

Allergen Source FABER Extracts * FABER Allergens * ISAC Allergens *

Camel Cam d (milk) – –
Dog Can f (epithelium) Can f 1, Can f 2, Can f 3, Can f 5 Can f 1, Can f 2, Can f 3, Can f 5
Candida Cand a (whole body) – –
Goat Cap h (milk) – –
Chestnut Cas s (seed) – –
Guinea pig Cav p (epithelium) – –
Carob Cer si (seed) – –
Goosefoot – – Che a 1
Quinoa Que qu (seed) – –
Chickpea Cic a (seed) – –
Tangerine Cit r (fruit) – –
Cladosporium Cla h (whole body) – Cla h 8

Hazelnut Cor a (seed) Cor a 1.0103, Cor a 14, Cor a 8,
Cor a 9

Cor a 1.0101, Cor a 1.0401, Cor a 8,
Cor a 9

Common quail Cot c (egg yolk), Cot c (egg
white) – –

Hamster Cri c (epithelium) – –
Japanese cedar Cry j (pollen) – Cry j 1
Cantaloupe melon Cuc m (fruit) – –
Cucumber Cuc s (fruit) – –
Cypress – Cup a 1 –
Bermuda grass – – Cyn d 1
Carrot Dau c (root) – –

Mites Der p (whole body)
Der f 1, Der f 2, Der p 1, Der p 2,
Der p 10, Der p 23.0101, Der p 7,
Der p 9

Der f 1, Der f 2, Der p 1, Der p 2,
Der p 10, Lep d 2

European anchovy Eng e (muscle) – –
Donkey Equ as (milk) – –

Horse Equ c (epithelium), Equ c
(milk) Equ c 3, Equ c myoglobin Equ c 1, Equ c 3

House dust mite – Eur m 2 -
Buckwheat Fag e (seed) - Fag e 2
Cat Fel d (epithelium) Fel d 1, Fel d 2 Fel d 1, Fel d 2, Fel d 4
Fennel Foe v (bulb) – –
Strawberry Fra a (fruit) – –
Atlantic cod Gad m (muscle) – Gad c 1

Chicken Gal d (egg yolk), Gal d (egg
white), Gal d (muscle)

Gal d 1, Gal d 2, Gal d 3, Gal d 4,
Gal d 5 Gal d 1, Gal d 2, Gal d 3, Gal d 5

Soybean Gly m (seed) Gly m 1, Gly m agglutinin, Gly m
trypsin inhibitor Gly m 4, Gly m 5, Gly m 6

Snail Hel as (muscle) Hel as 1 –

Rubber tree Hev b (latex)
Hev b 1, Hev b 10, Hev b 11, Hev
b 3.0101, Hev b 5.0101, Hev b 6.02,
Hev b 7.02, Hev b 8

Hev b 1, Hev b 3, Hev b 5, Hev b
6.01, Hev b 8

American lobster Hom a (muscle) – –

Human – Hom s serum albumin, Hom s
lactoferrin –

Barley Hor v (seed) – –
Walnut Jug r (seed) Jug r 2, Jug r 3 Jug r 1, Jug r 2, Jug r 3
Lettuce Lac s (leaf) – –
Lentil Len c (seed) – –
Linseed Lin us (seed) – –
Shrimp Lit v (whole body) Lit v 1 Pen m 1, Pen m 2, Pen m 4
Rye grass Lol p (pollen) Lol p 1 –
Lupine Lup a (seed) – –
Apple Mal d (fruit) Mal d 1.0108 Mal d 1
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Table 2. Cont.

Allergen Source FABER Extracts * FABER Allergens * ISAC Allergens *

Common turkey Mel g (egg yolk), Mel g (egg
white), Mel g (muscle) – –

Annual Mercury – Mer a 1 Mer a 1
European Hake – Mer mr 1 –
Mouse Mus m (epithelium) Mus m 1, Mus m 4 Mus m 1
Mussel Myt g (muscle) – –
Olive tree Ole e (pollen) Ole e 1, Ole e 2 Ole e 1, Ole e 7, Ole e 9

Rabbit Ory c (epithelium), Ory c
(muscle) Ory c 6 –

Rice Ory s (seed) – –
Sheep Ovi a (milk), Ovi a (muscle) Ovi a 6 –
Pellitory Par j (pollen) Par j 2 Par j 2
Penicillium Pen ch (whole body) – –
American cockroach Per a (whole body) Per a 7 –
Avocado Pers a (fruit) – –
Bean Pha v (seed) – –

Timothy grass Phl p (pollen) Phl p 1.0102, Phl p 2.0101, Phl p
5.0101, Phl p 6.0101, Phl p 7.0101

Phl p 1, Phl p 2, Phl p 4, Phl p 5b,
Phl p 6, Phl p 11, Phl p 12

Pine nut Pin p (seed) – –
Peas – Pis s 3 –
Pistachio Pis v (seed) – –
American sycamore Pla a (pollen) Pla a 1 Pla a 1, Pla a2, Pla a 3
Ribwort – – Pla l 1
Mushroom Ple o (whole body) – –
Paper wasp Pol spp (venom) – Pol d 5
Apricot Pru ar (fruit) – –
Almond Pru du (seed) – –
Peach Pru p (pulp), Pru p (peel) Pru p 3, Pru p 7 Pru p 1, Pru p 3

Pomegranate Pun g (fruit) Pun g 1, Pun g 14, Pun g 5, Pun g
7 –

Oak Que a (pollen) – –
Rat Rat n (epithelium) Rat n 1, Rat n 4 –
Saccharomyces Sac c (whole body) – –
Salsola – – Sal k 1
Salmon Sal s (muscle) – –
Sesame Ses i (seed) – Ses i 1
White mustard Sin a (seed) – –
Common sole Sol so (muscle) – –
Tomato Sola l (fruit), Sola l (seed) Sola l 6 –
Eggplant Sola m (fruit) – –
Potato Sola t (tuber) Sola t 1 –
Spinach Spi o (leaf) – –
Domestic pig Sus s (muscle) Sus s 1 –
Tuna Thu a (muscle) – –

Wheat Tri a (seed) Tri a 7k-LTP, Tri a 18, Tri a 28, Tri a
gliadin

Tri a 14, Tri a 19.0101, Tri
a_trypsin inhibitor

Trichophyton Tri me (whole body) – –
Kamut Tri tp (seed) – –
Squid Uro du (muscle) Uro du 1 –
Clam Ven ga (muscle) Ven ga 1 –
Wasp Ves spp (venom) – Ves v 5
Grape Vit v (fruit) – –
Corn Zea m (seed) Zea m 14 –

* Details about the listed extracts and purified allergenic proteins can be found at the WHO/IUIS website
http://allergen.org/ (last accessed on 10 March 2022) and/or at the Allergome website http://www.allergome.org
(last accessed on 10 March 2022).

http://allergen.org/
http://www.allergome.org
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The IgE-binding inhibition tests with the SPHIAa assay on the allergen multiplex ISAC
103 system was also exploited to investigate the influence of the maturation age on the
allergenicity of Parmigiano Reggiano cheese. The study was performed on a population
of cow’s milk allergic children. The obtained results showed a variation, associated with
the age of cheese maturation, in proteins, peptides and other compounds with different
molecular weight and able to bind IgE [99].

A main cause of false positive results in the detection of allergens by immunochemical
methods based on the use of specific IgE antibodies is due to cross-reactive carbohydrate
determinants (CCDs) bound to the protein molecules. CCDs are present in various allergen
sources, such as plant, insect and animal foods, which react with IgE antibodies without
inducing relevant clinical symptoms. IgE-binding inhibition to CCDs can be performed on
multiplex allergen microarray systems and might allow the detection of signals due to the
interference of carbohydrates bound to allergenic molecules [100].

More recently, the SPHIAa assay was applied to the multiplex allergen microarray
FABER (Allergy Data Laboratories (ADL), Latina, Italy) [5,97] to obtain information on
the allergens contained in food extracts. The SPHIAa method, combined with the FABER
technology, represents a forefront tool exploiting a comprehensive panel of 244 aller-
gens (Table 2), namely 122 extracts and 122 purified molecules, including all the most
important allergy markers, in addition to exclusive allergens not available in other test
systems [5,23,68]. For instance, this method, associated with the use of appropriate sera
containing the required IgE, was exploited to perform a comparative analysis of the allergen
content in tomato exposed, or not exposed, to nickel (Ni) stress [101]. In particular, the
allergenic proteins LTP, profilin, Bet v 1-like protein and TLP were analyzed. The exper-
imental results show that Ni treatment can cause an increase in the allergenic LTP (Sola
l 3) and a decrease in profilin (Sola l 1), Bet v 1-like protein (Sola l 4) and thaumatin-like
protein. The observed decrease in profilin is in line with the literature reporting a reduction
in the concentration of this allergen, assayed with a different method, namely the ELISA
test, in the leaves of basil treated with Ni [102].

Combining Multiplex Allergen Immunoassay with Mass-Spectrometry-Based Methods

A strategy combining the multiplex immunoassay on the FABER biochip and bioinfor-
matics analysis of proteomics data sets (Figure 2) was applied in the study of the potential
allergenicity of alfalfa (Medicago sativa) leaves [23]. Despite the high economic and agri-
cultural value of this plant, its allergenicity was very poorly known, and no allergens
had been identified and registered in the appropriate databases until then. The aqueous
extract of the alfalfa leaves was incubated with a pool of sera from allergic patients to allow
the competition for IgE binding between possible allergens contained in the extract and
those spotted on the FABER biochip. Although no alfalfa samples were available on the
FABER biochip, this method allowed the detection of IgE-binding proteins in the analyzed
extract by the identification of proteins cross-reacting with plant allergens from several
allergen families, such as LTP, thaumatin-like proteins, cysteine proteases, Bet v 1-like
proteins, chitinases, and the much more recently identified gibberellin regulated proteins
(GRPs) [103,104]. In addition, the absence of structural determinants cross-reacting with
seed storage allergenic proteins and with animal allergens was recorded.

The proteins of alfalfa leaves were also investigated using a mass-spectrometry-based
method consisting of in-gel digestion and LC–MS/MS-based proteomics on the protein
extract. It allowed the identification of 129 proteins, including the three possible allergens
LTP, thaumatin-like and Bet v 1-like proteins. In addition, mass spectrometry allowed
the identification of alfalfa proteins homologous to known allergens from other sources,
such as hevein, glucanase and chitinases. However, these molecules were not detected by
the immunochemical method, namely the SPHIAa assay on the FABER biochip, although
homologous allergens were available on the biochip. A possible interpretation of this result
is that the extracts used by the two methods contained a different pattern of components.
For instance, we cannot exclude that the extraction conditions used to prepare the sample
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for immunological assays could prevent the solubilization of some proteins that were
instead extracted during the preparation of the sample for mass spectrometry. However,
proteins belonging to allergen families, such as GRP, were not detected by the mass-
spectrometry-based method. Most probably, the protein database searched within the mass
spectrometry experiment did not contain GRP sequences, thus preventing its identification.
The results obtained in this study highlight that both the methods have limitations, but the
combination of the selected methods, namely proteomic experiments, in silico analysis and
immunological assay, can produce a much more accurate profile of the allergens contained
in the analyzed food.
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The same strategy combining immunological tests and bioinformatics analysis of
proteomics data sets was applied to the analysis of allergens in three different strawberry-
derived vesicle populations [68]. The application of the immunological method, namely the
SPHIAa assay on the FABER system, showed that the vesicles carry all the three allergens
so far described in strawberry, the Bet v 1-like protein Fra a 1, the LTP Fra a 3 and the
profilin Fra a 4. In addition, the immunological method allowed the detection of potential
allergens not yet reported in strawberry, such as seed storage proteins, trypsin inhibitor
and GRP. However, mass spectrometry experiments allowed the detection of all the three
known strawberry allergens in the total strawberry protein extract, whereas only Fra a 1
and Fra a 4 were identified in the vesicle samples. However, mass-spectrometry-based
proteomics analysis allowed the detection of several other potential allergens consisting of
proteins with sequence similarities to known allergens. They could not be detected by the
immunological method because homologous molecules were not available on the allergen
biochip used for IgE-binding inhibition experiments.

4. Conclusions

The detection of allergens contained in a food, as it is or after processing treatments, is
a challenging issue [6], which can be addressed using several methods. Genetic methods
allow an indirect detection of allergens. Biochemical methods, such as those based on mass
spectrometry, allow a direct detection of proteins belonging to known allergenic families.
However, these methods do not provide evidence indicating that these molecules are really
recognized and bound by the IgE of allergic patients. Conversely, immunological methods
allow the detection of molecules exposing the epitopes recognized by specific IgEs and that
are required to induce IgE-mediated allergic reactions. The conventional immunological
method that has been highly used for allergen detection in foods is ELISA, which is useful
for the detection of a single allergen per test. The multiplex allergen microarray-based
system represents an innovative method allowing the detection of many allergens, which
are recognized by IgE, with a single test. These advantages do not appear to have been
well exploited so far. In fact, the literature reports some examples of the use of multiplex
allergen systems to identify IgE binding proteins in food extracts, but it seems that this
method has not found application so far for the analysis of allergens in processed foods.
Nevertheless, it shows high potentialities for this application. In fact, some features suggest
it can be a very useful tool in the analysis of the effectiveness of processing procedures in
the reduction of allergenicity.

Clearly, the multiplex allergen microarray-based system is an in vitro test that allows
the detection of allergenic proteins and the assessment of their recognition by a specific
IgE. However, the assessment of IgE binding is not proof that a protein will really cause an
allergic reaction in sensitized patients [105]. The assessment of IgE binding provides useful
indications, but when testing the effectiveness of processing methods in the reduction of
allergenicity, patient safety requires that the results must always be confirmed by in vivo
tests. These tests include prick-by-prick test, skin prick test and the provocation test (double-
blind placebo-controlled food challenge, DBPCFC), which remains the “gold standard” for
the allergenicity assessment of an untreated or processed food [106].
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