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Abstract  

Trace concentrations of NO are detected under ambient conditions by laser-induced 
photoacoustic spectroscopy. NO is excited via its A

2
S

+
-X

2
II (0,0) band with radiation near 

226 nm, and the subsequent heat released is monitored by a microphone. Rotationally resolved 
photoacoustic spectra are recorded and fit using a multiparameter computer simulation based on 
a Boltzmann distribution. Transition probabilities and rotational energies are used as input 
parameters. The effect of buffer gas pressure, buffer gas, laser energy, and NO concentration on 
PA signal is investigated both experimentally and by model calculations. Limits of detection of 

1.2, 2.8, and 4.9 ppm are obtained for NO in Ar, N2, and air, respectively. The ultimate 
sensitivity of this approach is greater with LODs projected in the low parts per billion by 
utilizing higher laser energies and an improved system design. The results are compared with 
previous studies using complementary laser-based spectroscopic techniques. 
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1. Introduction 

The detection of NO is of interest due to its function in atmospheric chemistry (acid rain, smog, 

ozone reduction) and formation in the photochemistry of energetic compounds [1,2]. Conventional 

methods for determining ambient concentrations of NO include chemiluminescence and passive 

collection with subsequent wet chemical analysis. Laser-based methods are, however, being 

implemented more frequently since they offer fast and real-time monitoring capabilities with 

excellent sensitivity. These methods include laser-induced florescence (LIF) [3, 4] resonance- 

enhanced multiphoton ionization (REMPI) [1, 2, 5] and laser photoacoustic spectroscopy (PA) 

[6-12]. 

The analytical application of LIF for the detection of ambient NO has been reported [3, 4]. 

Bradshaw et al. [3] have investigated the analytical application of NO detection by one-photon LIF 

for atmospheric conditions. NO was excited via the A^-X2]! (0,0) y-band using 226-nm radiation, 

and the fluorescence emitted from the (0,2) band was detected at 247.5 nm. A limit of detection 

(LOD) of 0.5 ppb was reported. In later work by the same group, Sandholm et al. reported even 

higher levels of NO sensitivity using a two-color LIF excitation scheme [4]. With a more complex 

experimental apparatus, trace concentrations of tropospheric NO were measured from an aircraft 

platform. NO was excited by two lasers simultaneously. One laser was tuned to the NO A22+-X2II 

(0,0) band near 226 nm, while the other was tuned to the NO D22+-A22+ (0,0) band near 1.1 urn. 

Fluorescence detection was accomplished by monitoring the D2E+-X2II transitions in the 187-220- 

nm region. Since the fluorescence occurs at a higher frequency than either of the excitations, the 

laser contribution to the observed background is essentially zero and the measurements are 

effectively signal limited. A LOD (signal-to-noise [S/N] - 2) of 3.5 pptv for integration time of 

2 min was reported. 

Recent studies in our laboratory that centered on detecting nitrocompounds by laser 

photofragmentation/fragment ionization have shown that ambient concentrations of NO can be 

measured with high sensitivity and selectivity by molecular beam, time-of-flight mass spectrometry 



[1,2]. In one study, a LOD (S/N = 3) of 8 ppb was attained by using a 226-nm tunable laser to 

ionize NO by a (1 +1) REMPI processes via its NO A
2
E

+
-X

2
II (0,0) band [1], Ina subsequent study, 

NO ionization was accomplished with an ArF laser operating at 193 nm by (1 +1) REMPI processes 

via the NO A2S+-X2II (3,0) and/or B2E -X2II (7,0) transitions at 193 nm [2]. A LOD (S/N = 3) of 

1.2 ppm was reported. The difference in sensitivities between the two REMPI techniques was 

attributed to (1) a more favorable Franck-Condon overlap for the 226-nm transitions compared with 

the 193-nm transitions following supersonic cooling, and (2) a reduced spectral energy density of 

the ArF laser compared to the 226-nm tunable laser (approximately a factor of 60). More recently, 

it has also been demonstrated in our laboratory that NO can be detected at atmospheric pressure with 

the use of the same (1 + 1) ionization scheme at 226 nm without ion selection by using a pair of 

miniature electrodes [5]. With this technique, a LOD (S/N = 3) of 1 ppb was determined using 10 

p J of pulse energy and an integration time of 10 s. 

Although both LIF and REMPI techniques offer high sensitivity under many conditions, there 

are situations where these techniques are less suitable. In particular, both LIF and, to some extent, 

REMPI suffer from collisional quenching at atmospheric pressures. REMPI also suffers from 

nonresonant background ionization and requires relatively high laser fluences because of the 

multiphoton processes involved. Detection of NO by laser PA can circumvent some of these 

problems. The PA technique is primarily calorimetric in nature and is based on conversion of photo 

to acoustic energy by collisional quenching of laser excited NO. The quenching results in a local 

temperature increase followed by a pressure rise that generates the photoacoustic signal. PA 

spectrometry is thus complementary to LIF and REMPI, since the mechanism involves a competing 

process to fluorescence and ionization. Higher diluent gas pressures increase the rate of collisional 

deactivation and improve performance. Unlike REMPI, the PA technique does not require large 

laser intensities and has the benefit of remote detection through the implementation of a tube 

between the detector and the sample or system of interest. For REMPI detection, the electrodes must 

be in contact with the sample and in proximity to the laser beam. The PA transducer (e.g., electret 

microphone) is also compact, simple to implement, and significantly inexpensive, compared with 

high-voltage sources necessary for REMPI and LIF and the photomultipHer/monochromator required 

for LIF. 



Laser photoacoustic detection of NO has been demonstrated with both its fundamental absorption 

band in the infrared (JR.) and y-band in the ultraviolet (UV). Kreuzer and Patel first reported the 

application of the PA technique in the IR to measure concentrations of NO in N2, laboratory room 

air, field air, and automobile exhaust [6]. A continuously tunable spin-flip Raman (SFR) laser 

pumped by a CO laser was used to excite NO in the region of 1814-1825 cm"
1
. All of the NO lines 

excited were not observed, because water vapor also has strong absorptions in this region. Using 

the NO(n3/2) P165 and NO(ni/2) P175 lines, which correspond to frequencies 1818.74 and 

1816.56 cm"1, respectively, these authors estimated a detection limit of 0.01 ppm for 4-s integration 

time. Patel also employed a similar experimental apparatus for NO temporal measurements near 

1,888 cm"1 in the stratosphere using a balloon-born system [7]. The measured NO concentrations, 

which ranged from <1.5 x 10s - 22 x 108 molecules cm"3, correspond to volumetric mixing ratios 

of approximately 0.2 and 4.2 ppb, respectively. A disadvantage of this system is the complexity of 

the equipment and bulk of the apparatus. The apparatus could be simplified by replacing the SFR 

laser with a step-tunable CO laser. Kreuzer, Kenyon, and Patel [8] measured the line strengths of 

NO absorption resonant with the output from a CO laser near 5.3 p. They estimated that atmospheric 

mixtures of NO can be measured in the presence of 10-100% water vapor with sensitivities in the 

0.01-0.1-ppm range. 

Patel and Kerl [9]; Patel, Kerl, and Burkhardt [10]; and Patel [11] applied the PA technique 

using a two-color excitation scheme for probing NO with vibrational excitation in its ground 

electronic state, hi the study by Patel and Kerl, the 14NO isotope was excited by a fixed-frequency 

CO laser at 1917.86 cm"
1
 to produce excited 

14
NO(u" = 1) [9]. This state was then probed with 

tunable IR radiation obtained from an SFR laser pumped with another CO laser operating at 1891.65 

cm"
1
. As the SRL was scanned, high-resolution Zeeman spectra of u" = 1 - u" = 2 ro-vibrational 

transitions of the 
l4

NO(?IL1/2) and (
2
n3/2) states were obtained. In subsequent work, Patel, Kerl, and 

Burkhardt studied the molecular energy transfer of 
14

NO(u" = 1) to 
15

NO(u" = 1) [10,11]. Irradiation 

of a 1:1 mixture of the two NO isotopes by a fixed-frequency CO laser caused only the 
14

NO 

molecules to be excited to their first vibrational state. Vibrational energy transfer then allowed for 

probing the 
15
NO(u" = 1) state using tunable SFR laser radiation resonant with 

15
NO(u" = 1) - 

15
NO(u" = 2) transitions. 



NO is a suitable molecule for PA detection in the UV. First, it has a relatively strong absorption 

coefficient at 226 nm [12], (o^^ = 6.6 x 10~
18

 cm"
2
). Second, its energy release during collisional 

deactivation is greater in the UV than IR on a per photon basis. Last, there is minimal spectral 

interference from H20 and other pollutants at 226 nm compared to 1,890 cm"1. Experimental 

precaution must be taken in the UV, however, since the PA signal intensity can be reduced due to 

competing fluorescence and ionization processes. The work of Stenberg, Hemberg, and Vattulainen 

is the only account in the literature that reported laser PA detection of NO in the UV [13]. Various 

pollutants, such as NH3, H2S, N20, and NO produced in a combustion environment, were monitored 

using a microphone probe mounted at the end of a sound-transmitting tube. A broad band near 

226 nm was ascribed to NO, and LODs (S/N = 1) of 0.6 ppm and 3 ppm were determined for NO 

in a low-noise reactor and bubbling-bed reactor, respectively. 

In this report, the detection of ambient NO by laser PA via the A^-X2!! (0,0) band near 226 nm 

is reported. Rotationally resolved spectra are recorded and fit using a multivariable computer 

spectral program. The analytical merits of the technique are evaluated as a function of buffer gas, 

pressure, laser energy, and NO concentration. LODs are determined for NO in Ar, N2, and air. The 

results of this study are explained using a simple model and are compared to those reported using 

other laser-based techniques. 

2. Experimental 

The experimental apparatus used in this study has been described previously [5]. Briefly, a 

photoacoustic probe was used in place of a REMPI probe. The radiation source used was an excimer 

pumped dye laser (Lumonics, HyperEx 400/Hyper Dye 300) with a second harmonic generator 

(Lumonics, HYPER TRAK-1000). The laser was operated at 10 Hz with Coumarin 450 dye and 

beta baruim borate (BBO) crystal to produce wavelengths in the range 224-228 nm. The laser 

linewidth was estimated to be 0.11 cm"
1
 at 226 nm from the 0.076 cm"

1
 value specified for the 

fundamental (Lumonics). Typical pulse energies were 10-50 p J with duration of approximately 20 

ns. The energy was monitored between measurements using a Joulemeter (Molectron Detector Inc., 



J4-05). The laser beam has a diameter of approximately 2 mm and was not focussed for routine data 

collection. For experiments in which the laser beam was focused, dielectric breakdown was not 

observed. 

The PA cell consisted of a standard six-way, stainless steel cross with internal arm diameters of 

3.6 cm. The cell volume was estimated as 350 cm3. MgF2 windows were mounted on opposing 

arms for transmitting the laser radiation. A vacuum feed through flange, containing an omni 

directional electret condenser microphone (Radio Shack 270-090), was mounted on the third arm. 

The flange provided excellent electrical shielding and allowed horizontal translation of the 

microphone. The microphone was positioned approximately 2-3 mm normal to the laser beam for 

maximum signal response. At this distance scatter radiation contacting the microphone was 

minimal. 

The microphone was encased in a small cylinder of 9-mm diameter and 6-mm length. It had an 

active area of approximately 3 mm2 and exhibited a relatively flat sensitivity response of 65 + 4 dB 

in the frequency range of 20-1500 Hz. It was powered with a 9-V battery. The output of the 

microphone was dropped across a capacitor and amplified with a current amplifier (Keithley, 

model 427, time constant 0.01 ms). Signals from the microphone were sampled with a boxcar 

averager (Stanford Research Systems) using a gate width of 100 us or with a 125-MHz digital 

oscilloscope (LeCroy 9000). In both cases, the first peak of the PA waveform was sampled, since 

it corresponds to the pressure fluctuation from the focal volume and is thus directly proportional to 

the heat produced [14,15]. For routine data analysis, 3 or 10 shot averaging was employed. Spectral 

recording was accomplished with both a boxcar interfaced to a PC and a strip chart recorder. 

Serial dilutions of NO (Matheson, >99.9%) or 0.1% NO/Ar (Union Carbide) were prepared in 

the sample cell using air (Matheson, 99.9%), N2 (Potamic Gases, 02 free), or argon (Spectra Gases, 

99.999%). Cell pressures were monitored with a barocel pressure sensor interfaced to a recorder 

(Edwards-Datametrics 600A-1000T, 1500) and ranged from 1-850 torr. Measurements were made 

under static conditions. 



3. Spectral Simulation 

A computer program based on absorption or fluorescence was used to fit the NO photoacoustic 

data [16]. The signal, Spa, is proportional to the energy absorbed over a certain pathlength of the 

laser beam. Using Beer-Lambert's absorption law and assuming the pathlength to be optically thin, 

Spa can be expressed as, 

s^-s^cvg-ECv^)], a) 

where S is the scaling factor that includes system response, and E (v0, i) is the transmitted laser 

energy with frequency v0 and traveling a distance L For a system described by a Boltzmann 

distribution, E (v0, {) is adapted from Vanderhoff and Kotlar [16] as 

-E'/kT 

E(v0,0 = / Ev>0(v0)e
(-hv{/c)[N

T
/Q(T)]^^e J   dv, (2) 

where h is Planck's constant; c is the speed of light; NT is the total population of ground electronic 

state NO (X2H); Q (T) is the partition function; gj is the degeneracy of the jth sublevel and Ej5 its 

energy; k is the Boltzmann constant; T is the temperature; and P3 is the Voigt transition lineshape. 

E (v0, H) was evaluated by numerical integration over v. The limits of integration were chosen to 

include more than 99% of the laser profile. 

The photoacoustic spectrum is generated by evaluating equation (1) for each datum (v0) and is 

fit to the observed spectrum using a multiparameter, nonlinear weighed least-squares-fitting routine. 

Parameters include, the laser lineshape, Doppler and collisional broadening, the number density, 

temperature, absolute frequency values, relative frequency values for the data, and parameters 

associated with experimental conditions. The standard deviation of each parameter, as statistically 

determined from the fit, is obtained from the computed variance/covariance matrix, once 

convergence is achieved. 



4. Results 

A typical PA spectrum of NO normalized with respect to the laser energy is presented in 

Figure 1(a). The concentration of NO in Ar was 213 ppm, and the total cell pressure was 1 atm. The 

spectrum was recorded at 10 Hz with a scan speed of 0.005 nm/s and 3 shot averaging. Presented 

in Figure 1(b) is a graphical simulation generated by fitting the observed data using our multivariable 

computer program. The program utilized over 600 transition probabilities for various rotational 

levels as input data. The data were generated with spectroscopic constants reported in 

Herzberg [17]. Evident from Figures la and lb are the spectral features due to the 
2
II1/2 and 

2
II3/2 

spin-orbit components of the NO ground electronic state. The unique features of the spectrum and 

rotational resolution at one atmosphere indicate that the PA technique can be highly selective on the 

basis of excitation wavelength for NO detection. A PA spectrum of air over the same region shows 

little, if any, PA signal above the noise. 

A plot of PA signal intensity as a function of laser energy is presented in Figure 2. The plot is 

linear and indicative of a one-photon process. The energies employed ranged from approximately 

10-50 u J and were so sufficiently low that saturation of the signal was not observed. Focusing the 

laser beam reduced the signal. The intensity of the focused beam was calculated as 108 W/cm2 using 

an estimated value of 90 u for the beam diameter. At this intensity, (1 + 1) NO REMPI processes 

compete favorably with collisional de-excitation [1,5], and a reduction in the PA signal is observed. 

The possibility that a focused beam excites a smaller cross section of the sample in proximity to the 

microphone should also be considered. Simultaneous measurements of PA and optogalvanic signals 

in discharges have been used to ascertain mechanisms of current production [18,19]. 

Presented in Figure 3 is a plot of measured signal intensity as a function of Ar pressure. A 

similar trend was observed with N2. The position of the boxcar gate or oscilloscope cursors was 

optimized for maximum signal with each measurement since the shape of the PA waveform varied 

with pressure as described by Chin et al. [20]. The first peak drifted in time relative to the pressure; 
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Figure 1. Experimental (a) and Simulated (b) PA Spectra of NO in the Region of 226 nm. The 
Simulation Is a Best Fit of the Data and Yields a Boltzmann Rotational 
Temperature of 305 ± 5 K. The Two Spectra Are Offset in Signal Intensity for 

Clarity. 
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Figure 2. Dependence of PA Signal on Laser Energy. The Laser Was Tuned to 226.29 nm, 
and the Maximum Energy Was Approximately 50 uj/pulse. 
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Figure 3. Plots of PA Signal as a Function of Ar Buffer Pressure Using Laser Radiation 
Tuned to 226.29 nm. The Experimental Data Is Represented by the Symbol (•), 
Fitted Curve by (-), and Computed Curves by (...) and (—) Obtained by Using 
Electronic Quenching Rate Constants k = 1.0 x 10"u and 3.9 x 10"13 cm3/molecule-s, 
Respectively. 



a decrease in the delay time was observed with increasing pressure. The various curves shown in 

Figure 3 were generated using equation Spa = K [kM/(A + kM)], where K is a proportionality 

constant that includes NO concentration, laser energy, and system response, k is the NO (A
2
S

+
) 

electronic quenching rate, and A is the NO(A
2
S

+
) spontaneous decay rate. The nature of this 

equation will be discussed in detail in the following section of this report. The dashed curves were 

generated using a value of A = 4.6 x 106 s"1, determined form the well-known NO (A2S+) radiative 

lifetime [21, 22]; reported values of k^ = 3.9 and 1.0 x 10"
13
 cm

3
/molecule-s by McDermid and 

Laundenslager [21] and Callear [23], respectively; and varying K. Both reported values of k^ were 

obtained by LBF using Stern-Volmer analyses. As can be seen from Figure 3, the curve generated 

using kM = 3.9 x 10"13 cm3/molecule-s agrees with our data reasonably well. The best fit to our data 

that is given by the solid curve yields k^ = 6.9 ± 1.0 x 10~13 cm3/molecule-s and K = 1.6. Although 

the PA technique has been used for measuring vibrational relaxation rates [24, 25], it has not been 

routinely implemented for determining electronic quenching rates. As an alternative to LIF, the 

technique may be potentially useful for measuring electronic quenching rates, particularly for species 

that are weak fluorophores. However, the specie's radiative lifetime must be measured or calculated. 

Presented in Figure 4 are sensitivity plots for NO in 1 arm of Ar, N2, and air. The plots are linear 

for the shown concentration. Not shown is a leveling off of the signal at concentrations greater than 

350 ppm. At these concentrations NO strongly absorbs the laser energy, and the PA signal saturates. 

The slope of the plot in the linear region yields a sensitivity value for Ar of 0.343 mV/ppm. Using 

a background noise of 0.398-mV yields a value of 1.2 ppm for the LOD, reported as the 

concentration equivalent to 3o. The background noise was evaluated in the absence of NO from 20 

independent measurements, each the average of 10 laser pulses, and was found to be independent 

of buffer gas. Absorption of radiation by the windows and scattered light contacting the microphone 

contributed to the most of the noise. Measurements using N2 and air as diluents produced LODs of 

2.8 and 4.9, respectively. 

10 
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Figure 4. PA Signal Intensity as a Function of NO Concentration Using Ar (D), N2 (A), and Air 
(•) as Buffer Gases. The Laser Was Tuned to 226.29 nm. 

5. Discussion 

A first-order model is used to explain the effect of pressure, buffer gas, laser energy, and NO 

concentration on the PA signal. Once NO is electronically excited by the laer pulse, it decays either 

radiatively by spontaneous transition or by collisional quenching with diluents. For a two-level 

electronic system, the rate equation for the decay of excited NO (A2S+), N", is expressed as, 
dN* 
^-   = -AN* - kN* M, (3) 
dt w 

where A is the spontaneous transition rate, k is the quenching rate constant, and M is the density of 

the diluent. This equation assumes that all other loss processes, such as those involving energy 

11 



transfer, ionization, and reactions, are negligible. If each collisional quenching of NO generates heat, 

the rate equation for the heat density, Q, can be expressed as 

-^ = kN* Mhv. (4) 
dt 

Integrating equations (3) and (4) yields the total heat gained: 

Q = N(;hv-JSM_, (5) 
0       A+kM 

where N0* is the initial excited NO density following the laser absorption. 

For a system at constant volume, the change in pressure is proportional to the total heat gained 

divided by the heat capacity, AP ~ AT = QV/CV, where V is the volume. If we ignore the 

thermodynamic work, PAV, produced in generating the pressure wave, the photoacoustic signal is 

NnEofi 
S -  

pa c 

v 

kM 
(6) 

kM + A 

where we have used Beer-Lambert's Law, N0* = N0o{E/hv. 

As can be seen from equation (6), the photoacoustic signal is proportional to the number density 

of ground electronic state NO and laser energy, as was observed experimentally. The PA signal also 

depends on the buffer gas pressure, heat capacity of the buffer gas, as well as, the k and A rate 

constants. For kM » A, the PA signal is independent of pressure and makes it ideal for analytical 

applications in high-pressure environments. Overall, the model agrees with our experimental data. 

The model can be improved, however, by including shock wave relaxation effects at higher pressure, 

work required to produce the pressure wave, and transport properties of the buffer gases. 

The LODs of NO in Ar, N2, and air were determined as 1.2,2.8, and 4.9 ppm, respectively. The 

higher values in N2 and air compared to Ar are due to the decrease in signal intensities, since the 

noise levels are approximately the same for all three diluent gases. As expected, the signal of NO 

12 



in N2 at 1 atm is less than Ar since N2 has a smaller heat capacity and quenching rate constant. 

Quantitatively, the (S^/S,^ )latm ratio of 2.3 determined from the experimental values agrees 

reasonably well with the value of 3.7, calculated using equation (6) with reported k^ and kN values 

of 3.9 x 10"13 and 9.1 x 10"14 cm3/molecule-s, respectively [21]. For air, one would predict a priori 

that the signal level of NO would be larger than in N2 given that their heat capacities are 

approximately equal and that k^ is greater than kN because of the contribution of kQ , 1.41 x 

10"
13
 cm

3
/molecule-s [21]. However, the reverse is true. Possible explanations as to why the 

observed NO signal is smaller in air than N2 are as follows: (1) reaction of NO (X2II) with 02, 

(2) energy transfer between NO (A
2
S

+
) and 02, and (3) reaction of NO(A

2
2

+
) with 02. The first 

explanation is ruled out since the oxidation of NO by 02 by the slow, third-order reaction 

2NO + 02 = 2N02, k = 2 x 10"38 cm6/molecule2-s is negligible given the concentrations used in this 

study and the time required in order to perform the experiment. The possibility that the presence of 

02 has an effect on the energy transfer of the analyte was investigated by Fried [26]. He observed 

a 34.5% decrease in N02 signal when N2 was replaced with 02. This was interpreted as energy 

transfer between electronically excited N02* (A, = 488 nm) and 02 (
3£g), yielding ground electronic 

state N02 and metastable 02(
1Ag). A modulation frequency of 250 Hz was used in his experiments; 

thus, the energy released by the xAg state of 02 (collisional relaxation lifetime of 23 ms at 600 Torr) 

was effectively trapped or lost. In our case, the energy transfer process could involve 02 (B 32u"). 

However, this mechanism seems unlikely, given the energy difference of approximately 5,100 cm"1 

between the NO (A-X) (0,0) band and the 02(B-X) Schuman-Runge band centered at 

49,363 cm"1 [17]. Thus, we favor the plausible mechanism involving reactions of NO (A2S+) with 

02. Verification of this mechanism would require experimental and theoretical reaction kinetic 

studies. 

The LODs of NO obtained in this study are comparable to the low-ppm values obtained by 

Stenberg, Hernberg, and Vattulainen [13] in a combustion environment using PA with UV laser 

excitation. However, they are 2 to 3 orders of magnitude greater than those obtained by REMPI, 

one-color LEF, and infrared laser PA. This difference is not a fundamental limitation of the 

technique, but is related to the system used. Instrument performance can be improved to enhance 

PA signal in the UV. First, significant improvements in the sensitivity can be expected with higher 

13 



laser energies. The energy required to saturate the transition, E^, is estimated using the relationship, 

E^, = hvA/20, where A is the area of the laser beam. Using a value of 1 mm for the beam radius and 

a value of a226 ^ = 6.6 x 10-18 cm2 [12], yields a value of approximately 4 mJ. This value is 

approximately 2 orders of magnitude more than that employed in this study. Second, an 

improvement in the signal can be realized by using a miniature PA cell with cylindrical microphones 

having built-in preamplifiers. Patel and Kerl have reported an improvement of a factor of ~10 with 

the use of new geometry and microphones [9]. Third, a reduction in noise will also result in lower 

LOD. Most of the PA noise is due to absorption or scattering of laser radiation from the widows, 

particularly if a thin film of absorbing material is deposited on the window. One solution to this 

problem is to use a windowless PA cell, as did Gerlach and Amer for monitoring in ambient 

conditions [27]. With an improved system design and employing higher laser energies, LODs of NO 

in the low-ppb are thus projected. 

6. Conclusion 

PA is complementary to LIF and REMPI methods and is particularly useful for environments 

requiring high-pressure and low laser intensities. The analytical utility of PA has been demonstrated 

for the detection of NO in Ar, N2, and air using single-photon absorption corresponding to NO A22+- 

X2H (0,0) transitions near 226 nm. Characteristic features of the spectra and the relatively high 

rotational resolution at one atmosphere indicate that PA technique can be highly selective on the 

basis of excitation wavelength. The results show that the method enables a simple instrument design 

for the detection of NO in the low-ppm at atmospheric pressure using only 10-20 p J of laser energy. 

LODs in the low-ppb range are projected with modifications of the experimental apparatus. For a 

given NO concentration and laser energy, the diluent gas influences the LOD. This influence is due 

to a difference in signal intensities rather than noise. The differences in signal intensities result from 

variations in heat capacities and collisional quenching rate constants. For air, the possibility of 

reactions involving electronically excited NO with 02 must also be considered. 
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