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Abstract
An intrusion detection system inspired by the human immune system is described: a custom artificial immune system that
monitors a local area containing critical files in the operating system. The proposed mechanism scans the files and checks for
possible malware-induced alterations in them, based on a negative selection algorithm. The system consists of two modules:
a receptor generation unit, which generates receptors using an original method based on templates, and an anomaly detection
unit. Anomalies detected in the files using previously generated receptors are reported to the user. The system has been
implemented and experiments have been conducted to compare the effectiveness of the algorithms with that of a different
receptor generation method, called the random receptor generation method. In a controlled testing environment, anomalies in
the form of altered program code bytes were injected into the monitored programs. Real-world tests of this system have been
performed regarding its performance and scalability. Experimental results are presented, evaluated in a comparative analysis,
and some conclusions are drawn.

Keywords Artificial immune system · Receptor · Anomaly · Negative selection algorithm · Template · Intrusion detection
system · Malware · Virus

1 Introduction

Recently, the protection of computer software from virus
attacks has become a very important task for software secu-
rity designers. All over theworld, intrusion detection systems
(IDSs) are being intensively developed. IDSs are used to
protect against network attacks on both the local and the
global level. The main challenges for software designers are
the detection of unknown attacks and the increasing com-
plexity of computer software. Designers have been forced to
search for novel, more effective software protection. They
have noticed analogies between the tasks done by IDSs and
those done by the natural immune system. Adaptation of
immune system mechanisms gives a chance to meet the
listed challenges. Plenty of new approaches based on arti-
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ficial immune systems have appeared in the literature in the
past two decades. Most of them adapt a negative selection
method in their IDS to detect intrusions in computer net-
work traffic. The negative selection method is based on the
recognition of self and nonself structures, and leads to detect-
ing anomalies in the computer software. The fundamental
aspects of the mechanisms in IDS are presented in [1–5].
More sophisticated systems are described in [6–19].

In the present article, an IDS to search for infections
in compiled computer programs is proposed. The detection
mechanism is based on a negative selection method [3]. It
is composed of receptor generation and anomaly detection
algorithms. Programs monitored by the IDS are read in frag-
ments of binary strings of a specific length. Our method of
generating the receptors is an original method, using binary
strings called templates, as described in [14,20]. A prelim-
inary study of the use of template generation for this IDS
was described by us in [21]. The present paper is a contin-
uation of that one, expanding upon the template generation.
New content includes a description of random generation, a
comparative analysis between the template method and the
random method, and also testing in a real-world scenario,
with regard to performance and scalability. The generation
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of receptors relies on the division of the template structures
into self templates and nonself templates. Nonself structures
become receptors. Anomalies are detected by the receptors.
The monitored program is infected if a desired number of
bits is matched between a receptor and a read fragment of
the program. The novelty of our approach comes from the
employment of two separate sets of receptors to detect pos-
sible anomalies. The study discusses the possibility of the
employment of the IDS in systems with small storage space
and a requirement to protect the files in a specific directory.

This article is organized as follows. The proposed IDS
is described in Sect. 2. The template method is presented in
Sect. 3, a random-based method used for the sake of compar-
ison is described in Sect. 4, and the experimental results are
presented in Sect. 5. A comparative analysis is presented in
Sect. 6, performance and scalability are discussed in Sect. 7,
and concluding remarks are presented in Sect. 8.

2 Intrusion detection system

The present paper proposes an intrusion detection system
(IDS) able to detect irregularities, called anomalies, in com-
piled computer programs.

An anomaly is a sequence of bytes in a program which
has been altered by malware. An example of an anomaly in
a program would be five NOP (no operation) CPU instruc-
tions (x86 machine code bytes (9090909090)16) injected by
malware instead of the original bytes, e.g., (E900100000)16
(x86 machine code for a JMP instruction) to intentionally
avoid the behavior of the original, unmodified program.

The IDS monitors computer file resources susceptible to
infections in an operating system. For example, it could be the
C:\Windows folder in a Microsoft Windows system. Mon-
itored file resources have to be protected against infections
by the IDS. In order to ensure the correct functioning of the
IDS, the original noninfected programs have to be accessi-
ble during the first launch. All programs have to be in the
Win32 Portable Executable (PE) format. Typically, a regular
PE file consists of sections, whose purposes have specific
characteristics (program code sections, initialized data, and
uninitialized data), read/write access rights, and central pro-
cessing unit (CPU) execution privileges.

The proposed IDS contains amain control block supervis-
ing the execution of the procedures for generating receptors
and detecting anomalies. The system scans the folder ofmon-
itored PE files in search of code sections to generate binary
strings of length l, called receptors, for each file in the folder.
Receptors are able to recognize nonself structures in the
program code. They are used to allow the detection of anoma-
lies in the files in the monitored folder. Receptors, inspired
by immune mechanisms (the negative selection algorithm,
which was in turn inspired by the human immune system),
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Fig. 1 Example of matching of generated receptors and fragments of
read program for l = 32, m = 16, and k = 8. Top: binary representation,
bottom: hexadecimal representation

possess an activation threshold, denoted by m. It defines the
minimal number of subsequent receptor bits which must
match the read program fragment to activate the receptor;
otherwise the receptor is not activated. Receptors detect
anomalies in the program. Thismeans that receptorsmust not
recognize self structures. In the generation procedure, every
candidate receptor structure matching any self structure has
to be rejected, otherwise they are accepted as receptors. In
our IDS system, the PE file is opened by using the system
interface, and delivers information about the code sections.
The IDS generates possible receptor structures and compares
them to all read PE program code fragments of length l in
the monitored file. The receptor generation has to be done
once for each of the monitored program files, producing one
receptor set for each program file. A generated receptor set
can then be stored as a file or remain in the system memory,
and can be used by the anomaly detection algorithm.

In the receptor generation procedure, the activation thresh-
old m is also called a window. The current position of the
window in the receptor is called thewindow shift and denoted
by k. If the currently generated structure matches at least m
bits in even a single monitored fragment of program code
(i.e., a matching of m bits between the structure and the pro-
gramwith any window shift k), then it is rejected, and cannot
be used as a receptor to detect anomalies, because it recog-
nizes self code aswell.Anexample of amatchingbetween the
read code of the program and a generated structure is shown
in Fig. 1. When the generated structure does not match any
self structures, it becomes a receptor and is appended to the
set of receptors. The number of receptors in the set of recep-
tors is denoted by Rn . The set of receptors is now used to
detect anomalies in the possibly infected file. An anomaly is
detected when a receptor matches any fragment of a possibly
infected fragment of the program (i.e., matching of m bits
between receptor and program with any window shift k). In
the anomaly detection algorithm, every receptor is compared
with every fragments of a possibly infected program.

Our IDS adopts an immunity algorithm inspired by nega-
tive selection, relying on a novel method that uses templates.
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Fig. 2 A flowchart of the
receptor generation algorithm START

Determine template 
matrix T

Determine matrix of 
self and nonself 

templates Ta

Optimize nonself 
templates and 

determine receptor
set R

STOP

Our novel method allows the detection of anomalies placed
not only within particular memory cells, but also between
consecutive program memory cells.

3 The template-basedmethod

3.1 The generation of the receptors

Amethodof generating receptors thatwas basedon templates
was introduced in [20,22]. Here, appropriate modifications
to that method are proposed to generate receptors that will
efficiently detect intrusions in the operating system (Fig. 2).

A template is defined as a binary string consisting of a
fixed value and don’t care bits. Fixed value bits have a logical
value of 0 or 1. Don’t care bits are labelled with an asterisk
(“*”).

In the first step of the generation algorithm, a table,
denoted by T, is built. T is composed of templates of length
l bits. For a given activation threshold, denoted by m, the
templates consist of m fixed value bits. The rest of the bits
(l–m) in the template are don’t care bits.

The number of templates is denoted by Ls and is expressed
as follows:

Ls = (l − m + 1) · 2m (1)

For l = 16 and m = 8 and for l = 32 and m = 8,
Ls equals 9 · 256 and 25 · 256, respectively. These numbers
are too large to illustrate the idea of the proposed algorithm,
therefore, an example of T for l = 6 and m = 4 is presented
in Table 1.

Table 1 Template table T for l = 6 and m = 4

i m given bits T[i,1] T[i,2] T[i,3]

1 0000 0000** *0000* **0000

2 0001 0001** *0001* **0001

3 0010 0010** *0010* **0010

4 0011 0011** *0011* **0011

14 1101 1101** *1101* **1101

15 1110 1110** *1110* **1110

16 1111 1111** *1111* **1111

Table 2 Table Ta for l = 6 and m = 4

i m given bits Ta[i, 1] Ta[i, 2] Ta[i, 3]
1 0000 1 1 1

2 0001 1 1 1

3 0010 1 1 1

4 0011 1 1 1

5 0100 1 1 1

6 0101 1 0 1

7 0110 1 0 1

8 0111 0 0 1

9 1000 1 1 1

10 1001 1 1 1

11 1010 0 1 0

12 1011 0 1 0

13 1100 1 1 0

14 1101 1 1 0

15 1110 1 0 0

16 1111 1 1 1

Consider the following example of a set S of own binary
strings (noninfected program fragments):

S = {101110, 101101, 101100, 101011, 101010, 011100}
(2)

The table Ta is constructed from T taking into account
the set S. The tableTa consists of self and nonself templates.
If at least m = 4 of the subsequent bits of the template
from T match at least one self template from S at the same
position, the template is considered as an own (self) template
and denoted by 0 in Ta , otherwise the template is considered
as nonself and denoted by 1 in Ta .

For example,T[14, 3] = **1101matchesS(2) = 101101,
and so, Ta[14, 3] = 0, while T[2, 3] = **0001 does
not match any self template in S, therefore Ta[2, 3] = 1
(Table 2).

In this case, every template represents four possible
receptors. An example of receptor generation from nonself
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Fig. 3 Generation of receptors from T[6, 1] = 0101**

T[6, 1] = 0101** is illustrated in Fig. 3. It is based on a
binary tree. The two first leaves have four fixed bits of the
template, and their first don’t care bits (“*”) are replaced by
0 or 1. The leaves that are obtained are 01010* and 01011*.
Finally, when the last “*” bits are replaced by 0 or 1, the
following four leaves are obtained: 010100, 010101, 010110
and 010111. Those leaves become receptors, because they
don’t match any self templates.

There are four leaves, 010100, 010101, 110100, and
110101, built from the nonself template T[11, 2] = *1010*.
Two leaves (receptors), 010100 and 010101, are the same
as leaves of the nonself template T[6, 1] and are redundant.
The total number of possible receptors is four times the num-
ber of nonself templates inTa . There are plenty of redundant
receptors obtained fromTa . Amethod to eliminate redundant
receptors is desired. To satisfy this requirement, any binary
tree of a nonself templateTa[i, 1] is comparedwith the binary
trees of all the nonself templates Ta[i, 2] and finally, to the
binary trees of all the nonself templates Ta[i, 3], eliminating
redundant branches and leaves. After eliminating all redun-
dant branches and leaves, the set of leaves becomes the set
of receptors R.

For the set of self binary strings S defined by (2),
R ={000000, 100001, 000010, 100011, 000100, 100101,
000110, 100111, 001000, 001001, 010000, 110001, 010010,
110011, 010100, 110101, 010110, 110111, 011000, 111001,
111111}. All 21 receptors from R will be used to detect
anomalies.

Let D be a set containing all possible binary strings of
length l. Typically, for a specified value of m and a specified
set S, there will be binary strings which are unable to be
detected by any generated receptor. The existence of such
binary strings in the system is caused by the so called holes.
The reason for existence of such holes is the presence of
strings in the set D \ S that have been constructed using self
templates from the set T.

It is possible to calculate the number of holes in the sys-
tem for a givenm and S by constructing a graph representing
the binary tree of self templates. A graph for S defined by
(2) and m = 4 is shown in Fig. 4. Unlike during the process
of building receptors, in the process of calculating the num-

0111** 1010** 1011** 

*0101* *0110* *0111* *1110* 

**1010 **1011 **1100 **1100 **1101 **1101 **1110 

 

Fig. 4 Graphical representation of self templates coming from the set
S defined by (2)

Uninfected memory cells addressed by X, X+1 

… Address X Address X+1 …

… 8D AB 00 19 45 77 97 A9 …

Infected memory cells addressed by X, X+1

… Address X Address X+1 …

… 8D AB 00 1A F5 77 97 A9 …

Fig. 5 An example of a one-byte anomaly appearing between 32-bit
memory cells

ber of holes all possible routes from the roots to the leaves
are taken into consideration. In Fig. 4, it can easily be seen
that there are seven routes from roots to leaves. Therefore,
because there are only six self binary strings in S defined by
(2), there is one hole in the system. The number of holes can
be reduced by increasingm, which also increases the compu-
tational time and memory footprint of the receptor set R. For
example, increasing m from four to five bits for S defined by
(2) causes the only hole in the system to close, reducing the
possible routes from roots to leaves from 7 to 6. However,
this operation also increases the receptor count from 21 to
50.

In our method, receptors of length l = 32 bits and activa-
tion thresholdm = 16 bits are generated. The size of the read
cells equals 4 bytes. The method based on these parameters
is called S-32, corresponding to the number of receptor bits
from R. This set of receptors is able to detect an anomaly
inside a single 4-byte memory cell, and is unable to detect
anomalies among neighboring memory cells (for example
beginning from the least significant byte of the memory cell
addressed by X, and finishing at the most significant byte of
the memory cell addressed by X + 1 as illustrated in Fig. 5).
Our system takes a novel approach by generating an extra
set of intercellular receptors, denoted by RI . RI consists
of receptors of length l = 16 bits and activation threshold
m = 8 bits generated on the basis of pairs of subsequent
neighboring 4-byte memory cells. To generate receptors for
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Fig. 6 A flowchart of the
anomaly detection algorithm START

Check current code 
pattern against every 

receptor

Prepare a list of 
matched receptors
and corresponding 

window shifts

Prepare a list of 
anomaly locations

STOP

RI , only the least significant byte of the memory cell and
the most significant byte of the subsequent memory cell are
taken into account. The template method using regular 32-
bit receptors together with our new intercellular receptors is
denoted by ICR.

It may be observed that the leaves of the binary trees of
the templates discarded as receptors matching self structures
at the end of program may actually be able to detect anoma-
lies at the beginning of the program. Therefore, the section
method (SM) is also proposed. SM divides the tested pro-
gram into four subprograms and tests them separately. As a
result, there is no collision between receptors from each of
the four sections. The SM approach uses 32-bit templates (S-
32). The combination of the SMapproach and ICR is denoted
by SM + I.

3.2 Detection of anomalies

The proposed system detects anomalies in the secured region
by the use of the previously generated 32-bit receptors stored
in R (method S-32) and optionally using the 16-bit receptors
stored inRI (method ICR). In contrast to receptor generation,
anomalies are detected in the up-to-date, possibly infected,
version of the program. The first 32-bit memory cell of the
tested program is read and comparedwith every 32-bit recep-
tor with activation threshold m = 16 from R. Each time the
read memory cell and receptor matchm subsequent bits with
the same window shift k, an anomaly is detected and a mes-
sage is displayed for the user. If the memory cell is compared
with all receptors and not one receptor is matched, there is no
anomaly inside the memory cell. After comparison with all
receptors, the next 4-byte memory cell is compared with all
receptors, et cetera, until all memory cells have been com-
pared with all receptors (Fig. 6).

START 

i ← 0

 Does Ri

match  
any self code? 

Generate random 
receptor Ri

i < Rmax

Add Ri to the 
receptor set 

i ← i + 1 

STOP 

Y 

N 

Y 

N 

Fig. 7 A flowchart of the random receptor generation algorithm

4 The random-basedmethod

To test the benefits gained from using a modified template
method, a frequently used method of random generation of
receptors has also been implemented in the IDS.

4.1 Random generation of receptors

A flowchart of the random receptor generation algorithm is
shown in Fig. 7. The number of generated receptors is given
by the user and denoted by Rmax . The maximal number of
possible random receptors generated by the system for single
file is defined by the relation

max(Rmax ) = 2l (3)

where l denotes the length of the receptor in bits. 8-bit pseu-
dorandom numbers from the range [0; 255] are generated
and used to create receptors of size l. The number of 8-bit
receptor fragments is denoted by

f = ceil(div(l, 8)) (4)

where the div(a, b) operation denotes division of a by b and
the function ceil(a) denotes the ceiling of the number a.
The generated 8-bit fragments are concatenated to obtain a
random receptor.
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01001011 11011001 00000101 11101111

4B D9 05 EF

a)

b)

Fig. 8 An example of random receptor generation for l = 28, f = 4.
Redundant digits are denoted in bold: a binary representation and b
hexadecimal representation

11100001 10011010

E1 9A

a)

b)

Fig. 9 An example of random receptor generation for l = 16, f = 2,
no redundant digits: a binary representation and b hexadecimal repre-
sentation

If l is not divisible by 8, there are redundant bits in the
receptor. Redundant bits are stored in memory, but not used
in the generation and detection algorithms.

Two examples of random receptor generation are shown in
Figs. 8 and 9. The example shown in Fig. 8 illustrates gener-
ated pseudorandom 4-byte numbers: (4B)16, (D9)16, (05)16
and (EF)16. They have been concatenated, resulting in a
32-bit number (4BD905EF)16. However, l = 28, therefore
4 bits of this number will not be used in the proposed algo-
rithms. In the example shown in Fig. 9, there are no redundant
bits, because l = 16 is divisible by 8. Two pseudorandom
8-bit numbers (E1)16 and (9A)16 result in the 16-bit number
(E19A)16. Both resulting numbers from Figs. 8 and 9 may
become receptors if they do not match any self structures.

4.2 Detection of anomalies

The random receptor generation algorithm has been used to
detect anomalies in the same monitored program as in the
case of template anomaly detection algorithm. In the begin-
ning, the receptors in the set of receptors are counted and the
number of all receptors is denoted by Rn . To detect anoma-
lies, the algorithm reads fragments of program code of size
l, and compares them with subsequent receptors in the same
manner as in the case of the template intrusion detection
algorithm.

Ifm subsequent bits are matched, the receptor is activated
and an anomaly is detected. Information about the anomaly
and its location is sent to the user.

5 Experimental results

The proposed system has been implemented in C# to test and
verify the effectiveness of its anomaly detection. Two kinds
of experimental tests were conducted.

The first test, called the benchmark test, involved a small
sample Win32 PE executable file being manually injected

with anomalies. The anomalies had random content, were
placed at random file positions, and were of increasing size.
The benchmark test was performed for two receptor genera-
tion methods: a template-based method (four variations) and
random generation.

The second test involved real-worldmalware infecting the
monitored files, which were modules of the Microsoft Win-
dows operating system.

5.1 Benchmark tests

For the benchmark testing, an example file called “test.exe”
with a size of 6584 bytes was written in C++ in Win32 PE
format. The sample file displays a Testmessage on the screen
before closing.

Since real-world infections usually modify the original
binary data on various file positions, the approach for select-
ing the anomaly data used in this research allowed for
file-position independent anomaly detection. The anomalies
introduced into the program had sizes from the range [1 B;
8 B], incrementally with a one byte step. This range allowed
testing the detection system in the worst case scenario, which
would be a one-byte alteration by the infection in the pro-
gram, as well as slightly better case scenarios with anomalies
of sizes 2 B and up.

A detection attempt is the scanning of the entire program
file in its current version using the receptors generated before-
hand. Knowing that under the test conditions an anomaly has
definitely been introduced in the program, a detection attempt
can either yield a positive result (which would be counted as
a successful detection in the statistics) or a negative result.
For each size of the anomalies, 100 detection attempts were
made.

The content of each anomaly bytes was generated ran-
domly, which allowed testing the system against unknown
infections. In the real world, the infected program bytes
would not be as diverse, because they would constitute
machine code bytes, which could be repetitive and limited.

For example, when it comes to an anomaly size of 1 B,
a one-byte anomaly with random content was introduced in
the program at a random position. A detection attempt would
follow. This processwas then repeated for a total of 100 times
for that particular anomaly size, each time with new, random
anomaly content and a random position to yield a detection
rate for that specific size, independent of the content and
location of the anomaly.

5.1.1 Template-based methods

The following template-based methods were used for the
testing: the method of 32-bit templates (S-32), the method
of 32-bit templates and 16-bit templates (ICR intercellular
receptors), the section method (SM), and a method com-
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Table 3 S-32 method, Rn = 32

Size of anomaly (B) MAR DTavg D (%)

1 4 12 30

2 3 22 50

3 8 8 20

4 2 13 30

5 14 21 50

6 6 26 60

7 6 26 60

8 8 35 80

Average 6.375 20.375 47.50

Table 4 ICR method, Rn = 46

Size of anomaly (B) MAR DTavg D (%)

1 4 12 30

2 3 22 50

3 11 8 40

4 11 13 70

5 14 21 50

6 6 26 60

7 6 26 60

8 11 8 100

Average 8.25 17 57.50

Table 5 SM method, Rn = 780

Size of anomaly (B) MAR DTavg D (%)

1 5 10 60

2 7 17 100

3 9 16 90

4 11 20 100

5 13 20 100

6 15 17 100

7 24 16 100

8 20 19 100

Average 13 16.875 93.75

bining the ICR and SM approaches, denoted by SM+I. The
following parameters were used: l = 32 and m = 16 for
method S-32, l = 32 and m = 16 for the receptors R and
l = 16 and m = 8 for the intercellular receptors RI in the
ICR method, and l = 32 and m = 8 for the SMmethod with
the number of sections equal to four.

The results of the experiments are presented in Tables 3,
4, 5, and 6, where MAR denotes the maximum number of
activated receptors for 100 attempts, DTavg denotes the aver-
age time needed for an anomaly detection in milliseconds,
and D denotes the percentage of anomalies detected.

Table 6 SM+I method, Rn = 870

Size of anomaly (B) MAR DTavg D (%)

1 6 9 90

2 9 15 100

3 10 13 100

4 13 17 100

5 14 12 100

6 19 13 100

7 27 12 100

8 33 11 100

Average 16.375 12.75 98.75

Table 7 Random method, Rmax = 1000, Rn = 927

Size of anomaly (B) MAR DTavg D (%)

1 1 1046 10

2 1 1030 20

3 1 1041 40

4 1 1020 20

5 1 1025 30

6 3 1037 20

7 2 1050 20

8 2 1045 20

Average 1.5 1036.75 22.50

Table 8 Random method, Rmax = 5000, Rn = 4693

Size of anomaly (B) MAR DTavg D (%)

1 1 5396 30

2 2 5321 50

3 2 5313 40

4 3 5311 70

5 4 5298 90

6 4 5264 60

7 4 5348 80

8 5 5211 60

Average 3.125 5307.75 60

5.1.2 Random-based method

The test conditions were the same as before. The experimen-
tal tests were carried out using the following values of the
parameters: l = 32 and m = 16. The results are shown in
Tables 7, 8, and 9.

5.2 Real-world tests

The system was tested in two real-world scenarios. The first
of the two tested scenarios was a single malware sample
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Table 9 Random method, Rmax = 10,000, Rn = 9427

Size of anomaly (B) MAR DTavg D (%)

1 2 10,072 40

2 3 10,017 40

3 2 10,020 90

4 3 10,072 60

5 4 10,063 90

6 3 9952 100

7 3 10,216 100

8 5 9995 100

Average 3.125 10,050.875 77.50

launched in an environment monitored by the proposed sys-
tem. The second scenario was a stress test involving a virtual
machine and ten malware samples.

5.2.1 Single malware sample test

A monitored (secure) folder was set up with three important
Microsoft Windows operating system modules inside—
“secinit.exe”: a module initializing the security in the
operating system, “backgroundTaskHost.exe”: a module for
hosting background tasks in the operating system, and
“regsvr32.exe”: a program for theMicrosoft Register Server.

After being launched, the proposed IDS generates a sep-
arate receptor set for each of the three monitored files in
their initial, unmodified state. Two variations of template-
based methods were used for the receptor generation: the
S-32 method with parameters l = 32 and m = 10, and
a variation with parameters l = 16 and m = 10. After
the receptor sets were ready, a real-world malware sam-
ple (“padania.exe”) was launched in the operating system.
The malware sample chosen for this purpose is a file infec-
tor named “Virus:Win32/Padania!epo” (Microsoft Security
Intelligence name) with a size of 8192 B. The malware is a

memory resident virus writing itself to the EXE files it finds
in the system, overwriting the .reloc section of the EXE files
with malicious code.

The proposed IDS then detected the infections in themon-
itored files. The results of the detections are presented in
Tables 10 and 11, where TGT is the template generation
time in ms, Rn is number of receptors generated, RGT is the
receptor generation time in ms, ADT is the anomaly detec-
tion time in ms, MC is the number of matched receptors,
and RM is the receptor memory footprint in bytes. It can be
observed that the system reached a 100% detection rate in a
real-world scenario involving the Padania virus.

5.2.2 Virtual machine stress test

To illustrate the false positive and false negative rates of our
proposed approach, the system was tested inside a Windows
virtual machine (VM). The system was installed in the VM
andwas set up tomonitor the file “backgroundTaskHost.exe”
described in Sect. 5.2.1 using the parameters l = 16 and
m = 10.

The stress test involved launching ten different malware
programs, randomly chosen from a virus research database,
in the environment of the virtual machine, sequentially, and
checking whether the infection of the monitored file by each
malware was detected by the system. A lack of detection of
the infection is called a false negative and occurs when the
detected anomaly count does not change from the previous
infection even though the monitored file has been modified
by the malware.

On the other hand, a detection that should not have
occurred is called a false positive. It is important to remark
that anymodifications to themonitored files without regener-
ating the receptors would be marked as an intrusion, causing
false positives. It is therefore imperative to regenerate the
receptor set every time the files are modified in a legitimate

Table 10 Virus detection results, l = 16, m = 10

Monitored file name Size (B) TGT (ms) Rn RGT (ms) ADT (ms) MC RM (B)

secinit.exe 10,044 3185 680 26,295 2482 192 1360

backgroundTaskHost.exe 17,720 5616 45 176 252 5 90

regsvr32.exe 25,404 7296 350 5241 2540 6 700

Table 11 Virus detection results, l = 32, m = 10

Monitored file name Size (B) TGT (ms) Rn RGT (ms) ADT (ms) MC RM (B)

secinit.exe 10,044 5079 1015 246,374 5350 611 4060

backgroundTaskHost.exe 17,720 8924 289 17,660 1616 25 1156

regsvr32.exe 25,404 11,437 606 74,296 4552 19 2424
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fashion, for example when they are updated with newer ver-
sions. This behavior was also tested in this experiment.

The results of the VM stress tests, based on the logs from
the proposed IDS, are presented in Table 12, where T+
denotes the number of seconds since the start of the test,
“Event” highlights a specific event that happened at the time,
FP and FN denote the total number of false positives and
false negatives counted until that event so far, respectively,
and AC denotes the current detected anomaly count at the
time of the event. Microsoft Security Intelligence malware
names have been chosen for use as such in this paper.

The experiment timer was started with the launch of the
system in the VM and stopped when all malware samples
had been tested. The experiments ran for 284.2 s in total. It
can be observed that generating the templates and receptors
took 5.2 s, after which the monitoring for anomalies started.
At T + 23 s the monitored file was updated with a newer
version by the user. This generated a false positive anomaly
detection 0.1 s later due to the nature of the system, which
has to be informed about legitimate modifications to the file.
The receptor regeneration command was then issued, and
after the algorithms completed their work, the monitoring
restarted 5.4 s later.

The malware tests started at T + 84.7 s, when the first
malware sample, Win32/Sality.F, was executed in the virtual
machine. The proposed system detected the infection 7.7 s
laterwith 910 anomaly bytes being detected by the algorithm.
The system correctly identified four infections, after which it
produced a false negative at T +190.7 s. TheWin32/Alma.A
and Win32/Kvex.A samples were then detected correctly,
after which the system produced a false negative on onemore
malware sample. The monitoring was stopped at T +284.2 s
after the last sample, Win32/Ataxia.B had been tested posi-
tively.

It can be observed that the total number of false positives in
this experiment was 1 and the total number of false negatives
was 2. Therefore, because 11 tests in all were performed
(including themonitored file update at T+23 s), the proposed
system achieved a 73% success rate with regard to detecting
random infections in a real-world scenario.

6 Comparative analysis

In the benchmark tests, the generation of receptors was done
for the uninfected program for every method mentioned
before: S-32, ICR,SM,SM+ I, and random.The timeneeded
for generating the receptors (except for the random receptor
generation) was 140 s for S-32, 175 s for ICR, 290 s for
SM, and 325 s for SM + I. The time needed for the ran-
dom receptor generation was 1 s for Rmax = 1000, 5 s for
Rmax = 5000, and 10 s for Rmax = 10000. The detec-
tion rates as functions of the anomaly size for the template
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Fig. 10 Detection ratio as a function of anomaly size for templatemeth-
ods
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Fig. 11 Detection ratio as a function of anomaly size for the random
method

methods are plotted in Fig. 10 and for the random method in
Fig. 11.

For the tested file “test.exe” 0.23 receptors were generated
per second by the S-32method, and 1003.1 receptors per sec-
ond by the randommethod. Although receptors are generated
in only one second in the randommethod, the detection ratio
is significantly lower: 22.5% for Rmax = 1000 in compari-
son to 47.5% for the S-32 method. Increasing Rmax to 5000
improves the detection ratio to 60%, at the expense of the
memory footprint. The implementation of 16-bit receptors
in ICR increased the average detection ratio to 57.5% and
decreased the average detection time from 20.4 to 17 ms.
The memory footprint was increased by an additional 14 16-
bit receptors in RI . The ICR method uses only 464 bytes
of operational memory cells, while the random method for
Rmax = 5000 uses 4693 memory cells. The average detec-
tion time is 17 ms for the ICR method, and 5307.75 ms for
the random method. The time needed to generate the recep-
tors equals 120 s for the ICR method, and 5 s for the random
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Table 12 Virtual machine test
results

T+ (s) Event FP FN AC

0 Generation started 0 0 0

5.2 Generation finished 0 0 0

5.2 Monitoring started 0 0 0

23 Modified a monitored file 0 0 0

23.1 Anomalies detected 1 0 6

43.3 Regeneration command issued 1 0 6

43.3 Monitoring paused 1 0 6

43.3 Regeneration started 1 0 6

48.7 Regeneration finished 1 0 0

48.7 Monitoring restarted 1 0 0

84.7 Executed Virus:Win32/Sality.F 1 0 0

92.4 New anomalies detected 1 0 910

117.8 Executed Virus:Win32/Amelg.A 1 0 910

118.2 New anomalies detected 1 0 931

143 Executed Virus:Win32/Delf.T 1 0 931

143.3 New anomalies detected 1 0 599

161.8 Executed Virus:Win32/Arcer.A 1 0 599

169.3 New anomalies detected 1 0 600

180.7 Executed Virus:Win32/Horope.A 1 0 600

190.7 No new anomalies detected 1 1 600

191.7 Executed Virus:Win32/Alma.A 1 1 600

192 New anomalies detected 1 1 602

208.1 Executed Worm:Win32/Kvex.A 1 1 602

208.5 New anomalies detected 1 1 1184

228.7 Executed Virus:Win32/Velost.1186 1 1 1184

253.1 No new anomalies detected 1 2 1184

254.1 Executed Virus:Win32/Jeefo.F 1 2 1184

254.7 New anomalies detected 1 2 1599

274.1 Executed Virus:Win32/Ataxia.B 1 2 1599

275.7 New anomalies detected 1 2 1687

284.2 Monitoring stopped 1 2 1687

method. The average detection ratio is comparable for both
methods. It can be observed that the template methods gener-
ate fewer receptors per second, and they occupy less memory
cells. This gives a shorter average detection time than in the
random method. Upon increasing Rmax to 10,000 in the ran-
dom method, the average detection ratio increased to 77.5%.
By the use of the SMmethod, the detection ratio increased to
93.75%, the number of receptors increased from 32 to 780,
increasing the memory use and the time needed to generate
the receptors to 150 s. It can be also observed that the detec-
tion ratio for S-32 increases when the size of the anomaly
increases: for a 3-B anomaly it is 30% and for a 4 B one it is
60%. In the case of the randommethod for Rmax = 1000, the
detection ratio for anomalies above 3 B was approximately
30%. It can be observed that combining the section method
(SM) with ICR (producing the SM + I method) achieved

an average detection rate of 98.75%, which is the best result
of all the aforementioned methods, but comes at the price of
high receptor generation times and a largermemory footprint.
The analysis shows that our novel ICR approach grants better
detection rates in comparison with S-32 or random genera-
tion approaches for the IDS. Because 100 detection attempts
were conducted for each anomaly size, the tests have a greater
reliability with regard to achieving the same pattern of results
in all common cases.

7 Performance and scalability

Based on the experiments presented in this paper, the pro-
posed system has its advantages as well as its limitations.
When it comes to real-world performance, generating the
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templates for the monitored files took between 3 s at best
and 11.4 s at worst, depending on the sizes of the recep-
tors and the files. The template generation time increased by
roughly 2 s per each 7 kB of program data for 16-bit receptors
and by about 3.5 s for each 7 kB of program data for 32-bit
receptors.

The template generation times increase with file size and
receptor bit size, but the receptor generation times decrease
with file size, along with the receptor count. This is because
with a bigger file, there is a greater chance that it will have
more unique memory cells, shrinking the pool of possible
receptors, as they cannot detect self structures. The fewer the
receptors, the smaller the possibility of detecting an infection.
Hence, monitored files that have a larger entropy (e.g., com-
pressed or encrypted infected files)will yieldworse detection
rates with the proposed system than theywould do if they had
a smaller entropy. This means that the system works better
with files that have less diverse content.

As the monitored file size increases, fewer and fewer
receptors are generated, until eventually the count becomes
0 and it is impossible to detect any intrusions for the given
parameters l and m. This places a limitation on the moni-
tored file size, for the given parameters. The solution to this
problem is to increase l and m. Another limitation, however,
is the fact that as observed in Tables 10 and 11, doubling the
value of the parameterm from 16 to 32 caused approximately
10 times longer receptor generation times. By continuously
increasing m, a point might be reached at which generating
the receptors takes too long for the proposed system to remain
viable in the chosen environment.

The viability and validity of the usage of the system relies
on conditions such as the speed of the CPU, storage space,
and size of the installed volatile memory. The receptors gen-
erated by the proposed IDSmaybe stored in both non-volatile
and volatile memory, and their memory footprint can be
vastly smaller than the monitored file itself, as evidenced
by research data in Table 10 (e.g., only 90 bytes of recep-
tor memory for a file of size 17720 B). This allows users
employing the proposed IDS to exchange some CPU usage
for smaller storage occupancy, as opposed to a system where
a copy of the original executable might be kept at hand at all
times, increasing the storage occupancy.

The effect of the IDS on overall system performance was
measured during the virtual machine stress tests. The mea-
sured parameters were the CPU usage (%) and the memory
usage (MB). The measurements are presented in Figs. 12
and 13. The CPU usage in a situation with no infections is at
an average of 8% and the memory usage is about 19.7 MB.
The drops to near zero CPU usage every second take place
because after scanning all themonitored files, the IDS pauses
for a second before it resumes scanning from the beginning.
It can be observed that the CPU usage in Fig. 12 spiked to
70% twice: at about 4 s, and at about 44 s into the experiment.
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Fig. 12 CPU usage by the proposed IDS in the virtual machine stress
test as a function of time
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Fig. 13 RAM usage (MB) by the proposed IDS in the virtual machine
stress test as a function of time

This is because although the template and receptor generation
algorithms have to be called rarely, they are CPU intensive.
It can also be observed that the IDS CPU usage rose to 25%–
30% after about 100 s into the experiment, when the virtual
machine was under very heavy malware load. One of the rea-
sons for this behavior is the use of modest VM parameters
for the experiment (512 MB RAM, 1 CPU core @ 3.2 GHz).

The IDS memory usage started at 18.5 MB, before the
initial generation of the receptors. This was the memory cost
of the C# runtime and the graphical user interface of the pro-
posed system. It can be observed that the IDS memory usage
rose by 0.7 MB each time the receptors were generated (at
5 s, and at 50 s). The increases in memory footprint were due
to the requirement to store the newly generated set of recep-
tors and because of the C# object memory overhead (i.e.
the necessity to store extra information about the generated
objects for runtime garbage collection and other purposes).
A decrease inmemory usage by 0.4MBwas recorded at 65 s.
The decrease was due to the C# runtime garbage collection
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routines eliminating receptors (along with their overhead)
thatwere not used anymore after the regeneration.After elim-
inating theunused receptor objects thememory size remained
at 19.7MB until the end of the experiments. The average IDS
CPU usage in the virtual machine experiment was 17.3%,
the maximum CPU usage reached 70%, the average mem-
ory usage was 19.7 MB, and the maximum memory usage
was 20.1 MB. The CPU and memory usage by the IDS could
be reduced by implementing the algorithms in a lighter lan-
guage, like C.

The proposed system can be applied not only for malware
detection. For example, the proposed system could work in
a small operating system environment where it is imperative
to protect certain files from unauthorized modification, such
as firmware or bootloader files in embedded systems, where
the amount of installed storage space may be limited and
conserving it is desired.

Another use case of the proposed IDS would be having a
requirement to know where the anomaly has occurred in the
monitored program. Learning where the anomaly occurred
in the program would normally require storing a backup of
the original program file for comparison. The system allows
the detection of program anomalies in systems where it is
desired to know the location of anomalies in the programs,
and storing backups of unmodified programs is not desired,
for example in limited disk space scenarios. The receptors use
vastly smaller amounts of memory in comparison to storing
backups of unmodified programs.

The approach used by the proposed IDS, an immune based
approach, allows detecting unknown infections, in contrast
to non-immune, signature-based approaches, which do not
possess the ability to search for unknown infections.

8 Concluding remarks

The proposed system adopts an artificial immunemechanism
called a negative selection algorithm to detect anomalies in
program files. For the purpose of comparison, the negative
selection algorithm was implemented in two versions: the
novel template receptor generation proposed in the present
paper, and random generation of receptors. Series of tests
were carried out for both versions. The results show that our
novel algorithm, based on templates, provides better detec-
tion ratios, shorter detection times, and lower memory use
than the random generation algorithm. The most effective
variant of this template method was the section method with
intercellular receptors (SM + I). Real-world tests were con-
ducted with real malware, and the results show the viability
of the system.

Futureworkwill be carried out to discover the dependence
of the detection rate as a function of the number of bits of

the receptors and the size of the activation threshold. The
problem of holes in the system will also be explored further.
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