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Abstract. The problem of community detection in a network with fea-
tures at its nodes takes into account both the graph structure and node
features. The goal is to find relatively dense groups of interconnected
entities sharing some features in common. Existing approaches require
the number of communities pre-specified. We apply the so-called data
recovery approach to allow a relaxation of the criterion for finding com-
munities one-by-one. We show that our proposed method is effective on
real-world data, as well as on synthetic data involving either only quan-
titative features or only categorical attributes or both. In the cases at
which attributes are categorical, state-of-the-art algorithms are available.
Our algorithm appears competitive against them.

Keywords: Attributed Network · Feature-Rich Network · Cluster Anal-
ysis · Community Detection · Data Recovery · One by One Clustering

1 Introduction: Previous work and motivation

Community detection is a popular field of data science with various applications
ranging from sociology to biology to computer science. Recently this concept
was extended from flat and weighted networks to networks with a feature space
associated with its nodes, these are referred to as attributed or feature-rich
networks [7]. A community is a group, or cluster, of densely interconnected nodes
that are similar in the feature space too.

There have been published a number of papers proposing various approaches
to identifying communities in feature-rich networks (see recent reviews in [7]
and[3]). They naturally fall in three groups: (a) those heuristically transforming
the feature-based data to augment the network format, (b) those heuristically
convering the data to the features only format, and (c) those involving, usu-
ally, a probabilistic model of the phenomenon to apply the maximum likelihood
principle for estimating its parameters. A typical method within approach (a)
or (b) combines a number of heuristical approaches, thus involving a number of
unsubstantiated parameters which are rather difficult to systematize, the more
so to put to testing. Most interesting approaches in the modeling group (c) are

Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



2 Shalileh S., Mirkin B.

represented by methods in [23] and [17]. The former statistically models inter-
relation between the network structure and node attributes, the latter involves
Bayesian inferences.

Our approach relates to that of modeling, except that we model the data
rather than the process of data generation. Specifically, our data-driven model
assumes a hidden partition of the node set in non-overlapping communities and
parameters encoding the average within-community link intensity and feature
central points. To find this partition and parameters, an encoding process should
be run so that a process of decoding reproduces the data as well as possible. Such
an approach is referred to as data recovery approach in [14]; in the neural network
domain, this approach is referred to as an auto-encoder [18].

We propose using a greedy-wise procedure of finding clusters one-by-one
within the data recovery approach, as already proved successful in applcation
to both feature data only and network/similarity data only [13, 2]. In contrast
to other approaches, this one is applicable to mixed scale data, and moreover,
it needs no pre-specified number of clusters. Our experiments show that this
approach is valid and competitive against other state-of-the-art approaches.

The rest of the paper is organized as follows. We describe our model and
algorithm in Section 2. In Section 3, we describe the setting of our experiments.
In Section 4, we describe results of our experiments to validate our method and
compare it with competition. We draw conclusions in Section (5).

2 A data recovery model

Let us consider a dataset represented by two matrices: a symmetric N × N
network adjacency matrix P = (pij), where pij can be any reals, and by an
N × V entity-to-feature matrix Y = (yiv) with i ∈ I, I being an N -element
entity set.

We assume that there is a partition S = {S1, S2, ..., SK} of I in K non-
overlapping communities, a.k.a. clusters, related to this dataset as described
below.

Denote k-th cluster binary membership vector by sk = (sik), k = 1, 2, ...,K,
so that its i-th component is equal to unity for i ∈ Sk, and zero otherwise. The
cluster is assigned with a V -dimensional center vector ck = (ckv). Also, there is
a positive network intensity weight of k-th cluster denoted by λk, to adjust the
binary sik values to the measurement scale of the network adjacency matrix P .

According to the data-recovery approach, any given partition S = {S1, S2, ..., SK}
of I, V -dimensional cluster centers c1, c2, ..., cK and cluster intensity weights
λ1, λ2, ..., λK , can be used to recover both the feature values and network links
according to equations (1) and (2) below:

yiv =

K∑
k=1

sikckv + fiv, i ∈ I, v ∈ V, (1)
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pij =

K∑
k=1

λksiksjk + eij , i, j ∈ I. (2)

Here values eij and fiv are residuals that should be as small as possible.
According to the least-squares principle, ”right” membership vectors sk, com-

munity centers ck and intensity weights λk are minimizers of the summary least-
squares criterion:

F (λk, sk, ck) = ρ

K∑
k=1

∑
iv

(yiv − ckvsik)2 + ξ

K∑
k=1

∑
ij

(pij − λksiksjk)2 (3)

The factors ρ and ξ in Eqn. (3) are expert-driven constants to balance the
two sources of data, taken to be both equal to unity in this paper.

On the first glance, criterion in Eqn. (3) differs from what follows from Eqns.
(2) and (1): the operation of summation over k is outside of the parentheses in it,
whereas these equations require that to be within the parentheses. However, the
formulation in (3) is consistent with the models in (2) and (1) because vectors
sk (k = 1, 2, ...,K) correspond to a partition and thus are mutually orthogonal:
For any specific i ∈ I, sik is zero for all k except one; that one k at which i ∈ Sk.
Therefore, each of the sums over k in Eqns. (2) and (1) consists of just one item,
so that the summation sign may be applied outside of the parentheses indeed.

To use a one-by-one clustering strategy [14] here, let us denote an individ-
ual community by S; its center in feature space, by c; and the corresponding
intensity weight, by λ (just removing the index, k, for convenience). The extent
of fit between the community and the dataset will be the corresponding part of
criterion in (3):

F (λ, cv, si) = ρ
∑
i,v

(yiv − cvsi)2 + ξ
∑
i,j

(pij − λsisj)2 (4)

The problem: given matrices P = (pij) and Y = (yiv), find binary s, as well
as real-valued λ and c = (cv), minimizing criterion (4).

As is well known, and, in fact, easy to prove, the optimal real-valued cv is
equal to the within-S mean of feature v, and the optimal intensity value λ is
equal to the mean within-cluster link value:

cv =

∑
i∈S yiv

|S|
; λ =

∑
i,j∈S pij

|S|2
(5)

Criterion (4) can be further reformulated as:

F (s) = ρ
∑
i,v

y2iv−2ρ
∑
i,v

yivcvsi+ρ
∑
v

c2v
∑
i

s2i +ξ
∑
i,j

p2ij−2ξλ
∑
i,j

pijsisj+ξλ
2
∑
i

s2i
∑
j

s2j

(6)
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The items T (Y ) =
∑

i,v yiv
2 and T (P ) =

∑
ij p

2
i,j in (6) express quadratic

scatters of data matrices Y and P , respectively. Using them, Eqn. 6 can be
reformulated as

F (s) = ρT (Y ) + ξT (P )−G(s) (7)

where

G(s) = 2ρ
∑
i,v

yivcvsi − ρ
∑
v

c2v
∑
i

s2i + 2ξλ
∑
i,j

pijsisj − ξλ2
∑
i

s2i
∑
j

s2j (8)

Equation (7) shows that the combined data scatter, ρT (Y )+ξT (P ) is decom-
posed in two complementary parts, one of which, F (s), expresses the residual,
that part of the data scatter which is not taken into account by the model in
Eqns. (1) and (2), whereas the other part, G(s), expresses the contribution of
the model to the data scatter.

By putting the optimal values cv and λ from (5) into this expression, we
obtain a simpler expression for G(s)

G = ρ|S|
∑
v

c2v + ξλ
∑
ij

pijsisj (9)

Maximizing G in (9) is equivalent to minimizing criterion F in 4 because of
7.

One can see that maximizing the first item in (9) requires obtaining a nu-
merous cluster (the greater the |S|, the better) which is as far away from the
space origin, 0, as possible (the greater the squared distance from 0, |

∑
v c

2
v|, the

better). Usually the data are pre-processed so that the origin is shifted to the
center of gravity, or grand mean, the point whose components are the averages
of the corresponding features. In such a case, the goal of putting the cluster as
far away from 0 as possible, means that the cluster should be anomalous. The
second item in the criterion (9) is proportional to the sum of within-cluster links
multiplied by the average within-cluster link λ. Maximizing criterion (9), thus,
should produce a large anomalous cluster of a high internal density.

We employ a greedy heuristic: starting from arbitrary singleton S = i, the
seed, add entities one by one so that the increment of G in (9) is maximized. After
each adding, recompute optimal cv and λ. Halt when the increment becomes
negative. After stopping, the last check is executed: Seed Relevance Check:
Remove the seed from the found cluster S. If the removal increases the cluster
contribution; this seed is extracted from the cluster.

We refer to this algorithm as Feature-rich Network Addition Clustering al-
gorithm, FNAC. Consecutive application of the algorithm FNAC to detect more
than one community, forms our community detection algorithm SEFNAC below.

SEFNAC: Sequential Extraction of Feature-rich Network Addition
Clusters

1. Initialization. Define J = I, the set of entities to which FNAC applies at
every iteration, and set cluster counter k = 1.
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2. Define matrices YJ and PJ as parts of Y and P restricted at J . Apply
FNAC at J , denote the output cluster S as Sk, its center c as ck, the intensity
λ as λk and contribution G as Gk.

3. Redefine J by removing all the elements of Sk from it. Check whether thus
obtained J is empty or not. If yes, stop. Define the current k as K and output
all the solutions Sk, ck, λk, Gk, k = 1, 2, ...,K. If not, add 1 to k, and go to 2.

3 Setting of experiments for validation and comparison
of SEFNAC algorithm

To set a computational experiment, one should specify its constituents:

1. The set of algorithms under comparison.
2. The set of datasets at which the algorithms are evaluated and/or compared.
3. The set of criteria for assessment of the experimental results.

3.1 Algorithms under comparison

We take two popular algorithms in the model-based approach, CESNA [23] and
SIAN [17], which have been extensively tested in computational experiments.
The author-made codes of the algorithms are publicly available in [12] and [15]
respectively. We also tested the algorithm PAICAN from [1] in our experiments.
The results of this algorithm, unfortunately, were always less than satisfactory;
therefore, we exclude the algorithm PAICAN from this paper.

3.2 Datasets

We use both real world datasets and synthetic datasets.

Real world datasets We take on five real-world data sets listed in table 1. Some
of them involve both quantitative and categorical features. The algorithms under
comparison, unlike the proposed algorithm SEFNAC, require that features are
to be categorical. Therefore, whenever a data set contains a quantitative feature
we convert that feature to a categorical version.

Table 1: Real world datasets under consideration. Symbols N, E, and F stand
for the number of nodes, the number of edges, and the number of node features,
respectively.

Name Nodes Edges Features Ground Truth

Malaria HVR6 [10] 307 6526 6 Cys Labels
Lawyers [21] 71 339 18 Derived out of office and status features

World Trade [19] 80 1000 16 Derived out of continent and structural world system features
Parliament [1] 451 11646 108 Political parties

COSN [4] 46 552 16 Region
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Malaria data set [10]
The nodes are amino acid sequences containing six highly variable regions

(HVR) each. The edges are drawn between sequences with similar HVRs number
6. In this data set, there are two nominal attributes of nodes:

1. Cys labels derived from of a highly variable region HVR6 (assumed ground
truth);

2. Cys-PoLV labels derived from the sequences adjacent to regions HVR 5 and
6.

Lawyers dataset [11]
The Lawyers dataset comes from a network study of corporate law partner-

ship that was carried out in a Northeastern US corporate law firm, referred to
as SG & R, 1988-1991, in New England. It is available for downloading at [21].
There is a friendship network between lawyers in the study. The features in this
dataset are:

1. Status (partner, associate),
2. Gender (man, woman),
3. Office location (Boston, Hartford, Providence),
4. Years with the firm,
5. Age,
6. Practice (litigation, corporate),
7. Law school (Harvard or Yale, UCon., Other)

Most features are nominal. Two features, ”Years with the firm” and ”Age”,
are quantitative. Authors of the previous studies converted them to the nominal
format, accepted here too. The categories of ”Years with the firm” are x <= 10,
10 < x < 20, and x >= 20; the categories of ”Age” are x <= 40, 40 < x < 50,
and x >= 50.

World-Trade dataset [19]
The World-Trade dataset contains data on trade between 80 countries in

1994. The link weights represent total imports by row-countries from column-
countries, in $ 1,000, for the class of commodities designated as ’miscellaneous
manufactures of metal’ to represent high technology products or heavy manu-
facture. The weights for imports with values less than 1% of the country’s total
imports are zeroed. The node attributes are:

1. Continent (Africa, Asia, Europe, North America, Oceania, South America)
2. Structural World System Position (Core, Semi-Periphery, Periphery),
3. Gross Domestic Product per capita in $ (GDP p/c)

We convert the GDP feature into a three-category nominal feature according
to the minima of its histogram. The categories are: ’Poor’ if GDP p/c is less than
$ 4406.9; ’Mid-Range’ if GDP is between $ 4406.9 and $ 21574.5; and ’Wealthy’
if GDP is greater than $ 21574.5.

Parliament dataset [1]
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The nodes correspond to members of the French Parliament. An edge is
drawn if the corresponding MPs sign a bill together. The features are the con-
stituency of MPs and their political party.

Consulting Organisational Social Network (COSN) dataset [4]
Nodes in this network correspond to employees in a consulting company. The

(asymmetric) edges are formed in accordance with their replies to this question:
”Please indicate how often you have turned to this person for information or
advice on work-related topics in the past three months”. The answers are coded
by 0 (I Do Not Know This Person), 1 (Never), 2 (Seldom), 3 (Sometimes), 4 (Of-
ten), and 5 (Very Often). These 6 numerals are the weights of the corresponding
edges. Nodes in this network have the following attributes:

1. Organisational level (Research Assistant, Junior Consultant, Senior Consul-
tant, Managing Consultant, Partner),

2. Gender (Male, Female),
3. Region (Europe, USA),
4. Location (Boston, London, Paris, Rome, Madrid, Oslo, Copenhagen).

Before applying SEFNAC, all attribute categories are converted into 1/0
dummy variables which are considered quantitative.

Generating synthetic data sets First of all, we specify the number of nodes
N , the number of features V , and the number of communities, K, in a dataset to
be generated. As the number of parameters to control is rather high, we narrow
down the variation of our data generator by maintaining two types of settings
only, a small size network and a medium size network. For a small size setting,
we specify the values of the three parameters as follows: N = 200, V = 5, and
K = 5. For the medium size, N = 1000, V = 10, and K = 15.

Generating networks
At given numbers of nodes, N , and communities K, cardinalities of commu-

nities are defined uniformly randomly, up to a constraint that no community
may have less than a pre-specified number of nodes (in our experiments, this is
set to 30, so that probabilistic approaches are applicable), and the total number
of nodes in all the communities sums to N .

Given the community sizes, we populate them with nodes, that are spec-
ified just by indices. Then we specify two probability values, p and q. Every
within-community edge is drawn with the probability p, independently of other
edges. Similarly, any between- community edge is drawn independently with the
probability q.

Generating quantitative features To model quantitative features, we ap-
ply the design proposed in [8]. Each cluster is generated from a Gaussian dis-
tribution whose covariance matrix is diagonal with diagonal values uniformly
random in the range [0.05, 0.1] to specify the cluster’s spread. Each component
of the cluster center is generated uniformly random from the range α[−1,+1],
so that the real α controls the cluster intermix: the smaller the α, the closer are
cluster centers to each other.
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In addition to cluster intermix, we take into account the possibility of pres-
ence of noise in data. We uniformly random generate a noise feature from an
interval defined by the maximum and minimum values. In this way, we replicate
50% of the original data with noise features.

Generating categorical features
To model categorical features, we randomly choose the number of categories

for each of them from the set {2, 3, ..., L} where L = 10 for small-size networks
and L = 15 for the medium-size networks. Then, given the number of commu-
nities, K, and the numbers of entities, Nk for (k = 1, ...,K); the cluster centers
are generated randomly so that no two centers may coincide at more than 50%
of features.

Once a center of k -th cluster, ck = (ckv), is specified, Nk entities of this
cluster are generated as follows. Given a pre-specified threshold of intermix, ε
between 0 and 1, for every pair (i, v), i = 1 : Nk; v = 1 : V , a uniformly random
real number r between 0 and 1 is generated. If r > ε, the entry xiv is set to be
equal to ckv; otherwise, xiv is taken randomly from the set of categories specified
for feature v .

Consequently, all entities in cluster k -th coincide with its center, up to rare
errors if ε is close to 1. The smaller the epsilon, the more diverse, and thus
intermixed, would be the generated entities.

Generating mixed scale features
We divide the number of features in two approximately equal parts, one to

consist of quantitative features, the other, of categorical features. Each part is
filled in independently, as described above.

3.3 Evaluation criteria

To evaluate the result of a community detection algorithm, we compare the found
partition with that generated by using the customary Adjusted Rand Index
(ARI) [5]. The closer the value of ARI to unity, the better the match between
the partitions. If one of the partitions consists of just one part containing all
I, then ARI=0. Cases at which ARI is negative may occur too; these happens
rarely indeed, in weird cases such as ’dual’ partitions [8].

4 Results of computational experiments

The goal of our experiments is to test validity of the SEFNAC algorithm over
all types of feature-rich network datasets under consideration. In the cases at
which features are categorical, the SEFNAC algorithm is to be compared with
the popular algorithms SIAN and CESNA.

4.1 Parameters of the generated datasets

We set network parameters, the probability of a within-community edge, p, and
that between communities, q, to take either of two values each, p = 0.7, 0.9 and
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Table 2: Performance of SEFNAC on synthetic networks combining quantitative
and categorical features for two different sizes: The average ARI index and its
standard deviation over 10 different data sets.
p q α/ε Small-Size Networks 50% noisy feature Medium-size Networks 50% Noisy features

0.9, 0.3, 0.9 0.99(0.01) 5.00(0.00) 0.99(0.01) 5.00(0.00) 1.00(0.00) 15.00(0.00) 1.00(0.01) 15.00(0.00)
0.9, 0.3, 0.7 0.98(0.03) 5.00(0.00) 0.99(0.02) 5.00(0.00) 1.00(0.00) 15.00(0.00) 0.99(0.01) 15.00(0.00)
0.9, 0.6, 0.9 0.91(0.01) 4.60(0.50) 0.88(0.01) 4.50(0.67) 0.95(0.08) 14.00(1.26) 0.93(0.10) 13.70(1.67)
0.9, 0.6, 0.7 0.86(0.14) 4.80(0.60) 0.88(0.14) 4.80(0.39) 0.84(0.08) 12.10(1.22) 0.81(0.09) 11.80(1.47)
0.7, 0.3, 0.9 0.99(0.02) 5.00(0.00) 0.99(0.01) 5.00(0.00) 0.99(0.01) 14.90(0.30) 0.99(0.01) 14.90(0.30)
0.7, 0.3, 0.7 0.94(0.10) 4.90(0.30) 0.95(0.06) 4.90(0.30) 0.99(0.01) 14.80(0.40) 0.96(0.07) 14.30(1.19)
0.7, 0.6, 0.9 0.74(0.20) 3.80(0.87) 0.73(0.15) 4.20(0.87) 0.56(0.14) 7.80(1.78) 0.55(0.14) 8.10(1.70)
0.7, 0.6, 0.7 0.67(0.14) 4.30(1.10) 0.57(0.14) 3.90(0.54) 0.39(0.09) 7.10(1.51) 0.42(0.08) 7.40(0.66)

q = 0.3, 0.6. In the cases at which all the features are categorical, we decrease
q-values to q = 0.2, 0.4, because all the three algorithms fail at q = 0.6. Feature
generation is controlled by an intermix parameter, α at quantitative features,
and ε at categorical features. We take each of the intermix parameters to be
either 0.7 or 0.9.

To set a more realistic design, we may explicitly insert 50% features that are
uniformly random in some datasets.

Therefore, generation of synthetic datasets is controlled by specifying six
two-valued and one three-valued parameters:

– feature scales: quantitative, categorical, mixed;
– data size: small, medium;
– presence of noise features: yes, no;
– the probability of a within-community edge p;
– the probability of a between-community edge q;
– cluster inter-mix α or ε.

Therefore, there are 192 combinations of these altogether. At each setting, we
generate 10 datasets, run a community detection algorithm, and calculate the
mean and the standard deviation of ARI index at these 10 datasets.

The following two sections present our experimental results for (a) testing
validity of the SEFNAC algorithm at synthetic data, and (b) comparing perfor-
mance of SEFNAC and competition.

4.2 Validity of SEFNAC

Table 2 presents the results of our experiments at synthetic datasets with mixed
scale features.

We can see that SEFNAC successfully recovers the numbers of communities
at q = 0.3 and mostly fails at q = 0.6 – because this corresponds to a counterin-
tuitive situation at which the probability of a link between separate communities
is greater than 0.5. Yet even in this case the partition is recovered exactly when
other parameters keep its structure tight, as say at p = 0.9. This holds for both
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Table 3: Comparison of CESNA, SIAN and SEFNAC at synthetic data sets with
categorical features. The best results are highlighted using bold-face. The average
ARI value and its standard deviation over 10 different data sets is reported.

setting Small Size Networks Medium Size Networks

p q ε CESNA SIAN SEFNAC CESNA SIAN SEFNAC

0.9, 0.3, 0.9 1.00(0.00) 0.55(0.29) 0.99(0.01) 0.89(0.05) 0.00(0.00) 1.00(0.00)
0.9, 0.3, 0.7 0.95(0.10) 0.48(0.29) 0.97(0.02) 0.85(0.08) 0.00(0.00) 0.99(0.01)
0.9, 0.6, 0.9 0.93(0.08) 0.32(0.25) 0.96(0.01) 0.63(0.06) 0.00(0.00) 0.99(0.01)
0.9, 0.6, 0.7 0.90(0.06) 0.11(0.14) 0.75(0.12) 0.48(0.09) 0.00(0.00) 0.96(0.03)
0.7, 0.3, 0.9 0.97(0.08) 0.55(0.16) 0.98(0.02) 0.77(0.07) 0.03(0.08) 1.00(0.01)
0.7, 0.3, 0.7 0.89(0.14) 0.51(0.21) 0.87(0.07) 0.71(0.13) 0.00(0.00) 0.99(0.01)
0.7, 0.6, 0.9 0.50(0.10) 0.05(0.09) 0.90(0.07) 0.06(0.02) 0.00(0.00) 0.99(0.01)
0.7, 0.6, 0.7 0.20(0.08) 0.03(0.04) 0.60(0.09) 0.02(0.01) 0.00(0.00) 0.91(0.04)

small size and medium size cases. Insertion of noise features does reduce the
levels of ARI but not that much. The real reduction in the numbers of recovered
communities, 7-8 out of 15 ones generated, occurs at the medium size datasets
at really loose data structures with p = 0.7 and q = 0.6, leading to significant
drops in the levels of ARI values.

The picture is much similar at the cases of quantitative only and categorical
only feature scales - we do not present them to shorten the paper.

4.3 Comparing SEFNAC and competition

In this section, we compare the performance of SEFNAC with that of CESNA
[23], and SIAN [17]. It should be reminded that SEFNAC determines the number
of clusters automatically, whereas both CESNA and SIAN need that as part
of the input. datasets Table 3 presents our results at synthetic datasets (with
categorical features only, as required by the competition) and Table 4, at real
world datasets.

One can see that at small sizes CESNA wins three times (out of 8), and at all
the other cases, including at medium size datasets, SEFNAC wins. SIAN never
wins in this table. There is an impressive change in the performance of SIAN at
the medium-sized datasets: SIAN comprehensively fails on all counts at medium
sizes by producing NaN which we interpret as a one-cluster solution.

We get somewhat different results at the real world datasets. Here CESNA
shows rather poor results; SEFNAC wins three times, and SIAN, two times (see
Table 4).

Since criterion (3) depends on data normalization, SEFNAC results depend
on that too. Out of a few popular data normalization methods, we choose that
leading, on average, to the larger ARI values. Specifically, we used z-scoring for
normalizing dummy variables in Lawyers data set, HVR data set and COSN
data set. The best results on World-Trade data set and parliament data set
are obtained with no normalization. The network data in Lawyers and HVR
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Table 4: Comparison of CESNA, SIAN and SEFNAC on Real-world data sets;
average values of ARI and standard deviation (std) are presented over 10 random
initialization. The best results are shown using bold-face.

CESNA SIAN SEFNAC

HRV6 0.20(0.00) 0.39(0.29) 0.45(0.14)
Lawyers 0.28(0.00) 0.59(0.04) 0.63(0.06)
World Trade 0.23(0.00) 0.55(0.07) 0.23(0.03)
Parliament 0.25(0.00) 0.79(0.12) 0.28(0.01)
COSN 0.44(0.00) 0.43(0.05) 0.50(0.11)

are normalized by applying the modularity transformation [16]. The network
data of COSN is normalized by subtracting the average link value from all the
similarities [14].

5 Conclusion

This paper proposes a novel combined data recovery criterion for the problem of
detecting communities in a feature-rich network. Our algorithm SEFNAC (Se-
quential Extraction of Feature-Rich Network Addition Clusters) extracts clusters
one by one. This allows us to determine the number of clusters automatically,
whereas other algorithms need the number of clusters pre-specified. Another fea-
ture of our approach is that it is more or less universal regarding the scales of
the data available. On the other hand, SEFNAC results may depend on data
normalization.

We experimentally show that SEFNAC is competitive over both synthetic
and real-world data sets against two popular state-of-the-art algorithms, CESNA
[23] and SIAN [17].

There should be several possible directions for future work over the data
recovery approach accepted in this paper. First of all, its extension to large
datasets should be proposed and validated. Then the possibility of trade-off
between two constituent data sources, network and fetures, which is explicitly
present in our criterion should be investigated. Yet another direction for future
work shoud be a systematic investigation of the relative effect of different data
standardization methods on the results of our method. One more direction would
be widening the scope of our synthetic data generators by, say, developing a
general framework to include some popular data generators, such as those in [9].
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