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Abstract: Forcecardiography (FCG) is a novel technique that measures the local forces induced on
the chest wall by the mechanical activity of the heart. Specific piezoresistive or piezoelectric force
sensors are placed on subjects’ thorax to measure these very small forces. The FCG signal can be
divided into three components: low-frequency FCG, high-frequency FCG (HF-FCG) and heart sound
FCG. HF-FCG has been shown to share a high similarity with the Seismocardiogram (SCG), which is
commonly acquired via small accelerometers and is mainly used to locate specific fiducial markers
corresponding to essential events of the cardiac cycle (e.g., heart valves opening and closure, peaks
of blood flow). However, HF-FCG has not yet been demonstrated to provide the timings of these
markers with reasonable accuracy. This study addresses the detection of the aortic valve opening
(AO) marker in FCG signals. To this aim, simultaneous recordings from FCG and SCG sensors were
acquired, together with Electrocardiogram (ECG) recordings, from a few healthy subjects at rest, both
during quiet breathing and apnea. The AO markers were located in both SCG and FCG signals to
obtain pre-ejection periods (PEP) estimates, which were compared via statistical analyses. The PEPs
estimated from FCG and SCG showed a strong linear relationship (r > 0.95) with a practically unit
slope, and 95% of their differences were found to be distributed within ± 4.6 ms around small biases
of approximately 1 ms, corresponding to percentage differences lower than 5% of the mean measured
PEP. These preliminary results suggest that FCG can provide accurate AO timings and PEP estimates.

Keywords: forcecardiography; seismocardiography; mechanocardiography; pre-ejection period;
systolic time intervals; cardiac monitoring; cardiac function

1. Introduction

In recent decades, continuous, non-invasive, mechanical assessment of cardiovascular
function has been pursued through alternative techniques to ultrasound, such as Seismocar-
diography (SCG) [1–3], Ballistocardiography (BCG) [4–6], Gyrocardiography (GCG) [7,8]
and Kinocardiography (KCG) [9,10]. SCG is undoubtedly the most mature of these tech-
niques that is also suitable for wearable applications, and, in fact, it is currently regarded
as a reference for cardiomechanical monitoring. SCG is usually performed via small and
lightweight accelerometers based on Microelectromechanical System (MEMS) technologies,
which are usually placed on different sites of subjects’ chest, such as the xiphoid process,
the sternum body, the manubrium, the left and right sternal borders, the left and right
clavicles [3]. Most applications that are aimed at performing continuous cardiac monitoring
of subjects usually provide for the localization of specific peaks and valleys of the SCG
signal, which relate well with various events of the cardiac cycle. Examples of such events
are opening and closure of heart valves, isovolumic contraction, cardiac filling and blood
injection [2]. The temporal relationship between peaks and valleys of SCG and cardiac
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cycle events was first thoroughly assessed in the study by Crow et al. [11] via comparison
with Echocardiography. This led to the definition of the following nine fiducial markers:

• Peak of atrial systole (AS);
• Mitral valve closure (MC);
• Isovolumic movement (IM);
• Aortic valve opening (AO);
• Isotonic contraction (IC);
• Peak of rapid systolic ejection (RE);
• Aortic valve closure (AC);
• Mitral valve opening (MO);
• Peak of rapid systolic filling (RF);

which are largely recognized as the fundamental SCG markers [2,3]. More recently, further
echocardiographic studies have been conducted to characterize the relationship between
SCG fiducial markers and cardiac cycle events [12–15]. In particular, Lin et al. analyzed the
SCG signals acquired from the four heart sounds auscultation sites and their relationship
with different events of the cardiac cycle, also defining new SCG fiducial markers, e.g., left
ventricular lateral wall and septal wall contraction peak velocities and trans-aortic and
trans-pulmonary peak flows [12]. The timings of the SCG markers allow estimating time
intervals that give important insights into cardiac mechanics, such as pre-ejection period
(PEP), left ventricular ejection time, rapid diastolic filling time, isovolumic contraction and
relaxation times [11–16]. In particular, the PEP, which is commonly defined as the time
interval between the onset of the QRS complex (i.e., the Q-wave) in the Electrocardiogram
(ECG) signal and the subsequent AO event in the SCG, has been the subject of numerous
studies because of its key role in determining the health status of patients with heart
failure [17–20].

In addition to the latest techniques that rely on inertial sensors (e.g., GCG and KCG),
a novel technique based on force sensors has recently been proposed: Forcecardiography
(FCG). FCG measures the local forces induced on the chest wall by the mechanical activity
of the heart and lungs [21–23]. The first forcecardiographic recordings were acquired via
a custom-designed, piezoresistive force sensor, which had already been used in muscle
contraction monitoring [24] and hand gestures recognition [25]. The sensor consists of a
Force Sensitive Resistor (FSR), which transduces changes in pressure exerted on its active
area into changes in its electrical resistance, equipped with a dome-shaped mechanical
coupler, which ensures a good transduction of the forces originating from human tissues to
the active area of the sensor. The changes in electrical resistance are finally transduced into
voltage signals via a transimpedance amplifier circuit [21]. Simultaneous recordings have
been performed via an FSR-based sensor and a MEMS accelerometer, rigidly attached to
each other, to compare FCG and SCG signals acquired from the xiphoid process on subjects
under resting apnea conditions. The results showed that, in addition to a component
(referred to as HF-FCG), which turned out to be very similar to SCG, the FCG signals
showed up with a further component (referred to as LF-FCG) that featured large, low-
frequency, negative force peaks occurring approximately at the end of the ECG T-waves,
which corresponded to forces directed inward. The slow oscillations observed in the LF-
FCG signals appear to be associated with ventricular emptying and filling events and
cannot be appreciated in SCG, which, therefore, seems not able to provide information
about this aspect of cardiac mechanics. The FSR-based FCG sensor has also been tested
on subjects at rest while breathing at various rates and has been shown to be suitable
for simultaneous cardiorespiratory monitoring [22]. Indeed, the raw signal provided by
the FCG sensor consists of two main components: the Forcerespirogram (FRG), which
reflects the respiratory activity, and the actual Forcecardiogram, which captures the cardiac
activity. In a very recent study, a novel piezoelectric FCG sensor has been proposed for
multimodal cardiorespiratory sensing [23]. The sensor can monitor respiration, infrasonic
cardiac vibrations and heart sounds, allowing multiple physiological signals to be captured
simultaneously from a single point of contact on the chest. In particular, the HF-FCG
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and HS-FCG (heart sounds component of FCG) signals provided by the piezoelectric
FCG sensor turned out to be very similar to SCG and Phonocardiographic (PCG) signals,
respectively. Therefore, FCG could be used for the measurement of cardiac time intervals
(by detecting the fundamental SCG markers) and, at the same time, of respiration intervals
and heart sounds, which cannot be captured by common SCG accelerometers. For this
reason, FCG potentially has a much wider spectrum of clinical applications than SCG.
However, FCG has not yet been demonstrated to provide the timings of well-established
SCG markers with reasonable accuracy, and this currently limits the possibility to obtain
the same valuable information provided by SCG.

This study addresses the detection of the AO marker in FCG signals. To this aim, FCG,
SCG and ECG signals were acquired simultaneously from three subjects at rest, both during
quiet breathing and apnea. The AO markers were located in both SCG and FCG signals
to obtain PEP estimates, which were compared via statistical analyses. The results of this
preliminary study suggest that FCG is able to provide timings of AO events and estimates
of PEP with high accuracy and precision as compared to SCG.

2. Materials and Methods
2.1. Measurement Setup and Protocol

The piezoelectric FCG sensor presented in [23] and a Freescale MMA7361 accelerome-
ter were rigidly fixed to each other to simultaneously acquire FCG and SCG signals from
the same point on the chest (see Figure 1). As in [21–23], the FCG sensor was equipped
with a dome-shaped mechanical coupler that ensures good mechanical transduction from
subjects’ skin. A WelchAllyn Propaq® Encore monitor (Welch Allyn Inc., New York, NY,
USA) was used to acquire electrocardiographic recordings.
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Figure 1. Sensors assembly: piezoelectric FCG sensor with a dome and an MMA7361 accelerometer.

Three healthy volunteers (2 males, 1 female, age 29.7 ± 2.52), who signed the informed
consent, were asked to comfortably sit on a chair, leaning against the seatback while
keeping their back straight. The FCG and SCG sensors assembly was placed onto the
xiphoid process of each subject via a medical adhesive tape and then fastened with a belt
around the thorax. Figure 2 shows frontal and lateral views of a subject equipped with
the FCG/SCG sensors assembly. Simultaneous acquisitions of FCG and dorso-ventral
SCG signals, together with an ECG lead I, were carried out via a National Instrument
NI-USB4431 DAQ board (National Instruments Corp., 11,500 N Mopac Expwy, Austin,
TX 78759-3504, USA), with 24-bit precision and 10 kHz sampling frequency. Multiple
acquisitions were performed for each subject, both during quiet breathing and apnea.
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2.2. Signal Processing

The Forcerespirogram was first subtracted from the raw FCG sensor signals acquired
during quiet breathing in order to isolate the actual FCG signal. As in [22,23], the FRG was
extracted via a 3rd order Savitzki–Golay filter [26], with a frame length corresponding to
about a 1.5 s interval. The actual FCG signals resulting from the respiration signal removal
were then band-pass filtered in the 7–30 Hz frequency band via a 2nd order zero-lag
Butterworth filter to extract the HF-FCG component. The raw FCG sensor signals acquired
during apnea were directly band-pass filtered to obtain the HF-FCG components. The first
derivatives of the HF-FCG signals thus obtained were finally computed and referred to as
dHF-FCG (the derivatives were computed as finite forward differences). The dorso-ventral
SCG signals were obtained from the raw z-axis acceleration signals via the same 2nd order
zero-lag Butterworth filter used to extract the HF-FCG components from the FCG signals.

2.3. Morphological Comparison between FCG and SCG Signals

The ECG-triggered ensemble averages (synchronized with R-peaks) of SCG, HF-FCG,
dHF-FCG and ECG signals acquired in apnea conditions were computed. To this aim, the
R-peaks were first located in the ECG signal via the “BioSigKit” MATLAB® toolbox, which
implements the well-known Pan and Thompkins algorithm [27]. Then, the normalized
cross-correlation indices and the time lags of the ensemble averages of HF-FCG vs. SCG
and dHF-FCG vs. SCG were evaluated for each subject. As shown in the Section 3, the
dHF-FCG and SCG signals scored both a higher normalized cross-correlation index and a
lower time lag; therefore, the dHF-FCG signals were actually used for the estimation of
PEP from FCG recordings.

2.4. Statistical Analyses on Pre-Ejection Period Estimates

The PEPs were estimated as the intervals between the ECG Q-waves, provided by
“BioSigKit”, and the related AO markers located on both SCG and dHF-FCG signals. The
AO markers were located by taking advantage of the a priori knowledge of the R-peaks
locations [23], and the missed AO events were annotated for each subject. Regression,
correlation and Bland–Altman analyses of the PEP estimates obtained from SCG and dHF-
FCG signals were carried out via the MATLAB® function “bland-altman-and-correlation-
plot” [28].

3. Results
3.1. Morphological Comparison between FCG and SCG Signals

Some excerpts of HF-FCG, dHF-FCG, SCG and ECG signals from subjects #1 and #3
are depicted in Figure 3. It could be noted by visual inspection that the HF-FCG is lagged
with respect to the SCG, and their peaks and valleys do not match very well. Indeed, the
peaks and valleys of SCG appear as corresponding to the points of maximum slope of the
HF-FCG. The dHF-FCG, on the other hand, is practically synchronous with the SCG and
features peaks and valleys that match those of SCG remarkably well.

Figure 4a,b depict, respectively, the ensemble averages of HF-FCG, SCG and ECG and
of dHF-FCG, SCG and ECG for subject #1, while Figure 4c,d depict the same signals for
subject #3. Table 1 reports the normalized cross-correlation indices and the time lags for
each subject. As a reconfirmation of what has been observed in Figure 3, in Figure 4, it can
be noticed that the ensemble averages of dHF-FCG and SCG showed up with almost the
same peaks and valleys. Moreover, dHF-FCG and SCG scored, at the same time, higher
normalized cross-correlation indices and lower time lags with respect to HF-FCG and SCG
(on average, 0.80 vs. 0.87, 14.7 ms vs. −0.7 ms). These results, which are consistent across
the subjects involved in the study, suggest that the first derivative of the HF-FCG signal
captures the salient features of the SCG signal better than the HF-FCG signal itself. For this
reason, the dHF-FCG was used to locate the AO events and obtain the PEP estimates to be
compared with the SCG ones.
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Figure 4. (a) Ensemble averages of HF-FCG, SCG and ECG of subject #1; (b) ensemble averages of
dHF-FCG, SCG and ECG of subject #1; (c) ensemble averages of HF-FCG, SCG and ECG of subject #3;
(d) ensemble averages of dHF-FCG, SCG and ECG of subject #3. The ensemble averages are depicted
as solid lines, while the limits of the ± SD ranges are depicted as dashed lines.
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Table 1. Normalized cross-correlation indices (NCC) and time lags between the ensemble averages
of HF-FCG vs. SCG and dHF-FCG vs. SCG for each subject. Positive time lags corresponded to FCG
signals delayed with respect to SCG.

Subject HF-FCG vs. SCG dHF-FCG vs. SCG
NCC Lag (ms) NCC Lag (ms)

#1 0.8333 18.6 0.9107 1.2
#2 0.7764 14.7 0.8988 −2.2
#3 0.7773 10.7 0.7998 −1.2

3.2. Statistical Analyses on Pre-Ejection Period Estimates

In Table 2, the number of heartbeats detected in ECG, as well as the number of missed
AO events detected in SCG and dHF-FCG, both in quiet breathing and apnea tests, are
reported for each subject. According to these results, the SCG and dHF-FCG scored a
sensitivity of 100% and 99.8% in apnea and quiet breathing conditions, respectively.

Table 2. Number of heartbeats in ECG and of missed AO events in SCG and in dHF-FCG for each
subject in quiet breathing and apnea conditions.

Subject Heartbeats in ECG Missed AO in SCG Missed AO in dHF-FCG
Apnea Quiet Breathing Apnea Quiet Breathing Apnea Quiet Breathing

#1 112 200 0 0 0 0
#2 54 118 0 0 0 0
#3 61 106 0 1 0 1

Figure 5 shows the results of the regression, correlation and Bland–Altman analyses
that were performed on a total of 227 PEP estimates obtained from SCG and dHF-FCG
signals acquired during apnea tests. The statistical analyses reported a slope and intercept
of 0.964 and 5.4 ms (R2 = 0.92) and a bias of 1.2 ms (p < 0.0001) with limits of agreement of
(−2.9; 5.4) ms. In Figure 6, the results of statistical analyses of PEP estimates obtained from
signals acquired during quiet breathing are depicted. The analyses were performed on a
total of 423 PEP estimates and reported a slope and intercept of 0.919 and 9.8 ms (R2 = 0.92),
as well as a bias of 1.4 ms (p < 0.0001), with limits of agreement of (−3.2; 6.0) ms.
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4. Discussion

This study focused on the detection of the aortic valve opening events in FCG signals,
which were acquired via the piezoelectric FCG sensor presented in [23], together with
SCG and ECG signals. The HF-FCG component was extracted from the FCG signals
via zero-lag band-pass filtering, which was used to process also the SCG signals. The
morphologies of the HF-FCG signal and of its first derivative (dHF-FCG) were compared
with the morphology of the SCG signal by evaluating the normalized cross-correlation
index and the time lag of their ECG-triggered ensemble averages (synchronized with the
R-peaks). The results of this morphological analysis showed that dHF-FCG exhibited the
highest similarity with SCG. Indeed, from a quantitative point of view, dHF-FCG scored
both higher normalized cross-correlation indices and lower time lags with SCG; from a
qualitative point of view, the dHF-FCG signals showed up with peaks and valleys almost
matching those of the SCG signals. Moreover, from visual inspection of Figures 3 and 4,
it could be noticed how peaks and valleys of SCG corresponded to points of maximum
positive/negative slope of HF-FCG. This finding suggests the existence of a derivative
relationship between SCG and HF-FCG, which could explain the higher time lags observed
between them, as well as the higher similarity between SCG and the first derivative of
HF-FCG. The reason behind this derivative relationship is currently not clear and may lie in
the dynamic response of the piezoelectric sensor; this phenomenon undoubtedly deserves
an in-depth investigation, which is out of the scope of this research and will be addressed
in future studies.

Based on these results, the dHF-FCG was actually used to locate the AO events in the
FCG recordings and then to obtain the PEP estimates to be compared with those extracted
from SCG. The measurements of PEP obtained from FCG and SCG showed a strong linear
relationship (r > 0.95) with a practically unit slope, and 95% of their differences were found
to be distributed within ±4.6 ms around small biases of approximately 1 ms, corresponding
to percentage differences lower than 5% of the mean measured PEP. These preliminary
results, as compared to the results of other studies that analyzed the performances of
different techniques for PEP estimation [14,29,30], suggest that FCG can provide accurate
measurements of PEP in subjects at rest. Indeed, Dehkordi et al. [14] reported that 95%
of the differences between PEP estimates obtained via SCG and Echocardiography were
distributed within ±25 ms around biases of about 2 ms, and, based on these results, they
concluded that SCG provides acceptable accuracy and precision in estimating cardiac
timings. Su et al. [29] found similar results concerning the 95% interval of the differ-
ences between PEP measurements obtained from an ankle-brachial device as compared to
Echocardiography, although with a significantly higher bias of about 30 ms and correlations
lower than 0.7, and they concluded that the device under test turned out to be a good
alternative to Echocardiography in the evaluation of left ventricular systolic dysfunctions
based on the estimation of PEP and other systolic time intervals.

This study has some limitations. The data analyzed were acquired only on three
healthy subjects at rest. Therefore, the results should be considered as preliminary and
need to be confirmed on a larger cohort of subjects, including subjects performing different
activities (e.g., walking, speaking, doing sports). Furthermore, FCG was compared with
SCG due to its wide use for PEP monitoring in wearable applications, but SCG is not
yet regarded as a gold standard for PEP estimation, so only the agreement between the
two techniques could be evaluated. Hence, a comparison of FCG with echocardiographic
measurement is envisioned in future studies to assess the performances of FCG in AO
detection and PEP estimation against an actual gold standard.
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Abbreviation
List of abbreviations and their definitions.

Abbreviation Definition
AC aortic valve closure
AO aortic valve opening
AS peak of atrial systole
BCG ballistocardiography
dHF-FCG first derivative of HF-FCG
ECG electrocardiogram
FCG forcecardiography
FRG forcerespirogram
GCG gyrocardiography
HF-FCG high-frequency component of FCG signal
HS-FCG heart sounds component of FCG signal
IC isotonic contraction
IM isovolumic movement
KCG kinocardiography
LF-FCG low-frequency component of FCG signal
MC mitral valve closure
MEMS microelectromechanical systems
MO mitral valve opening
PCG phonocardiography
PEP pre-ejection period
RE peak of rapid systolic ejection
RF peak of rapid systolic filling
SCG seismocardiography
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