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Abstract

This paper outlines methods to detect key anchor points
in 3D face scanner data. These anchor points can be used
to estimate the pose and then match the test image to a 3D
face model. We present two algorithms for detecting face
anchor points in the context of face verification; One for
frontal images and one for arbitrary pose. We achieve 99%
success in finding anchor points in frontal images and 86%
success in scans with large variations in pose and changes
in expression. These results demonstrate the challenges in
3D face recognition under arbitrary pose and expression.
We are currently working on robust fitting algorithms to lo-
calize more precisely the anchor points for arbitrary pose
images.

1 Introduction

The registration problem is a pressing one for many au-
tomatic pattern recognition systems. In order to properly
compare patterns, the data need to be normalized. We have
investigated various anchor point detection methods that
can be used to register 2.5D face images taken with a Mi-
nolta VIVID 910 range scanner [11]. A 2.5D image is a
simplified 3D (x, y, z) surface representation that contains
at most one depth value (z direction) for any point in the
(x,y) plane (see Figure 1).

Current 2D face recognition systems can achieve ac-
ceptable performance for face verification in constrained
environments; however, they encounter difficulties in han-
dling large variations in pose and illumination [7]. Utilizing
3D information can improve face recognition performance
[3, 5]. Moreover, 3D face pose is required in related ap-
plications such as telepresence. Range images captured by
common 3D sensors [9, 11] explicitly represent face surface
shape information as well as provide registered 2D color
images. Face recognition based on range images has been
addressed in different ways [10, 5]; however, most of these

Figure 1. Example 2.5D image (a) 2D Texture
Image (b) Depth Map (c) Rendered 3D Model.

systems do not attempt to automatically find anchor points
and register faces with arbitrary pose, lighting and expres-
sion. Some existing work on frontal face anchor point de-
tection can be found in [4].

Figure 2. Anchor point locations. rEye - In-
side of the right eye; orEye - Outside of the
right eye; lEye - Inside of the left eye; olEye -
Outside of the left eye; nose - Nose tip; chin
- chin tip; mouth - corners and middle of the
mouth.

In Section 2 we describe how to calculate the shape in-
dex [6], which is a pose invariant representation of the sur-
face curvature. In Sections 3 and 4 we investigate automatic
methods for detecting face anchor points in both frontal face
scans and arbitrary pose scans, respectively. The anchor
points are used to generate a coarse alignment between the



Figure 3. Control points used by ICP.

scan and the database model. This coarse alignment is used
as a starting point for the ICP algorithm [2], which is then
used to finely align the scans. Only a single anchor point
is necessary to calculate the coarse transformation between
two frontal scans. In contrast, three points are needed if
the test scan and the model have different poses. Figure 2
shows examples of some of the anchor points our system
is designed to detect. These anchor points are easy to find
within the image, span the width of most faces, and do not
require that the eyes be open during image capture.

In addition to calculating the coarse transformation, the
detected anchor points are also used to calculate the location
of the grid of control points needed by the ICP algorithm for
fine alignment (see Figure 3).

2 Shape Index

To find anchor points on the face, it is advantageous to
use attributes that do not change with pose. One such at-
tribute is surface curvature. The local curvature informa-
tion about a point is independent of the coordinate system.
Dorai and Jain [6] proposed local shape information, called
the Shape Index, to represent the surface curvature at each
point within a 2.5D image. The Shape Index at pointp is
calculated using the maximum (k1) and minimum (k2) lo-
cal curvature (see Equation 1). This calculation produces a
shape scale between zero and one (see Figure 4).
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Since the shape index is independent of the coordinate
system, it is useful for finding similar points between scans
from different poses. The faces shown in Figure 5 are ex-
amples of 2.5D face images with intensity representing the
shape index. Notice that there are several consistencies be-
tween these two scans of the same face. For example, the
area between the eyes and the bridge of the nose is consis-
tently rut shaped as is the area around the mouth. We use
these consistencies to help locate prominent anchor points
within the face regardless of the orientation of the face in
the scan.

Figure 4. Shape index scale. A value of 0 rep-
resents a spherical cup while a value of 1.0
represents a spherical cap. This index is in-
dependent of the coordinate system.

Figure 5. Example shape index images. The
dark regions correspond to a shape index of
0 while the lighter regions represent a shape
index of 1.

3 Frontal Anchor Point Detection

Commercial three-dimensional face verification systems
require cooperative subjects, where it is expected that the
subject stand at a given location with a controlled pose and
facial expression. The Minolta scanner that we are using
takes approximately 1 second per scan during which time
the subject must hold still. Hopefully, future scanning sys-
tems will not have these limitations.

Detecting anchor points in a frontal scan is not a difficult
problem. The structure of the head is known and there are
prominent anchor points that can be detected easily if the
pose of the head is known. We have found that the easiest
point to find is the tip of the nose. In our database of 330
frontal faces, the tip of the nose is the point closest to the
camera in 92% of the scans.

When dealing with frontal posed faces we define the z
gradient as the change of the z distance with respect to the
x and y directions. This change is normally large from the
base of the nose to the tip of the nose, and from the edges
of the face and hair. However, in most other locations this
gradient is small. It is common for spike noise to appear
in the scans; this is easily removed by filtering out points
that have a gradient that is larger than those found around
the nose. Filtering the scan before selecting the nose point
increases the success rate of the nose detector to 97%. If
we limit our search to areas that may reasonably contain the
nose (see Section 3.1), we can increase the success rate to



99%. When the orientation of the head is known, it is suf-
ficient to have one anchor point to initially align the head
with the model. However, in order to allow for minor vari-
ations in the pose angle (± 15 deg) other anchor points on
the face may be needed.

3.1 Interpoint Statistics

We have a statistical model that identifies where the an-
chor points may be located on the face. These statistics of
distances between anchor points were developed by ana-
lyzing a database of over 2000 test scans. The minimum,
maximum and average distance are included in the model
to bound the region of search for each of the anchor points
(See Table 1).

Using this simple model, bounding boxes can be gener-
ated that greatly reduce the search for a particular anchor
point. For example, if the tip of the nose is found, bounding
boxes can be generated to locate many of the other anchor
points such as the eye corners or chin (see Figure 6). These
bounding boxes not only increase the efficiency of the al-
gorithm but can also improve the performance of individual
anchor point detectors.

Figure 6. Example bounding boxes estimated
by the statistical face model and the location
of the nose tip.

3.2 Anchor Point Detection Algorithm

The frontal anchor point detection algorithm (outlined in
Table 2) starts by finding the top of the head. Any point near
the top of the head should do because it only establishes the
vertical location of the head. Once the top of the head is
found, a bounding box for the location of the nose can be
produced. The algorithm then uses other bounding boxes
to localize the search for other anchor points. Each point is
found using detection decisions based on local shape char-
acteristics with parameters trained on sample scans.

1. Use the gradient filter to filter out depth spikes.
2. Find the top of the head and generate nose bounding box.
3. Find the tip of the nose as the closest point of the scan.
4. Calculate the bounding box for the inside corners of the
eye, mouth, and chin.
5. Calculate the location of each individual anchor point
using the shape characteristics.

Table 2. Frontal Pose Anchor Point Detection
Algorithm.

3.3 Experiments and Results

We tested our frontal anchor point detection algorithm
on the following data sets:

• Data Set A - Our main data set was composed of 111
test subjects with approximately three frontal scans
each (two with neutral expression and one smiling)
for a total of 330 test scans. Scans have little spike
noise and most faces have a neutral expression and are
frontal. See Examples in Figure 7. This data was col-
lected in our laboratory.

• Data Set B - 953 scans taken from a database provided
by the University of Notre Dame. These scans are all
frontal neutral expression with higher levels of noise
compared to data Set A due to varying lighting condi-
tions [12].

• Data Set C - Limited data set containing 49 images
from around 5 subjects, but it explores significant vari-
ation due to background changes, rotations, occlu-
sions, expression, lighting and noise. Most of these
images do not satisfy the specifications for which the
face verification system is being built. See examples
in Figure 8. This data was collected in our laboratory.

Tests were run on all three data sets and the results are
reported in Table 3. The anchor point detector was consid-
ered successful if it located three of the five anchor points
(see Figure 2) correctly. Success was a qualitative judgment
made by the investigator and verified by checking the con-
vergence of the ICP algorithm with another scan from the
same subject. Of the five anchor points detected, the worst
was the mouth due to its large variation in expression, so
the success rate for the mouth is also reported as a refer-
ence. The system was run on a Pentium 4 CPU with two
3.20GHz processors and 1.00GB of RAM. All of the times
reported on are wall time and will vary depending on the
load of the cpu, this load variation being most noticeable
during file loading. Using the ICP to verify point detection
added at most 2 seconds to the computation time.



Point A Point B direction Minimum Average Maximum
(mm) (mm) (mm)

Top of Head Nose Tip vertical 84.0 121.7 181.0
Nose Tip Mouth vertical 16.9 34.4 46.3
Nose Tip Chin vertical 49.7 70.6 95.4
Nose Tip Nose Bridge vertical 21.2 32.2 48.4
Nose Tip Inside Eye horizontal 13.2 17.5 23.6

Inside Eye Outside Eye horizontal 15.9 30.6 39.7

Table 1. Statistical Model of the inter-anchor point distan ces on a face. Each set of distances are
calculated from point A to point B only in the specified direct ion.

Figure 7. Detected anchor points in example
images from Data Set A.

Figure 8. Detected anchor points in example
images from Data Set C (these images violate
the specs under which the face verification
system is being built).

Data Number Detection Detection Average
Set of Frontal Rate Rate Algorithm

Scans Mouth Only Time (sec)
A 330 99.1% 97.0% 0.33
B 953 99.8% 97.4% 0.30
C 49 85.7% 83.7% 0.33

Table 3. Experimental Results for Frontal An-
chor Point Detector.

4 Arbitrary Pose Anchor Point Detection

The frontal anchor point detection algorithm is sufficient
when dealing with cooperative subjects in a constrained en-
vironment. However, we are also interested in performance
under large variations in pose. We have found that detect-
ing feature points under arbitrary poses is a difficult prob-
lem. There are three major steps in our arbitrary pose algo-
rithm, which must align a scan to a model with significantly
different pose; candidate point selection (Section 4.1), re-
laxation/search algorithm (Section 4.2), and fitness function
evaluation (Section 4.3).

4.1 Candidate Point Selection

With unknown pose, we can no longer guarantee that the
user is facing the scanner. Anchor points need to be de-
tected robustly regardless of the pose of the face. The gen-
eral locations of the anchor points are determined by using
information about the shape index as well as a model of the
face. It can be difficult to identify specific points based on
the shape index alone. For example, finding a region of high
curvature does not necessarily result in a single point. Once
the general location of the point is found, we further refine
the results by finding a more specific point. This is normally
done using an edge map generated from the (registered) 2D
color component of the scan. We can use this map to find
a specific edge point (such as a corner point) closest to the
general anchor point location.



In the remainder of this section, we describe the detec-
tion of a core set of candidate points: the inner eyes, the
nose tip and the outer eyes. Problems can occur in pro-
file scans where only a few of the desired anchor points
are available for detection. For example, in a profile scan
the eyeball may occlude the inside corner point of the eye.
In these cases, additional labeled points are needed to in-
crease the likelihood of finding three good anchor points.
For this reason, we have provided four additional point la-
bels for the arbitrary pose anchor point detector: two points
on the tips of the mouth and a pair of non-surface points
(centroid and top-centroid) that represents the central axis
of the scan. The centroid is calculated as the average loca-
tion of all the points in a scan and the top-centroid is the
same point moved 100mm in the z-direction. In most scans
these points do not align well with the models. However,
due to their similar structure, they can provide face orienta-
tion information if other points are not available. The chin
point was not detected in this study.

In our algorithm spurious candidate points are accept-
able. This simplifies the development of detection deci-
sions. Points can be selected by simple criteria and elim-
inated later by the constraint relaxation algorithm. This
makes the system flexible in special cases because anchor
points can be selected for specific situations.

4.1.1 Inner Eye Point Detection

The easiest anchor point to identify in arbitrary pose is the
inside edge of an eye next to the bridge of the nose. This
point has a shape index value that is close to zero and the
area around this point has a consistent shape index value
across all face images and poses. An averaging mask (size
30 x 10) can be used to identify this area in the shape space
(see Figure 9). More complex masks were considered but
we have found that the averaging mask is robust across face
scans. The averaging mask identifies the point with the
largest averagecup shaped curvature. We use the inside
edge of the eye as an anchor in order to identify other an-
chor points within the face image. Because there are two
eyes, the two largest regions of high curvature are selected.
Often, this results in a point within the ear or hair being
classified as a possible eye (see Fig 9b); this is tolerable as
long as the constraints can eliminate these points later.

4.1.2 Nose Tip Detection

The next easiest anchor to detect is the nose tip. For most
people this point sticks out beyond the face and is salient
in most poses. For example, Figure 10 shows a face scan
where up to six different simple criteria (outlined in Table
4) were used to find nose tip candidates. The expectation is
that one of the points produced by these six criteria is in fact
the tip of the nose. In order to evaluate the quality of this

Figure 9. Convolution of the shape space
with a simple vertical mask to find the inside
points of the eyes. (a) frontal view, (b) a semi-
profile view. The bright spots in the scan rep-
resent the locations of the inside of the eye
next to the bridge of the nose.

set of points, these criteria were applied to over 1000 face
scans in our database and the minimum distance to the ac-
tual nose tip was recorded. The average minimum distance
was 5.1mm with a standard deviation of 8.3mm. We have
experimentally determined that any point on the nose within
a 15mm radius from the tip is an adequate starting point for
the ICP algorithm. This may seem like a large tolerance,
but the goal of our anchor point detection algorithm is to
come up with a coarse alignment that can then be passed
to ICP for fine alignment of the scans. By far, most of the
nose points detected by our algorithm had close to zero er-
ror; however, there are still cases where we missed the nose
tip completely. In the cases where the nose point is missed,
there is still a possibility that the relaxation algorithm (dis-
cussed in Section 4.2) will find a good set of three anchor
points that does not include the nose tip.

1. Point closest to the scanner (minimum z direction point).
2. Point farthest to the left (minimum x direction point).
3. Point farthest to the right (maximum x direction point).
4. Point farthest from the vertical plane formed by points 1
and 2.
5. Point farthest from the vertical plane formed by points 1
and 3.
6. Point with the largest shape index.

Table 4. Criteria for finding candidate nose
points.

4.1.3 Outer Eye Point Detection

Once the inner eye candidate points are found (Section
4.1.1), the outside of the eye is detected by following therut
(defined by the shape space) that consistently runs along the
bottom of the eye (see Figure 11). This calculation is made



from all possible eye candidates.

Figure 10. Nose candidate points for three
different poses. Notice that in all of the scans
at least one of the candidate points is actually
the nose tip.

Figure 11. An example shape-space scan
with key anchor points identified.

4.2 Relaxation / Search Algorithm

After calculating the list of candidate points, the next
step is to search through these candidates to find possible
sets of three anchor points and the associated labels. For ex-
ample, even if only three candidate points are found, each of
these three points could be assigned up to nine labels (Nose
Tip, Inside Right Eye, Inside Left Eye, Outside Right Eye,
Outside Left Eye, Left Mouth Corner, Right Mouth Corner,
Centroid, and Top Centroid), which results in 504 possible
labelings. When more candidate points are selected, the to-
tal number of labelings goes up exponentially. Therefore,
an exhaustive search of all candidate points with all pos-
sible labelings is not feasible. Instead, some simple con-
straints (see Section 4.2.2) are developed to help filter the
labeling possibilities. There are many methods for solving
constraint satisfaction problems [1]. We have chosen dis-
crete relaxation filtering because it is easy to implement and
is efficient given that there is a limited number of candidate
points as well as a limited number of possible labelings [8].

There are two components to discrete relaxation: the
relaxation matrix, and the relaxation constraints. Using a

well-formulated combination of the relaxation constraints,
the relaxation algorithm is able to iteratively eliminate
impossible labellings using the following rule:

Relaxation Rule - If a particular label assignment for
any point fails ALL the constraints, then this labeling is
not possible and the corresponding row and column in the
relaxation matrix should be changed to zero.

This relaxation rule follows the philosophy of least com-
mitment where only the obviously wrong labels or points
are eliminated.

4.2.1 Relaxation Matrix

The relationship between the candidate feature points and
the possible feature labels is represented as a(n × m) Re-
laxation Matrix (R), wheren represents the number of can-
didate points andm is the number of point labels. A value of
one in this matrix represents the possibility of a point having
a particular label. A value of zero means the point cannot
have that particular label. A null label is used for points
that do not match up with any label. The matrix is initial-
ized with all ones because without any knowledge from our
constraints, every point could have every possible label.

4.2.2 Constraints

For the arbitrary pose anchor point recognition problem, the
following four constraints are used: shape constraint, ab-
solute distance constraint, relative distance constraintand
relative cross-product constraint.

Shape constraint- The shape index range of a candi-
date point with a specific label must fall between a mini-
mum and maximum value. Note that the shape index is a
unary constraint and only needs to be applied once when
the registration matrix is being initialized.

Smin < SL < Smax

Example:0.7 < Snose < 1.0
(2)

Absolute Distance Constraint- The distance between any
two labeled points must be between a minimum and maxi-
mum value.

Dmin < |PL1 − PL2| < Dmax

Example:

30mm <
√

∑

i∈x,y,z(P
i
nose − P i

rEye)
2 < 140mm

(3)

Relative Distance Constraint - The distance between a
single component (x, y, or z) of any two labeled points must



be between a minimum and maximum value.

Dmin < (P x
L1

− P x
L2

) < Dmax or
Dmin < (P y

L1
− P

y
L2

) < Dmax or
Dmin < (P z

L1
− P z

L2
) < Dmax

Example:10mm < (P x
rEye − P x

lEye) < 100mm

(4)

Relative Cross-Product Constraint - The cross product
between the vectors formed by (PL1, PL2) and (PL1, PL3)
has a particular direction within a single (x, y, or z) compo-
nent.

[(PL1 − PL2) × (PL1 − PL3)]
x
· Dir > 0 or

[(PL1 − PL2) × (PL1 − PL3)]
y
· Dir > 0 or

[(PL1 − PL2) × (PL1 − PL3)]
z
· Dir > 0

whereDir = ±1

Example:[(PL1 − PL2) × (PL1 − PL3)]
z
· Dir > 0

(5)

These four constraints were derived by analyzing example
scans and models and determining the relative distances be-
tween anchor points. Similar constraints can be added to
speed up the algorithm; however, the four constraints de-
scribed in this section proved to be sufficient. One chal-
lenge in identifying these constraints was to not make too
many assumptions about the relative locations of the anchor
points. For example, the left eye points are not always lo-
cated to the left of the nose; in some profiles, the left eye is
actually to the right of the nose.

4.3 Fitness Functions

The goal for the anchor point detection algorithm is to
find three labeled points that correspond to three points la-
beled on the 3D face model. These three pairs of points are
used to calculate a transformation from the test scan to the
model in the database. This transformation coarsely aligns
the test scan to the 3D model, and then the ICP algorithm
calculates the best matching distance between the scan and
the model using a grid of approximately 100 control points
defined by the anchor points (see Figure 3).

In order to evaluate the quality of the set of anchor points
the matching score generated by the ICP algorithm is used
as a fitness function. The key to using ICP is to have a set
of consistent control points from within the scan. Because
we do not yet know the pose of the scan, we cannot use the
control points shown in Figure 3. Instead, all noisy data (in
the z direction) is filtered out of the scan and then an evenly
spaced 20 x 20 grid of points is placed on the remaining
scan. Because a symmetrical grid is used, not all of these
points are valid due to holes in the scan. The invalid points
are discarded. The same final set of control points is used in
all of the fitness calculations so that the distance errors gen-
erated by the ICP algorithm are comparable. The downside
of using ICP as a fitness function is that it requires the use
of a 3D face model to calculate the distance value.

4.4 Experiments and Results

For arbitrary pose, finding the correct set of anchor
points takes more time than in a frontal scan because all
of the candidate points must be searched and for each valid
set of three candidate point labelings, the ICP algorithm is
run to determine the fitness of the points. On an average
scan, the arbitrary pose anchor point detector takes around
15 seconds to complete. In order to evaluate the quality
of the anchor points, each detected anchor point was com-
pared to a manually selected point. However, many times
the manually selected points were not as good as the au-
tomatically selected points. This occurred when the experi-
menter selected a point that looked correct in the texture im-
age but actually was incorrect in the registered range image
due to the movement of the subject’s head. This was a com-
mon problem when points were near the edges of the scan
where the range data was invalid. The system was tested on
a database of 600 scans taken of 100 subjects (6 scans per
subject). The scans include frontal, full profiles and smiling
expressions. Each test scan in the data set was compared
to the 3D model of the same subject generated from an ad-
ditional 5 scans stitched together to produce a 3D surface
model.

Figure 12. Error Histograms for each of the
five anchor points. The error represents the
distance from the final detected point to the
manually selected point. The dotted vertical
line represents the 20mm cutoff; 90% of the
scans fall below this value.

The histograms of the error for all five of the core surface
anchor points are shown in Figure 12. The median error
of the five points is around 10mm and approximately 90%
of the scans are below 20mm error for each anchor point.
Notice that the outliers (exspecially with the nose) represent



Attribute Population Size Success Rate
Female 25.2% 85.4%
Male 74.8% 85.7%
Facial Hair 11.2% 80.6%
Dark Skin 10.0% 81.7%
Eyes Closed 12.0% 98.6%
Asian Features 26.5% 84.3%
Profile 67.3% 79.6%
Frontal 32.7% 97.7%
Smile 47.6% 82.7 %
No Smile 52.4% 88.5%

Table 5. Arbitrary pose anchor point detec-
tion success rate as a function of subject at-
tribute.

Pose Neutral Expression Smile
Front 99.0% (17.1%) 97.7% (15.5%)
Profile 82.7% (82.7%) 75.0% (32.1%)

Table 6. Percent of correct anchor points de-
tected versus the pose direction and facial
expression. Numbers in the parenthesis in-
dicate the number of test scans.

a total incorrect match. This can occure when other objects
such as a coat or hair takes on a shape appearance that is
similar to the feature. Extensive testing shows that the ICP
algorithm can tolerate up to 20mm of anchor point errors
for matching.

To quantify the success rate of the entire transformation,
all of the output transformations were evaluated by hand.
Each test scan produced a transformation of the test scan
onto the 3D model. If this transformation was judged to
be good enough for ICP to converge, then the anchor point
detection was labeled as successful for this scan. Of the ap-
proximately 600 test scans, there was an 85.6% success rate
when matching a subject’s test scan to the same subject’s
3D model.

To fully understand where the errors are occurring, the
test scans were also separated into groups based on subject
attributes (see Table 5). From this table we can see that
facial hair and dark skin make it more difficult to identify
key facial anchor points. This is an understandable result
because both of these attributes increase the noise produced
by the scanner. It is also interesting to note that it is easier
to identify anchor points in scans with eyes closed than with
the eyes open. This is probably also due to the increase in
surface noise that occurs with the eyes open.

What is more interesting is how these attributes work to-
gether. Table 6 shows how the success rate of the system

varies with pose and facial expression. As Figure 6 demon-
strates, the anchor point detection system works 99.0% of
the time on neutral expression, frontal pose scans.

5 Concluding Discussion

We have developed algorithms that detect face anchor
points using 3D models and knowledge of the structure of
the face. These algorithms produce good results, especially
for frontal scans, given our current system goals. However,
in order to achieve higher levels of accuracy we need to con-
sider algorithms that are more robust to noise and local vari-
ations. The frontal anchor point detection system is vulner-
able to cascade style problems because each anchor point
is dependent on the quality of the previous anchor point.
To overcome this, we could detect multiple candidates and
backtrack. The arbitrary pose anchor point detection is slow
and has significantly lower accuracy than frontal pose point
detection. We are currently working toward a new anchor
point detector that is more robust to noise and other varia-
tions in input.

With robustly identified anchor points, the distances be-
tween the points can be more accurately calculated. These
distances may then be used for soft binning of the subject
pool in order to reduce the number of comparisons needed
for a face identification system.
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