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Detection of American Football 
Head Impacts Using Biomechanical 
Features and Support Vector 
Machine Classification
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Accumulation of head impacts may contribute to acute and long-term brain trauma. Wearable sensors 

can measure impact exposure, yet current sensors do not have validated impact detection methods 

for accurate exposure monitoring. Here we demonstrate a head impact detection method that can be 

implemented on a wearable sensor for detecting field football head impacts. Our method incorporates a 
support vector machine classifier that uses biomechanical features from the time domain and frequency 
domain, as well as model predictions of head-neck motions. The classifier was trained and validated 
using instrumented mouthguard data from collegiate football games and practices, with ground 

truth data labels established from video review. We found that low frequency power spectral density 
and wavelet transform features (10~30 Hz) were the best performing features. From forward feature 
selection, fewer than ten features optimized classifier performance, achieving 87.2% sensitivity and 
93.2% precision in cross-validation on the collegiate dataset (n = 387), and over 90% sensitivity and 
precision on an independent youth dataset (n = 32). Accurate head impact detection is essential for 
studying and monitoring head impact exposure on the field, and the approach in the current paper may 
help to improve impact detection performance on wearable sensors.

Accumulation of head impacts may contribute to acute and long term brain trauma. In rodent models, repeated 
head impacts can worsen brain injury outcomes and substantially prolong recovery1–3. In football players, sus-
taining a large number of high severity impacts over an athletic event is associated with elevated concussion 
risk4, and repeated injuries led to increased vulnerability to subsequent injury5. Even without clinically diagnosed 
concussions, players with a greater number of head impacts in a game showed higher levels of blood brain bar-
rier disruption than those with fewer impacts6. At lower impact severities and exposure levels, a bout of soccer 
headers led to acute neurological de�cits and concussion symptoms7,8. Aside from acute injuries, head impacts 
over a season of football has been shown to lead to white matter integrity changes9. In fact, long-term head 
impact exposure from sports and other activities may trigger a neurodegenerative condition called chronic trau-
matic encephalopathy10,11. With heightened awareness of the association between sports head impacts and brain 
trauma, guidelines have been introduced to limit head impact exposure in sports, such as the recent US Soccer 
organization’s recommendation of no heading for young children12. In response to such concern, many head 
impact sensors have been developed to measure head impact exposure.

Some sensors use simple linear acceleration thresholds to di�erentiate head impacts from normal motions. 
Although commonly used, this algorithm is likely insu�cient. When a low acceleration threshold is set for impact 
detection, large numbers of false positives are expected, since inertial sensors can pick up accelerations from 
many sources including sensor handling. On the other hand, if a high acceleration threshold is used, some true 
impacts are likely missed, while high acceleration false positives will remain. Realizing that acceleration thresh-
olding alone may be inadequate, some companies have developed proprietary algorithms for impact detection, 
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but there is little published validation of their performance, and the limited amount of validation data reveal 
problems with these approaches.

Current impact detection methods have problems with false negative and false positive detections. In a Head 
Impact Telemetry System (HITS) validation paper, 19% of dummy impacts were incorrectly removed by its 
impact detection algorithm13. In cadaver drop tests, the HITS detected 79.6% of drops, G-Force Tracker (GFT) 
detected 87.0%, skin-adhered patches mounted behind the le� ear and right ear detected 86.1% and 75.7%, 
respectively14. Considering that lab dummy impacts are relatively simpli�ed scenarios and isolated events, more 
complex �eld conditions may lead to even more false negatives in these sensors. For false positive detection, a 
�eld validation study of the skin-mounted xPatch sensor found more than 30% of the recordings to be spurious15. 
Another study using video analysis to verify sensor impacts found that 65% could be veri�ed for the G-Force 
Tracker and only 32% could be veri�ed for the xPatch sensor16. Many of these sensors with impact detection prob-
lems have been deployed to sports players to report impact exposure and study injury mechanisms17–20. Without 
accurate impact detection, sensor data may include substantial amounts of false positive and false negative read-
ings, which can skew injury mechanism �ndings, and lead to inconsistent and inconclusive results.

Due to the complexity of human motion and activities, detection of such events with wearable sensors has 
bene�tted from more complex features and algorithms. Aside from commonly used time-domain linear acceler-
ation features, features may be extracted from angular motion and from the frequency-domain transformations 
of the time-domain signals. In fact, since the temporal dynamics of human motion are o�en distinguishable from 
those of other activities, Fourier Transform features (frequency-domain) and Wavelet Transform (WT) features 
(time and frequency-domain) have proven useful in detecting falls and other human activities21–25. In addition, 
some studies for detecting human motion also used knowledge-based features to impose biomechanical feasibil-
ity constraints for detection. For example, in a fall detection paper, the authors describe the validation of a con-
straint based on the fact that human thigh segments normally do not tilt beyond a certain threshold except during 
falls26. �ese features combined with machine learning algorithms such as support vector machines (SVMs) have 
yielded high performance in past research27–30. �erefore, employing more features from the time and frequency 
domains of kinematics as well as machine learning algorithms may be necessary to generate a high-performance 
classi�er.

In detecting head impacts, one study used a neural network algorithm combined with discrete Fourier trans-
form heuristics to distinguish between head impacts and nonimpacts in soccer31. Raw time-domain data were 
used as features in the neural network classi�er, and the classi�er was evaluated to have 88% sensitivity and 47% 
speci�city. In pilot work32, we have demonstrated e�cacy of power spectral density (PSD) features combined with 
an SVM classi�er in di�erentiating dummy head impacts and laboratory-simulated nonimpacts with 98% sen-
sitivity and 99.98% precision. Although this approach showed promise in the laboratory setting, �eld conditions 
are expected to be more complex and may require additional features and re�ned techniques. In the current work, 
our objective was to identify the distinguishing features of collegiate football head impacts in the �eld, and use 
these features to develop and validate a head impact classi�er.

Methods
We deployed instrumented mouthguard sensors to collegiate football players during regular season games and 
practices to gather a ground truth dataset of head impacts and nonimpacts to train and validate a head impact 
classi�er (Fig. 1). In the training and validation set, we included video-veri�ed helmet contact recordings as head 
impacts, and video-veri�ed noncontact recordings as nonimpacts. Prior to training the classi�er, we used infrared 
(IR) device placement measurements to �lter out recordings where the mouthguard was not coupled to the upper 
jaw. �en, features were extracted from the kinematic sensor measurements to train an SVM classi�er that dis-
tinguishes between impacts and nonimpacts. To validate the performance of the classi�er, we used leave-one-out 
cross-validation. In addition, we tested the classi�er trained and validated using collegiate football data (n = 387) 
on a small independent youth football dataset (n = 32). �e training and testing data supporting this article have 
been uploaded as part of the supplemental material.

Sensor Deployment and Field Data Collection. We deployed instrumented mouthguards32,33 to 7 col-
legiate football players (1 center, 1 tight end, 1 guard, 1 running back, 1 fullback, 1 wide receiver, and 1 line-
backer) over 32 player-events (including 12 player-games and 20 player-practices) at Stanford University and 
3 youth football players (1 center, 1 cornerback, and 1 linebacker) over 6 player-events (3 player-games and 3 
player-practices) at Wake Forest University. �e collegiate football games followed the 2015 National Collegiate 
Athletic Association (NCAA) Football Rules, and the youth football games followed the 2015 American Youth 
Cheer (AYC) League Football Rules. �e practices were typically 1–2 hours long. �e collegiate football players 
and youth players wore the Riddell Speed Helmet. �e number of players and events were chosen to acquire a 
similarly sized dataset as the previous laboratory impact detection study using dummy head impacts and human 
subject reconstructed nonimpacts (nimpact = 128, nnonimpact_hiIR = 118)32. Human subject protocols at each site were 
respectively approved by the Stanford Administrative Panels for the Protection of Human Subjects and the Wake 
Forest Reynolda Campus Institutional Review Board, with all data collection conducted in accordance with the 
institutional review boards’ guidelines and regulations, and informed consent was obtained from each participant. 
�e mouthguard couples to the skull via the upper dentition to measure skull motion, and has approximately 10% 
error in measuring peak head linear acceleration, angular acceleration, and angular velocity in dummy head 
validation33. We recorded full 6-degree-of-freedom linear acceleration and angular velocity (anterior-posterior 
or AP, le�-right or LR, inferior-superior or IS linear accelerations, and coronal, sagittal, horizontal plane angular 
velocities34,35) of the skull at 1000 Hz sampling rate for 100 ms (10 ms pre-trigger and 90 ms post-trigger with 10 g 
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trigger). In addition, an IR sensor detected the presence of teeth within the mouthguard tray at the time of impact 
to determine when the mouthguard was taken o� teeth.

Video Analysis. Practice and game videos were analyzed in detail to identify ground truth activity labels 
for the data recordings on the mouthguard. Since the application of interest was head impact detection, we were 
most interested in distinguishing data recorded during head impacts (helmet impacts in the case of football) 
from other mouthguard recordings (e.g. running, jumping, mouthguard manipulation without contact). �e 
system was not trained on head acceleration activity without direct head contact (e.g. where body contact could 
lead to head acceleration without direct head impact), since it is di�cult to judge and label such activities from 
video. Body contacts that may have involved head accelerations were excluded from the head impact classi�er 
training for this study. Video methods are detailed in a separate publication36, but brie�y outlined below. For the 
collegiate football dataset used for training and validation, during each game, 1080 p 30 fps videos were taken 
from two views: one from the sideline and one from the end zone, such that each play would be captured by 
both videos. During a practice, 1080 p 30 fps videos were taken from four views of the practice �eld: typically 
one from each end zone/sideline, such that each practice activity was captured by at least one video. To achieve 
su�cient resolution in recording contact activity, camera operators moved the camera views to focus the �eld of 
view on contact activity. In a �rst round of video analysis, evaluators labeled player activity throughout an event 
for each video angle independently. Each time segment in the video was labeled with a speci�c category of player 
activity (e.g. 15:50:36.12–15:50:36.15, helmet contact). �e categories of activities labeled were helmet contact 
(player’s helmet observed to be impacted by any object), body contact (player’s body observed to be impacted by 
any object without helmet contact), no contact (player is in physical activity but not in contact with any person 
or object), idle (player observed to stand by), obstructed view (player is in activity but view of their helmet is 
obstructed), and no view (player is not in video view). In this round of video review, evaluators were instructed 
to have high sensitivity in identifying any period when the helmet may have contacted another object, and the 
inter-rater reliability for helmet contact identi�cation was found to be 88%. In a second round of video analysis, 
an author (LCW) reviewed all labeled helmet contact periods by cross-referencing all video angles. At this stage, 
any helmet contact periods when the contact was questionable or veri�ed to not occur in a di�erent video angle 
were excluded from the ground truth set. In addition, the directionality (frontal/facemask, le�, right, rear, or top 

Figure 1. Study Overview. We deployed instrumented mouthguards (a) to football players during games 
and practices (b). Videos of the events were recorded to generate ground truth event labels for mouthguard 
recordings (c). Using the labelled dataset containing head impacts and nonimpact events, we trained a classi�er 
to distinguish between these two classes of events (d).
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of helmet being impacted, which is similar to commonly used football impact directionality de�nitions37 with 
additional distinction of facemask impacts), type of contact (helmet or facemask to helmet or ground or body), 
and qualitative severity of the contact were noted for reference. �e independent youth football event videos had 
a single video angle, but a human operator redirected the camera view to follow practice activities. A similar video 
analysis procedure was performed on the youth data to establish helmet contact and noncontact labels. Without 
multiple video angles, only data recordings where contact could be con�dently identi�ed in the single video view 
(e.g. lateral view of a head-on collision) were included in the dataset.

Ground Truth Training and Validation Dataset. �e ground truth labels on the mouthguard data were 
established by cross-referencing the video analysis, which was conducted independent of the mouthguard data. 
As mentioned in the last section, the �rst round of video analysis provided activity labels throughout the dura-
tions of the practices and games, and the second round of video analysis speci�cally veri�ed potential helmet 
contact periods. Using this information, we identi�ed recordings in mouthguard data that fall within the helmet 
contact periods, as well as in periods where no contact was observed. To minimize noise in the training dataset, 
we imposed strict selection criteria for recordings to include in the ground truth labelled dataset. �e general 
approach was to match video observations with mouthguard recordings as closely as possible, such that selected 
helmet contact recordings have a high likelihood of resulting from helmet contacts seen in video, and nonimpacts 
have low likelihood of including any helmet contact recordings. �us, in the training dataset, we excluded any 
data recordings for which we had insu�cient information to judge their labels, such as the recordings during no 
view periods.

To extract the ground truth impact (helmet contact) dataset, we performed three steps. First, we synchronized 
real timestamps on the mouthguards and the game/practice videos. A�er synchronization, we cross-referenced 
video timestamps and mouthguard data timestamps to extract the labeled ground truth mouthguard dataset. 
Since the mouthguard timestamp had a resolution of 1 second, and video-mouthguard synchronization could also 
have at least ±1 second error, we used a ±2 second time window to select potential helmet contact periods from 
the mouthguard data, i.e. any mouthguard recording occurring within 2 seconds of a video-identi�ed helmet 
contact period was selected. Second, to further ensure that the mouthguard helmet contact recordings matched 
with video-observed helmet contacts, an additional helmet impact directionality constraint was imposed where 
we eliminated impacts for which neither the peak acceleration direction nor the integrated head motion direction 
matched with the video-observed impact directionality. �ird, we eliminated recordings where there was higher 
power in the high frequency domain (above 200 Hz) than the low frequency domain (below 200 Hz), since such 
recordings have a high likelihood of resulting from high frequency mouthguard electronics noise, and with a 
1000 Hz sampling rate, such high frequency dynamics would be under-sampled even if they resulted from helmet 
contact. To extract the ground truth nonimpact dataset, we included recordings within the time windows with 
either the no contact label or the idle label, such that the mouthguard recordings likely resulted from noncontact 
activities (e.g. running) or sideline activities (e.g. mouthguard manipulation).

Infrared Device Placement Classification. First, we extracted the IR sensor reading to determine sensor 
placement. �e IR sensor in the mouthguard detected the presence of teeth within the mouthguard tray, and 
could help �lter out recordings where the device was not properly placed on the upper dentition to record skull 
kinematics. �e IR readings for on-teeth and o�-teeth recordings typically exhibit bimodal distributions, and 
thresholds for determining device placement were set to separate the two distributions32. �resholds were deter-
mined on a per-subject-event basis (game or practice) because of individual variabilities in the mouthguard and 
wear and tear over time. Because we assumed a bimodal distribution of IR readings representing o�-teeth low 
readings and on-teeth high readings, we used MATLAB’s �tgmdist function to �t a dual Gaussian to the IR data 
collected over a subject-event. �e threshold was then determined as the IR reading at which the high on-teeth 
Gaussian and the low o�-teeth Gaussian cross. We eliminated any impact or nonimpact recordings from the 
training set with low IR, since if the IR reading was lower than the threshold, the mouthguard may have been 
o�-teeth or loosely coupled.

Feature Extraction and Analysis. For feature extraction, raw kinematic signals gathered from the mouth-
guard (triaxial linear acceleration and angular velocity time series) were rotated to the head anatomical frame, 
but the linear accelerations were not transformed to the centre of gravity of the head, to avoid cross-coupling of 
linear and angular features. For each subject, the rotation matrix for transformation was determined based on 
individual measurements of the orientation angles of the sensor board with respect to the anatomical planes, 
with reference to the dental model. �e rotated linear acceleration and angular velocity time series were �ltered 
according to each sensor’s bandwidth (accelerometer cuto� – 500 Hz, gyroscope cuto� – 184 Hz) using a fourth 
order Butterworth �lter. �en, the linear velocity time series in each anatomical axis was calculated by integrating 
the linear acceleration in each axis over the 100 ms duration of the impact using MATLAB’s cumtrapz function. 
�e angular acceleration time series in each anatomical axis was calculated by di�erentiating the angular velocity 
in each axis over the 100 ms duration of the impact using the �ve point stencil method38. �e vector magnitudes 
of linear acceleration, linear velocity, angular acceleration, and angular velocity were also calculated. �e kine-
matics signals were used to extract the following features. In total, we extracted 411 features (see Supplemental 
Table for descriptions of all features).

Time-Domain Features. Maxima of linear acceleration, change in linear velocity, angular acceleration, and 
change in angular velocity were extracted in each anatomically aligned directional component and in vector mag-
nitude. Impulse durations of linear acceleration and angular acceleration were extracted by calculating the width 
of the impulse at half the maximum value.
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Power-Spectral Density Features. Power spectral density (PSD) amplitude of linear acceleration and angular 
acceleration were extracted in each directional component and in vector magnitude. We extracted linear accel-
eration PSD values and angular acceleration PSD values at frequencies from 10 Hz–200 Hz and 10 Hz–180 Hz, 
respectively, in intervals of 10 Hz. As mentioned, the gyroscope has a bandwidth of 184 Hz, which is why the 
180 Hz upper bound is chosen for the angular signals. According to Society of Automotive Engineers (SAE) J211 
guidelines39, sample rate is suggested to be six times the signal bandwidth. With a sample rate of 1000 Hz, we 
expected that the linear acceleration signals above approximately 200 Hz to be undersampled, and chose an upper 
bound of 200 Hz for the feature extraction.

Wavelet Transform Features. Wavelet Transform (WT) of a signal is the representation of the signal in real space 
as a linear combination of wavelet basis functions, which are localized in both frequency and time. �e main 
advantage of WT is that it provides not only the power spectral density at di�erent frequencies but also presents 
quantitative information about their time dependence. Morlet WT was performed on the linear acceleration 
and angular acceleration signals in each anatomically aligned directional component and vector magnitude. For 
each of these, the frequency, value, and timing relative to the time-domain peak of the peak WT amplitude were 
extracted. In addition, we estimated the bandwidth of the WT by calculating the frequency at which the peak 
WT amplitude dropped below 10% of the maximum value. Similar to the PSD features, we extracted peak WT 
amplitudes over time of linear acceleration and angular acceleration in each directional component and in vector 
magnitude at frequencies from 10 Hz–200 Hz and 10 Hz–180 Hz, respectively, in intervals of 10 Hz.

Biomechanical Modeling Features. We estimated kinematics of the neck and torso based on a 2-linkage biome-
chanical model of the head-neck-torso. �e kinematic model comprises a head rigid body attached to a neck 
rigid body via a two-rotational-degree-of-freedom joint (universal joint). �e axes of rotation for the universal 
joint are the le�/right axis (representing the atlanto-occipital joint) and the inferior/superior axis (representing 
the atlanto-axial joint). �e neck rigid body is further constrained such that its base (representing its attachment 
to the torso) has a minimal distance with its position at time t = 0. �is minimization of distance constraint rep-
resents our assumption of a massive torso that has less motion than the less massive head. From this, we could 
de�ne the orientation of the neck with three degrees of freedom rotation. �en, given we have six degrees of 
freedom knowledge of the head position (integrated from linear acceleration and angular velocity measurements 
from the mouthguard), we could solve for the universal joint angles at the head-neck joint, the ball joint angles 
of the neck, and the distance between the current position of the torso end and the initial position of the torso 
end. �us, we had a fully determined system with six knowns (head degrees of freedom) and six unknowns 
(two head-neck angles, three neck angles, and one minimum distance constraint). For the model, we used a 
neck length of 10.8 cm40, and a head centre-of-gravity location of 5 cm above the head-neck joint41. From this 
model, we extracted several features. First, we extracted the percent time over the 100 ms duration that the angles 
between the head and neck linkages matched signs with the angles between the torso and neck linkages. �is 
represented a continuous positive or negative rotation of the cervical spine. Next, we extracted the peak absolute 
joint angles, torso, neck, and head displacements (as measured at the base of the neck, base of the head, and 
centre of mass of the head respectively), and respective velocities and accelerations as a representation of the 
total motion of our model. Although the features extracted from the kinematics signals used untransformed 
linear accelerations to avoid cross-coupling of linear and angular features, the model-based features used linear 
accelerations transformed to the centre of mass of the head to estimate head velocities and displacements. Finally, 
we extracted ratios of linear and angular acceleration kinematics, which represented the biomechanical coupling 
due to the presence of the neck. Speci�cally, we took the ratios between the angular acceleration about each ana-
tomical axis with respect to linear acceleration along the remaining two normal anatomical directions. �e ratio 
was computed for each time sample in each impact, and the mean, standard deviation, and peak were all utilized 
as features.

Two-Class Classifier Training and Validation. A two-class SVM classi�er was trained to di�erentiate 
head impacts from the nonimpacts. �e o�-teeth recordings were not included in the SVM classi�er training, 
since in practice we would be directly rejecting them using the IR feature. We trained an SVM classi�er with a 
radial basis function kernel using the MATLAB �tcsvm function (Mathworks, Natick, MA).

First, sequential feature selection was used to prune the feature set to avoid over�tting (i.e. when the num-
ber of training examples is small compared to the number of �tting parameters, such that the �t is good for 
the training data but is not generalizable) and optimize classi�er performance, using the MATLAB sequentialfs 
function. �e feature selection used cost functions to optimize the classi�er for (1) area under the receiver oper-
ating characteristics (ROC) curve (AUC), and (2) the F-measure, which is the harmonic mean of sensitivity and 
precision. �ese cost functions calculated AUC and F-measure from leave-one-out cross validation, instead of 
calculating the measures from training, such that the feature selection was optimized to avoid over-�tting. In the 
leave-one-out process, we trained the classi�er with all but one sample from the full dataset (including impacts 
and nonimpacts), then used the trained classi�er to classify the remaining sample, and aggregated the results 
from all possible combinations to calculate the cost function (i.e. number of cycles equals size of training/vali-
dation dataset). Leave-one-out cross validation maximized the number of data samples used for training (which 
is o�en desired when training data collection is resource-intensive), and best approximated how the classi�er 
trained on all available data will perform given a newly acquired collegiate data sample.

Second, a�er feature selection, the leave-one-out cross validation performance of the AUC-optimized and 
F-measure-optimized classi�ers was used to compare the two classi�ers, speci�cally using sensitivity, speci�city, 
accuracy, precision, area under the ROC curve, and area under the precision-recall (PR) curve as the performance 
criteria. To compare the performance of the optimized classi�ers against a basic method, we also plotted the ROC 
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and PR curves for a simple acceleration thresholding method, where the peak linear acceleration vector mag-
nitude was used to classify between impacts and nonimpacts. To do this, we varied the classi�cation threshold 
between the minimum and maximum peak linear acceleration vector magnitudes in the dataset to obtain the 
sensitivity-speci�city or sensitivity-precision pairs for plotting the ROC and PR curves. �e equations for sensi-
tivity, speci�city, accuracy, precision, and F-measure are included below (Equations 1–5).

=
+

Sensitivity
TP

TP FN (1)

=
+

precision
TP

TP FP (2)

=
+

Specificity
TN

TN FP (3)

=
+

+ + +
Accuracy

TP TN

TP FP TN FN (4)

− =
∗ ∗

+
F measure

sensitivity precision

sensitivity precision

2

(5)

where true positive (TP) was a head impact that was classi�ed by the classi�er as a head impact, true negative 
(TN) was a nonimpact that was classi�ed by the classi�er as a nonimpact, a false positive (FP) was a nonimpact 
that was classi�ed by the classi�er as a head impact, and a false negative (FN) was a head impact that was classi�ed 
by the classi�er as a nonimpact.

Further Evaluations of the Two-Class Classifier. A�er training and validation of the two-class classi�er 
using collegiate football data, we also tested the trained collegiate two-class classi�er on the small independent 
youth football dataset. Similar procedures as the collegiate data procedures were used to extract the test dataset 
from the youth data, and we evaluated sensitivity, speci�city, accuracy, precision, and areas under the ROC and 
PR curves as the performance criteria. In addition, since the classi�er was only trained on a small fraction of 
the mouthguard recordings that could be veri�ed and labelled through video analysis, we performed qualitative 
evaluation of the classi�er’s performance in classifying all data recordings for one player over an event in the col-
legiate dataset. For this evaluation, we used IR �ltering and the trained classi�er (optimized for AUC) to classify 
all data recorded during a single practice for an o�ensive guard with more than 1000 mouthguard recordings, and 
cross-referenced activity periods independently identi�ed in the �rst round of video analysis (including helmet 
contact, body contact, and obstructed possible contact periods) with the classi�er-identi�ed helmet contact time 
points in mouthguard data. We call this a qualitative evaluation, since insu�cient information is available from 
video to provide de�nitive activity labels for all mouthguard recordings to calculate performance measures. �is 
evaluation mainly served to provide information on what proportion of mouthguard recordings may be classi�ed 
as impacts and when these classi�ed impacts occurred relative to independent video observations.

Statistical Tests. To identify potential distinguishing features between impacts and nonimpacts, and con-
sidering that features were not necessarily normally distributed, we performed a two-sided unpaired Wilcoxon 
Rank-Sum test (also known as Mann-Whitney U-test) between the impact and nonimpact distributions of each 
feature, and multiple comparisons were corrected using the Bonferroni correction method to judge statistical 
signi�cance (411 comparisons, with adjusted p-value threshold of 0.0001). Since there were a larger number of 
features compared to the number of training cases, we anticipated redundancy in the feature set and performed 
principal component analysis (PCA) on the standardized (zero mean, unit variance) feature matrix as well as 
Pearson’s correlation analysis between pairs of features.

Results
Ground Truth Impacts and Nonimpacts. As shown in Fig. 2, the two rounds of video review helped to 
identify periods of helmet contact, player being idle, or in activity without contact, to provide labelled impact and 
nonimpact data recordings for the training and validation dataset. Infrared sensing helped to exclude any record-
ings where the mouthguard may have had loose coupling from the teeth. In the ground truth impact and nonim-
pact dataset, there were 156 impacts and 231 nonimpacts. Features extracted from the kinematics data were used 
to classify the impacts and nonimpacts. �e peak of linear acceleration vector magnitude is o�en used as a main 
feature for impact classi�cation. In addition, angular velocity is a direct measurement from the gyroscope and 
may serve as an angular feature for impact detection. Figure 3 shows the distributions of linear acceleration and 
angular velocity peak kinematics for impacts and nonimpacts. �e distributions of impact and nonimpact peak 
linear acceleration features overlapped. Even though more nonimpacts had low angular velocities, there was still 
overlap between the two classes.

One set of typical impact and nonimpact signals are shown in Fig. 4. Despite having similar peak kinematics in 
linear acceleration and angular velocity, the impact (Fig. 4a) and nonimpact kinematics (Fig. 4b) show qualitative 
di�erences. Nonimpacts tend to exhibit sharper impulses in linear acceleration and higher frequency oscillations 
in angular velocity compared to impacts. Comparing PSD amplitudes of the kinematic magnitudes (Fig. 4c and d),  
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the impact had higher power at lower frequency ranges below 100 Hz for linear acceleration and below 50 Hz for 
angular velocity compared to the nonimpact. Comparing WT of the kinematic magnitudes (Fig. 4e and f), the 
impact had high linear acceleration WT amplitude within 100 Hz in the �rst 40 ms of the impact corresponding 
to the impact impulse. �e angular velocity WT was low frequency (<50 Hz) throughout the impact. On the 
other hand, for the nonimpact, linear acceleration WT had high frequency content above 100 Hz for brief time 
segments, and angular velocity WT showed greater amplitudes in higher frequencies over the impact.

Distinguishing Features and Feature Redundancy. From the Wilcoxon Rank-Sum test, common 
peak kinematic features did not show as much distinction between impacts and nonimpacts compared to some 
frequency-domain features. Distributions of the eight features with the lowest p-values with signi�cant di�er-
ences between impact and nonimpact distributions (p ≪ 0.0001) are shown in Fig. 5. Most of these features are 
linear acceleration or angular acceleration PSD/WT features at low frequencies (10 or 20 Hz). Corresponding 
to the observations from Fig. 4c–f, these features show that impacts have higher PSD or WT amplitudes at low 
frequencies compared to nonimpacts, in all three anatomical directions for linear acceleration, and in the sagittal 
plane for angular acceleration. In addition, impacts also tend to have higher estimated torso displacement com-
pared to nonimpacts.

To check the dimensionality of the feature space and correlations among features, we performed PCA to 
show that the �rst principal component could explain over 90% of the variance in the feature matrix (Fig. 6a). An 
analysis of the top 30 contributing features of the �rst �ve principal components showed that most of the contri-
butions came from PSD and WT features (Fig. 6b). �e top contributing features of the �rst principal component 
were linear time-domain features, linear WT features, angular WT features, and biomechanical modelling fea-
tures. Pearson’s correlation analyses between pairs of features showed that many features were highly correlated 
(Fig. 6c). In the time-domain (Supplemental Fig. 1), angular peak kinematics features tended to have higher 
correlations between each other. Among PSD features (Supplemental Fig. 2), the AP and LR linear acceleration 
features at neighboring frequencies were highly correlated with each other, and these were also highly correlated 
with angular velocity PSD features in the sagittal and horizontal planes. �e angular acceleration WT features 
tended to be highly correlated with each other (Supplemental Fig. 3). In addition, the linear acceleration PSD 
features had high correlation coe�cients with linear acceleration WT features, and similar observations were 
made for the angular PSD and WT features (Supplemental Fig. 4). Among the biomechanics modelling features, 
the model-based kinematics features tended to be correlated with each other (Supplemental Fig. 5).

Best Performing Features and Classifier Performance. From forward feature selection, the best set 
of features to optimize the area under the ROC curve was (in order of feature selection): LR linear acceleration 
PSD at 10 Hz, sagittal plane angular acceleration WT at 30 Hz, IS linear acceleration PSD at 10 Hz, sagittal plane 
angular acceleration PSD at 70 Hz, linear acceleration magnitude WT at 20 Hz, and standard deviation of the 
ratio between linear acceleration and angular acceleration magnitudes over time. �e distributions of impacts 
and nonimpacts in the space of the �rst three chosen features are shown in Fig. 7a. When optimizing for the 
F-measure, di�erent features were selected: IS linear acceleration WT at 20 Hz, angular acceleration magnitude 
WT at 10 Hz, LR linear acceleration impulse duration, the ratio between IS linear acceleration and sagittal plane 
angular acceleration, horizontal plane angular acceleration PSD at 130 Hz, IS linear acceleration WT at 110 Hz, 
and horizontal plane angular acceleration PSD at 140 Hz.

We evaluated the AUC-optimized classi�er and F-measure-optimized classi�er using the cross validation per-
formance measures, including sensitivity, speci�city, accuracy, precision, and areas under the ROC and PR curves. 
�e performance measures are shown in Table 1. �ese performance measures are calculated from the SVM 
classi�cation of impacts and nonimpacts a�er IR �ltering. �e ROC and PR curves for the AUC-optimized and 
F-measure-optimized classi�ers are shown in Fig. 7b and c. Both the classi�er optimized for AUC (blue) and that 

Figure 2. Extracted Training and Validation Dataset. In the �rst round of video review, raters identi�ed 
periods of possible helmet contact, player being idle, or in activity without contact. To extract the impact set, a 
second round of video review was performed to establish con�dence on the helmet contact label. Instrumented 
mouthguard recordings within veri�ed helmet contact periods were further matched with video observed 
directionality and checked for device placement through infrared sensing before inclusion into the impact 
dataset. High IR mouthguard recordings from idle and no contact periods were included in the nonimpact 
dataset.
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Figure 3. Distributions of Kinematics Measures for Impacts and Nonimpacts. Shown here are high IR impact 
(n = 156) and high IR nonimpact (n = 231) distributions of common kinematic measures that could be used for 
impact registration or classi�cation. �e subplots are anterior-posterior (AP), le�-right (LR), inferior-superior 
(IS) linear acceleration, and coronal (Cor), sagittal (Sag), horizontal (Hor) plane angular velocity. It is shown 
that impacts and nonimpacts have similar linear acceleration distributions. Comparing linear acceleration 
magnitude, impacts had values ranging from 10.1 g to 65.6 g (mean 22.0 g, median 19.1 g), while nonimpacts 
ranged from 10.0 g to 104.3 g (mean 18.5 g, median 15.8 g). For change in angular velocity magnitude, impacts 
had values ranging from 1.6 rad/s to 26.1 rad/s (mean 10.5 rad/s, median 9.7 rad/s), while nonimpacts ranged 
from 0.1 rad/s to 55.7 rad/s (mean 5.4 rad/s, median 3.3 rad/s). Although there are more low-angular velocity 
recordings in nonimpacts compared to impacts, there are overlaps between the two classes. With the overlaps in 
distributions, the kinematics features may not be the most predictive features for classi�cation.

Figure 4. Kinematics, PSD, and WT of an Example Impact and Nonimpact. Example impact (a) and nonimpact (b) 
kinematics show qualitative di�erences between these two events, with the nonimpact exhibiting higher frequency 
impulses and oscillations. Such frequency-domain di�erences are re�ected in the Fourier transform power spectral 
density (PSD) plots (c and d) and wavelet transform (WT) plots (e and f), where color represents amplitude.
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optimized for the F-measure (yellow) had areas under the ROC and PR curves over 0.9 (AUCROC = 0.96 for AUC 
optimization, AUCPR = 0.95 for AUC optimization, AUCROC = 0.98 for F-measure optimization, AUCPR = 0.94 
for F-measure optimization). On the other hand, a simple classi�er just based on linear acceleration magnitude 
thresholding (red) did not perform much better than randomly assigning classes with a probability of impact of 
50% (with area under the ROC curve close to 0.5). �e classi�er optimized for AUC had better ROC performance 
while that optimized for the F-measure had better PR performance. �e classi�er optimizing for the F-measure 
had higher performance measures than that optimizing for AUC, with all performance measures over 90%.

�e independent youth test dataset included 16 head impacts and 16 nonimpacts. We applied both trained 
classi�ers on this independent test dataset, and the test results are shown in Table 1. Although the classi�er opti-
mizing for the F-measure had better cross-validation performance on the training and validation dataset, the clas-
si�er optimizing for AUC had higher performance measures on the test dataset, with over 90% performance for 
all measures. When we used the trained binary classi�er to classify all data recorded (n = 1219) during a practice 

Figure 5. Distinguishing Features between Impacts and Nonimpacts. Here we show distributions of 8 features 
with the lowest p-value in the Wilcoxon Rank-Sum test between impacts and nonimpacts. �ese features 
include linear acceleration and angular acceleration PSD and WT features at low frequencies (10–20 Hz), as well 
as estimated AP torso displacement from the kinematic measurements. With less overlap between impacts and 
nonimpacts in these distributions, the features tend to have higher predictive value in distinguishing the two 
classes.

Figure 6. PCA and Correlation Analysis of Features. Principal component analysis of the feature space shows 
that 90% of the variance could be explained by the �rst principal component, indicating low dimensionality of 
the feature space (a). Among the �rst �ve principal components, the top contributing features are mainly PSD 
and WT features, and the time-domain linear acceleration features have a relatively signi�cant contribution 
only in the �rst principal component (b). Pearson’s correlation analyses of features show that many features are 
highly correlated (c).
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Figure 7. Best Performing Features and Classi�cation Decision Boundary. �e top three features from forward 
feature selection optimizing for AUC are shown in (a) with distributions of impacts and nonimpacts in the 
space of these three features. �e ROC and PR curves of the AUC classi�er and F-measure classi�er show areas 
under curves of close to 1, while a classi�er based on acceleration thresholding has similar performance as 
random guessing (b,c).

Optimized for AUC Optimized for F1

Collegiate Cross Validation Youth Test Collegiate Cross Validation Youth Test

Dataset Size 387 32 387 32

TP 136 15 141 15

TN 221 15 223 11

FP 10 1 8 5

FN 20 1 15 1

Sensitivity 87.20% 93.80% 90.40% 93.80%

Speci�city 95.70% 93.80% 96.50% 68.50%

Accuracy 92.20% 93.80% 94.10% 81.30%

Precision 93.20% 93.80% 94.60% 75.00%

AUCROC 0.96 — 0.98 —

AUCPR 0.95 — 0.94 —

Table 1. Classi�er Performance. Performance measures for the classi�er were calculated using leave-one-out 
cross validation (cross validation columns). In addition, the classi�er was tested on a small youth dataset and 
the same performance measures were reported (test columns).

Figure 8. Classi�er Performance in Classifying All Events Recorded During a Practice. Since the classi�er was 
only trained on a small fraction of data that could be veri�ed through video, we tested the performance of the 
classi�er in classifying all events recorded by the mouthguard over a sample event (total recordings = 1219). 
�is �gure shows the timeline of a practice for an o�ensive lineman. Over the recorded video duration, the �rst 
round of video analysis identi�ed periods of helmet or body contact, as well as when contact likely occurred 
but the type of contact could not be con�dently judged due to obstructed video view. 46 events recorded by the 
mouthguard were classi�ed as helmet contact by the trained classi�er, and they tend to fall close to periods of 
observed or obstructed contact from video analysis.
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for a college o�ensive lineman, 46 of the 1219 data recordings were classi�ed as head impacts, and the remaining 
recordings were either �ltered out using IR (n = 1026) or classi�ed as nonimpacts (n = 147). Shown in Fig. 8 are 
time points of classi�ed head impacts compared with observations from video analysis. Over the recorded video 
duration, we show video-identi�ed periods where helmet or body contacts were observed and periods where 
contacts may have occurred but view of the player’s head was obstructed. Most of the classi�ed head impacts fell 
within or close to periods of observed or possible contact based on video analysis.

Discussion
Here we present a study where we trained and validated a head impact classi�er with collegiate �eld data. We 
combined the use of a head impact sensor with independent video analysis to provide training and validation 
data from collegiate football for the head impact classi�er. Using this methodology, we have identi�ed features 
that were helpful in distinguishing between helmeted football head impacts and nonimpacts on the collegiate 
football �eld.

Classifier Performance. In our collegiate �eld data, the majority of the data recordings had low IR readings 
(73% of the nonimpacts and 23% of the recordings during helmet contact periods were low IR, or o�-teeth), indi-
cating that the mouthguard was likely removed from the teeth during these recordings. Since football is a unique 
sport where not all players are always in action, device removal could occur frequently especially when the player 
is idle and not in play. Since the amount of play time also varies from player to player and from event to event, the 
number of o�-teeth recordings could vary accordingly. �us, the IR sensing mechanism is helpful to easily reject 
such o�-teeth recordings. For our application, the proximity sensing method needs to be speci�c for detecting 
whether the device is mounted on teeth, instead of just detecting the device being in mouth. Extending to other 
wearable head impact sensors, we advise that sensors include a suitable proximity sensing mechanism to sense 
device placement and reject recordings when the device is not properly mounted.

�e SVM classi�er helped to reject high-IR nonimpacts. Such recordings could occur when the player bites 
or chews the mouthguard while it is worn, or when other objects may be present in the mouthguard tray to 
generate a high IR reading (e.g. lip or �nger). We trained two SVM classi�ers using our collegiate football data, 
with one optimizing for area under the ROC curve and the other optimizing for the F-measure. For both opti-
mization schemes, the �rst features chosen during the forward feature selection process were low-frequency 
PSD or WT features (LR linear acceleration PSD at 10 Hz for AUC and IS linear acceleration WT at 20 Hz for 
F-measure). Optimization for AUC is o�en used for problems where ranking of class probabilities is important 
and has been shown to be a superior metric than accuracy42, while optimization for the F-measure is usually 
helpful for detecting the rare class in unbalanced data43. In our data, a�er �ltering with the IR signal, the num-
bers of impacts and nonimpacts are approximately balanced, in which case the F-measure may be less critical. 
On the other hand, optimizing for AUC may help to minimize the overlap of classes at the decision boundary 
in the transformed data space. In our study, the F-measure classi�er had better cross-validation performance 
on the training data, while the AUC classi�er had better and more consistent performance on the test data. �is 
indicates that the F-measure classi�er likely over�t to the collegiate football training and validation data. �e 
AUC classi�er had consistent performance on the collegiate training dataset as well as the independent youth 
test dataset. Based on this limited dataset, retraining of the classi�er for youth football may not be necessary. To 
evaluate this assumption, future studies using a larger youth dataset that includes all positions and more exten-
sive video data are warranted.

�e rigorous video veri�cation of ground truth labels helped to minimize noise in the ground truth training 
data. As a result, we only trained the classi�er using a small fraction of all recorded data that could be veri�ed and 
labelled through video analysis. Recognizing that, we also performed a qualitative evaluation of the classi�er’s 
ability to classify all data recordings, as shown in Fig. 8. �e training data for the classi�er only incorporated 
about 10% of the data from this event. As expected, most of the recordings had a low IR reading (84%), and only 
a small proportion of the recordings (4%) among the 1219 recordings were classi�ed as helmet impacts, which 
mostly fell close to video-identi�ed periods of possible contact. Some helmet contact recordings identi�ed with 
the classi�er were in periods with obstructed view of the player’s helmet during contact, indicating that the impact 
detection algorithm may help to more sensitively identify helmet contact when the player’s action is obstructed 
in video.

Distinguishing Features. Traditional peak kinematics features o�en used for impact detection could not 
distinguish between head impacts and nonimpacts as well as frequency-domain features. As seen in Fig. 3, the 
peak kinematics values largely overlapped between impact and nonimpact distributions, resulting in low predic-
tive value for head impact detection, as con�rmed by the red ROC and PR curves in Fig. 7. Even from qualitative 
inspection, it was clear that nonimpacts tended to have higher frequency impulses and oscillations compared 
to impacts. Such di�erences in frequency content were re�ected in the PSD and WT features, and impacts had 
higher power at lower frequencies compared to nonimpacts. As a result, the PSD and WT features at low fre-
quencies were most distinguishing between impacts and nonimpacts. In fact, the �rst three selected features to 
optimize ROC were PSD features at 10 Hz and a WT feature at 30 Hz which span all three anatomical planes of 
motion (Fig. 7a). �is is likely because during most of the nonimpacts, the mouthguard may have been moving 
on its own. With much lower inertia, it would have higher frequency dynamics during such motion with lower 
power. On the other hand, head impacts involve more massive collisions between players and may thus exhibit 
lower frequency dynamics with higher power. WT features could pick up transient frequency modes that occur 
for short durations, such as the 30 Hz feature shown in Fig. 7a, which may be characteristic of transient helmet 
dynamics at the moment of impact.
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From the principal component analysis and correlation analysis, it was shown that the feature space was highly 
redundant and most of the variance in the feature space could be explained by a small number of features. �is 
redundancy is also illustrated by the fact that a small number of features were selected from the forward feature 
selection process to optimize performance. Increasing the number of features caused over�tting. However, due to 
the highly collinear feature space, the feature selection process may select di�erent but correlated features due to 
slight di�erences in feature distribution that in�uence performance. �is may also cause over-�tting, which may 
be mitigated through using a larger training and validation dataset.

Limitations and Future Work. �e classi�er is only evaluated to be used with the speci�c instrumented 
mouthguard design used in this study for classifying collegiate American football helmet impacts. Retraining is 
likely required for any device that does not have the same mechanical and electrical design as this instrumented 
mouthguard and for detecting head impacts in other contexts. Although features of helmet impacts recorded on 
di�erent head impact sensors may be similar, provided that these sensors can accurately measure skull motion, 
the kinematics of nonimpact recordings will likely di�er for di�erent device form factors and sensor locations. It 
is also possible that di�erent helmet materials may lead to di�erent head impact kinematics. In unhelmeted sports 
or other sports where di�erent forms of contact and/or player behaviours are involved, impact and nonimpact 
characteristics are expected to change, requiring retraining and validation of the classi�er. In addition, the current 
classi�er was trained using data from 7 collegiate players. �is dataset did not include data from all possible posi-
tions in American football, with one defensive player, a linebacker, and six o�ensive players. Prior to implement-
ing the impact detection system for �eld use independent of video con�rmation, testing of the classi�er using an 
independent collegiate dataset from di�erent players and positions will help further validate �eld performance. 
With the small youth dataset, we showed consistent performance of the classi�er, but further validation with a 
larger youth dataset is likely required for validating the classi�er in the youth population.

Using video information to establish ground truth data labels has some limitations. In this study, the impact 
and nonimpact dataset was rigorously selected to ensure that we had high con�dence in the ground truth labels. 
�is may have limited the classi�er to clearly visible activities. For example, almost all recordings from when the 
player was buried under a pile were excluded from training, since a clear view of the player’s head/helmet could 
not be established. However, it is highly likely that helmet contact will occur during such periods and it may 
exhibit unique dynamics due to multiple impacts and simultaneous impacts to di�erent objects (body, helmet, 
ground). In our evaluation, classifying all recordings in a practice showed that the classi�er picked up some 
potential helmet contact recordings during periods of obstructed view. In addition, even with the 2–4 camera 
angles in the collegiate data collection, activity labels, especially contact labels, could not always be con�dently 
determined due to factors including viewing angle, resolution, and distance. With the youth data collection, only 
one video angle was available due to �eld study restrictions, and as a result fewer activities could be con�dently 
labeled with a clear view in the single video angle. Furthermore, video analysis does not provide kinematics infor-
mation to judge which contact activities should have passed the recording threshold. Future studies may include 
more camera views with higher resolution and larger �eld of view to capture all activities on the �eld and provide 
more video information for judging event labels. Additional sensors and close-up cameras, such as helmet sensors 
and helmet mounted cameras, may provide additional kinematics and video information.

�e instrumented mouthguard device was susceptible to mandible noise if the lower jaw was not clenched44. 
Although we have developed a design to isolate this noise44, the devices in the current study were of an older 
design32, thus the kinematic signals from some impacts may be coupled with high-frequency jaw noise. In the 
context of head impact detection, although high kinematic accuracy of sensors is not required, such noise may 
make it more di�cult to di�erentiate between impacts and nonimpacts. Updated designs to eliminate jaw noise 
(such as Kuo 201644) should further enhance classi�cation performance. Also, the mouthguard in this paper had 
inertial sensors of limited bandwidth with additional �ltering. It is possible that some nonimpacts may have high 
frequency content not captured by the sensors. If higher bandwidth sensors are used, and higher frequency PSD 
or WT features could be extracted, it is possible that the additional features may further distinguish between 
the two classes. For example, the current gyroscope bandwidth is only 184 Hz. Increasing this would help cap-
ture potential high frequency dynamics in nonimpacts. Similarly, lengthening the duration of the recording may 
capture lower frequency features (<10 Hz) that may be characteristic of slower body/neck dynamics. However, 
with increased recording time, multiple impacts may also be captured within the same recording, which is not 
investigated in the current study and may complicate classi�cation.

While the IR mechanism was helpful in determining device placement and rejecting recordings where the 
device is not properly mounted, device designs to optimize coupling and subject compliance are still required 
to ensure sensitivity in detecting all helmet contact. For example, if the mouthguard is not coupled to the teeth 
during head impacts, even though the impact detection algorithm may be able to reject such recordings, it is not 
ideal since we fail to capture the head impact data. �e current study uses an earlier version of the Stanford instru-
mented mouthguard, which was not optimized for subject comfort and coupling. Among all video-identi�ed 
helmet contacts in the training data, about 71% were captured on the mouthguard, and only around 77% of the 
mouthguard recordings had high IR readings. Of the unrecorded impacts, 81% were observed to be light severity 
or involved body or facemask impacts and may not have triggered the 10 g linear acceleration threshold. It is also 
possible that some head impacts may have been missed due to poor coupling of the mouthguard with the upper 
jaw during impact from deliberate removal or loose �tting. With a professionally built custom mouthguard, this 
possibility of improper coupling is lower as the device “snap �ts” onto the teeth.

Implications for Head Injury Research. On the collegiate football �eld, we found that nonimpacts could 
account for most recordings on a small light-weight wearable head impact sensor. Typically, for an o�ensive line-
man involved in most plays over a game, we can expect the instrumented mouthguard to record up to 50 head 
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impacts and about 1000 nonimpacts (that are mostly o�-teeth recordings). It is important in this context that 
classi�ers be evaluated for sensitivity and precision, instead of sensitivity and speci�city, since even 90% speci�c-
ity would lead to 100 false positive detections, which is twice the number of actual head impacts. Given over 90% 
sensitivity and precision, up to 5 head impacts may be missed and 5 detected head impacts may be false positives. 
To collect a dataset for studying subconcussive head impacts, this level of sensitivity should be su�cient to allow 
for gathering of a large amount of data in a relatively short amount of time, since 90% of the helmet contacts can 
be captured. However, to gather concussion data, which are rare occurrences, higher sensitivity may be desirable. 
Future wearable head impact sensor designs should focus on (1) optimizing skull coupling and minimizing noise 
in the head impacts, such that these events may be more clearly distinguished from nonimpacts, and (2) ensuring 
player compliance such that the device is worn and well-coupled during all potential contact activities.

Conclusion
In summary, we developed a head impact classi�er trained on �eld data from collegiate football. In the future, 
this classi�er may be incorporated into an instrumented mouthguard and validated for real-time head impact 
detection on the �eld with few false positives and false negatives. Such a validated system can help gather high 
quality human head impact data from the �eld for traumatic brain injury research. Similar methodology may also 
be adapted to other applications that need to classify human activities using wearable inertial sensors.
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