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Abstract
In India, over 25,000 people have died from cardiovascular annually over the past 4 years , and over 28,000 in the previous

3 years. Most of the deaths nowadays are mainly due to cardiovascular diseases (CVD). Arrhythmia is the leading cause of

cardiovascular mortality. Arrhythmia is a condition in which the heartbeat is abnormally fast or slow. The current detection

method for diseases is analyzing by the electrocardiogram (ECG), a medical monitoring technique that records heart

activity. Since actuations in ECG signals are so slight that they cannot be seen by the human eye, the identification of

cardiac arrhythmias is one of the most difficult undertakings. Unfortunately, it takes a lot of medical time and money to

find professionals to examine a large amount of ECG data . As a result, machine learning-based methods have become

increasingly prevalent for recognizing ECG features. In this work, we classify five different heartbeats using the MIT-BIH

arrhythmia database . Wavelet self-adaptive thresholding methods are used to first denoise the ECG signal. Then, an

efficient 12-layer deep 1D Convolutional Neural Network (CNN) is introduced for better features extraction, and finally,

SoftMax and machine learning classifiers are applied to classify the heartbeats. The proposed method achieved an average

accuracy of 99.40%, precision of 98.78%, recall of 98.78%, and F1 score of 98.74%, which clearly show that it outper-

forms with the exiting model . Architecture of proposed work is simple but effective in remote cardiac diagnosis paradigm

that can be implemented on e-health devices.
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Abbreviations
ECG Electrocardiogram

CVD Cardiovascular diseases

CNN Convolutional neural network

PCA Principal component analysis

SVM Support vector machine

KNN K-nearest neighbor

DWT Discrete wavelet transform

NN Neural network

N Normal

L Left bundle branch block

R Right bundle branch block

V Premature ventricular contraction

A Atrial premature contraction

1 Introduction

CVD is a widespread health problem that carries a signif-

icant risk to humans , especially those in their middle years

and later in life. The incidence, disability, and mortality

rates are all quite high. Heart disease and stroke are on the

rise, and this is a huge public health issue [1]. The most

common cause of cardiac death is arrhythmia. A disease in

which the rhythm of the heart is disrupted is known as a

cardiac arrhythmia [2, 3]. Arrhythmias cause the heart

rhythm to beat, too slowly, too fast, or irregularly com-

pared to its normal rhythm. Due to arrhythmia, the heart is

not able to supply enough blood to the body parts. As a

result, the blood does not show in proper proportion,

affecting the functioning of the heart, brain, and other

organs of the body. Issues like heart failure and arrhyth-

mias are caused by damaged and weakened heart muscles.

Many people with coronary artery disease (CAD) do not

have any symptoms until the condition reaches a condition

where they experience chest pain and shortness of breath

shown in Fig. 1. Thus, early detection of the disease is

important before it progresses to an irreversible stage.

Therefore, constant monitoring of heartbeat activity is

imperative. Determination of arrhythmias is important for

adequate medical treatment by recognizing cardiac

disorders [4, 5]. An ECG is the non-invasive tool for

detecting and monitoring arrhythmias.

In addition to the processing of images, voice recogni-

tion, and a wide variety of other areas [7, 8], machine

learning and deep learning networks have made significant

progress in the adjuvant detection of cardiac disease based

on ECG data [9]. These advancements can be found in the

field of cardiology. When classifying long-term (10 s) ECG

data, P-lawiak et al. [10] focus on a deep genetic ensemble

of classifiers. To categorize eight distinct rhythms of the

heart, Gao et al. [11] employed a powerful long short-term

memory recurrent network model. Atal and Singh [12]

proposed using an optimization-based deep CNN with the

objective of discriminating between five unique heartbeats.

While CNN need considerable signal pre-processing before

use, deep learning networks can instantly detect the best

data patterns and extract relevant characteristics. Deep

learning networks also have better non-linear fitting capa-

bilities, making it easier to recognize single-lead, multi-

class, and discontinuous ECG signals. CNN is a well-

studied and widely used feed-forward neural network in

deep learning for arrhythmia classification. CNN has been

extensively studied and used in deep learning to classify

arrhythmia ECG data. Most of the earliest studies have been

classified five types of heart rhythms [13].

CVD micro-classification includes five types of heart-

beats: normal, left and right bundle branch block, atrial

premature, and premature ventricular contraction. The

classification of heartbeats is important, because the dataset

contains some more dangerous arrhythmia beats. As a

result, it is critical to detect these heartbeats, such as atrial

Fig. 1 ECG signal wave form representation [6]
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and ventricular beats. The majority of studies in the liter-

ature fail to identify these two beats in the dataset. As a

result, we propose a deep CNN-based model that more

accurately classifies these heartbeats.

Based on physical criteria, this research proposes a

classification system that divides arrhythmia into five dif-

ferent categories. We employed CNN to extract data-driven

non-linear features rather than manually constructed fea-

tures as most prior ECG signal classification research has

done. The 1D-CNN model architecture consists of four

convolutional, mean pooling, and dense layers that extract

different non-linear features from ECG signals and group

them into five categories: N, L, R, A, and V, respectively.

The proposed method was trained and tested on the MIT-

BIH open-source database.

The overall proposed model consists of three steps: first,

pre-processing the data using the wavelet transform

method, Z-score normalization, and data segmentation, in

which the data set is divided into 360 samples and centered

on the R-peak. Second, imbalance processing for equilib-

rium samples from five classes, and finally, the extraction

and classification of ECG signals using a 12-layer deep 1D

CNN model is used.

1.1 Major Contribution

• Performed pre-processing on the ECG signal to remove

noise and balance the arrhythmic heartbeat classes

using wavelet and imbalance processing on the data set.

• Develop a deep learning-based hybrid model that

classifies ECG heartbeats into five micro-classes

automatically.

• Improve the accuracy of proposed work by optimizing

the model parameters.

• It achieves the accuracy of 99.4% which clearly shows

that it outperforms with the existing method.

Section 2 describes the review of exiting work per-

formed by different researchers using different method in

this field and dataset. Section 3 describes the ECG dataset

detail with their beats used in this study, as well as a detailed

explanation of pre-processing steps, including denoising,

normalization, segmentation, and imbalance processing.

Section 4 describes the result and analysis and compares the

performance of proposed model with existing work. Finally,

in Sect. 5, the work is summarized, led by the conclusion.

2 Related Work

Many experts have been working on automatic detection of

cardiac arrhythmia for decades. Most of them used the

MIT-BIH arrhythmia database, a typical publicly available

arrhythmia database [14]. Table 1 summarizes the different

model developed by different researcher on ECG signal

classification. The comparison is instructive despite the fact

that various researchers made use of different datasets; this

is because the categorization is based on the same MIT-

BIH and classifies the same heartbeats. Despite this, the

comparison is still useful (N, L, R, A, V).

To diagnose arrhythmias in the MIT-BIH database,

[13, 15] employed a deep genetic hybrid classifiers on

long-term ECG data and found an accuracy of 94.6%. ECG

signals are not linear and are not constant in the real world.

Higher order statistical (HOS) methods, such as the non-

linear dynamic method used in [16], can detect these subtle

changes. Principal component analysis is used to reduce the

dimensionality of the derived bispectrum features. These

axes were used as inputs for a least squares-support vector

machine and a four-layer feed-forward neural network that

performed automatic pattern recognition. Overall, they had

the highest average accuracy (93.48%) of any group in the

research.

Table 1 Analysis of various studies on MIT-BIH arrhythmia database

Sr.

no

Article Pre-processing Feature extraction Classifiers Accuracy

(%)

1 [16] Wavelet transform Pan Tompkins and PCA NN and LS-SVM 93

2 [17] Wavelet combination 1D-CNN Softmax 97.5

3 [20] Moving average filter wavelet transform 1D-CNN ? Residual Block Softmax 97.8

4 [21] – Higher order statistics Fuzzy hybrid neural

network

96

5 [13] Gain reduction and constant component

reduction

Welsh method ? discrete Fourier

transform (DFT)

DGEC 94.60

6 [19] Wavelet transform – PNN 99.2

7 [18] Wavelet – PNN 92.7

8 [22] Digital filters Discrete Wavelet NNWs 94

9 [23] Bandpass filter CWT SVM ? GA 97.2

10 [24] Wavelet transform – PNN 97
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As the depth of the network increases, the accuracy of

deep neural network training continues to decline. How-

ever, [17] used a basic CNN model with five layers and

found 97.5% accuracy. The technology employs a wavelet

transform process based on quadratic waves, to identify

individual ECG waveforms and generate a fiduciary mar-

ker array. A probabilistic neural network (PNN) is used to

classify the data, and it has an accuracy rate of 92.7% [18].

The discrete wavelet transform (DWT) can be used to

denoise the signal.

Yu and Chen [19] used DWT to divide the ECG signal

into different sub-band components. The ECG signals are

then identified using three sets of statistical characteristics

extracted from the de-convoluted signals. The feature

vectors are classified using PNN. The developed model has

a 99.20% accuracy.

3 Materials and Methods

The proposed ECG signals’ classification and arrhythmia

detection model is developed in the phase as: pre-pro-

cessing, feature extraction, and classification using a hybrid

classifier. Figure 2 shows the workflow diagram for the

proposed work.

3.1 Dataset Description

This study uses the MIT-BIH database which was gener-

ously donated by MIT. It has been commented upon by

various experts and is based on worldwide standards [14].

Researchers rely heavily on the MIT-BIH database to

classify arrhythmic heartbeats. The MIT-BIH database

contains 48 30-min ECG recordings sampled at 360 Hz.

An electrocardiogram always has two leads. Each beat in

MIT-BIH is annotated with its class. Table 2 and Fig. 3

display the distribution of MIT-BIH database beats given

by cardiologist experts. A variety of abnormal heart

rhythms were used, including left and right bundle branch

block, atrial premature contraction, and ventricular pre-

mature contraction are the types of heart blocks that may

occur. In this study, we used each data sample block size of

360, because the sampling rate of ECG signals in MIT-BIH

arrhythmia database is 360 Hz. Therefore, in this database,

each peak and the entire QRS complex is present in 1

segment. If we change the shape of the segments, the data

sample may be missing some peaks (P waves) and QRS

complexes that play a major role in identifying arrhythmia

classes.

Fig. 2 Workflow diagram of proposed model
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3.2 ECG Signal Pre-processing

Readings obtained from an electrocardiogram (ECG) in a

clinical setting may be impacted by a number of factors,

the interference of power frequencies, baseline drift, and

electromyography (EMG) interference, to name a few. It is

necessary to denoise the raw data to improve classification

accuracy. Denoising ECGs often involves the use of

bandpass filters, low-pass filters, and wavelet transforma-

tions [22, 23]. In this inquiry, the electrocardiogram (ECG)

data are first prepared with the use of a method called the

wavelet transform.

3.2.1 Wavelet Transform

Decomposing non-stationary signals into scale signals that

have distinct frequency bands may be accomplished with

the use of the wavelet approach. The filter makes use of an

adaptive threshold filtering approach [25, 26], and the

wavelet function that it employs is the Symlet wavelet

function, which is a member of the Symlet wavelet func-

tion family [27]. In signal processing, noise signals appear

as high-frequency signals, whereas valuable signals appear

as low-frequency or smoother signals. The wavelet trans-

form is used to decompose the signals, which results in the

high-frequency wavelet coefficients being acquired. After

that, the high-frequency wavelet coefficients go through a

procedure called threshold processing, which gets rid of the

electromyographic noise and the power line interference.

After that, the inverse wavelet transform is utilized, so that

the signals can be reconstructed. The baseline drift noise

may be removed by moving the average filter to a different

position. In this work, adds fundamental filtering to the

signal, which increases the network’s generalization and

reduces signal distortion. Figure 4a and Fig. 4b shows the

ECG signal prior to and subsequent to filtering.

Fig. 3 Waveforms of five types

of heartbeats in MLII lead

Table 2 Number of arrhythmia heart beats in MIT-BIH dataset

Heartbeat types Annotation Total

Normal Rhythm (NOR) N 74,607

Left Bundle Branch Block (LBBB) L 8069

Right Bundle Branch Block (RBBB) R 7250

Premature Ventricular Contraction (PVC) V 7127

Atrial Premature Contraction (APC) A 2514
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3.2.2 ECG Signal Normalization

The Z-score normalization approach was used to stan-

dardize all ECG signal values. The purpose of normaliza-

tion is to equalize the scale of all data points, such that each

characteristic is equally important [19]. The following

equation is used to calculate the Z-score normalized signal

values from the dataset (1). Figure 5 shows the shape of the

signal after Z-score normalization

Z ¼ v� l
r

; ð1Þ

where v is original value, l is mean of data, and r is

standard deviation of data

3.2.3 Data Segmentation

In the MIT-BIH dataset, each pulse has a condition that is

associated with it. We can determine that there are five

distinct types of heart rhythms based on the findings of this

analysis. These are normal (N), left bundle branch block

(L), right bundle branch block (R), atrial premature beats

(A), and premature ventricular beats (PV). To begin, the

Pan–Tompkins method [28] is implemented to locate the

R-peak. Following the identification of R-peaks in the data,

the information is next segmented into 360 random sam-

ples shown in Fig. 6.

3.2.4 Imbalance Processing

The distribution of heartbeats in the various classifications

of the arrhythmia database is not uniform. The samples in

the dataset were not distributed uniformly, which meant

that different categories contained varying numbers of

samples. Regular beats, for example, contained more data

sets than fusion beats. This is known as the problem of

class inequality. The unequal training set affects the con-

volutional neural network’s feature learning [29], thereby

decreasing recognition accuracy.

We utilized the dataframe.resample() function of the

Pandas library to balance the dataset. Typically,

dataframe.resample() is applied to time series data. A time

series is a collection of data points that have been

chronologically indexed (or listed or graphed). After

denoising and segmentation, under-represented classes

(those with fewer data) are over-sampled. The groups that

are under-represented are over-sampled at random, while

the groups that are already well represented are left out

(those with more samples). This minimizes the problem of

skewed information in the training set. Figures 7a, b shows

the original classification chart and after balancing the data

class classification.

3.3 Convolutional Neural Network Model

CNNs typically have numerous convolutional and pooling

layers to extract data features [30]. Unlike CNNs, convo-

lutional neural networks link neurons locally. Only neurons

in close proximity will be interconnected. CNN has the

Fig. 4 (a) ECG signal before denoising. (b) ECG signal after denoising

Fig. 5 ECG signal after z-score normalization
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additional advantage of sharing the user’s feature plane.

When neurons exchange weights, the number of calcula-

tions and connections between layers of the network are

reduced. The feature dimension reduction of the pooling

layer, which is utilized throughout the CNN, can effec-

tively reduce redundant information, minimize overfitting,

and facilitate optimization.

3.3.1 The Architecture

1D, 12-layer CNN structure is used to describe the five

distinct subtypes of cardiac arrhythmia. This structure is

utilized to classify the data. The layers that comprise a

convolutional neural network are referred to as input,

convolution, pooling, fully connected, and output, respec-

tively. The convolutional and pooling layers go beyond the

capabilities of typical neural networks by extracting and

mapping the characteristics of incoming input. This helps

to speed up the learning process and reduce the likelihood

of overfitting. 2-D CNN usage in this field of research

widely [17, 31] because to its similarities to multilayer

perceptrons. To perform uniform interval sampling of one-

dimensional time series, [38] our proposal is for a convo-

lutional neural network with 12 layers and a single

dimension. This particular network contains one convolu-

tional layer for each and every layer that it possesses. The

CNN network makes use of a max-pooling layer; however,

the improvement that is being proposed for the CNN net-

work makes use of an average-pooling layer rather than the

max-pooling layer that is currently being used in the cur-

rent CNN network. In addition to those structural

improvements, there have been others made. This is just

one of several adjustments that have been made recently.

The average-pooling layer has the capability of preserving

the authenticity of the broad strokes of the input data,

which is an essential component for the classification of

heartbeats. The industry standard CNN network is one

layer thinner than the proposed CNN network, which has

one more layer of alternating convolution and pooling than

the standard CNN network . This is because the proposed

CNN network uses a different algorithm. This is due to the

fact that the proposed CNN network would be built on top

of the existing CNN network. Table 3 provides a summary

of the suggested architecture for the CNN network, which

includes a total of eight layers of convolutions and average-

pooling that are stacked one on top of the other.

Convolution Layer: When processing one-dimensional

ECG data, it is best to use convolution kernels that are just

one dimension and do not depend on the feature map of the

Fig. 7 (a) Original class distribution chart; (b) class distribution chart after balancing

Fig. 6 ECG signal after segmentation
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layer above them to convolve. We are able to retrieve the

outflow of the convolution layer using a non-linear acti-

vation function in conjunction with an offset convolution

kernel [32]. Equation (2) provides the output as

hl;ki ¼ f bl;ki þ
XN

n¼1
Wl;k

n;i � x
l�1;k
iþn�1

� �
; ð2Þ

where h is the output vector of the convolutional layer, W

is the kernel, and x is the input vector of the ECG signals.

Pooling Layer: In most of the cases, the layer that

performs the convolution is the pooling layer. The com-

plexity of the network and the overfitting phenomena can

both be mitigated by lowering the number of dimensions

used for the convolution layer’s output data. Because of

this procedure, the network’s resistance to failure has been

significantly improved. The pooling layer either takes an

average or a maximum of the features that were produced

by the convolutional layer; the techniques that correspond

to these two outcomes are called average pooling and

maximum pooling, respectively. Equation (3) provides the

output as

ol;ki ¼ f al;ki pool xl�1;k
i

� �
þ bl;ki

� �
; ð3Þ

where o represents the output of the average-pooling vec-

tor, x is the input vector obtained from the convolutional

layers, and b is the biased vector.

Fully connected layer: After a significant number of

convolution layers and pooling layers have been utilized to

gather features, after that, the fully connected layer is

applied, so that the connections between each and every

feature may be strengthened even more. Logistic regression

is utilized at the SoftMax layer to continue the classifica-

tion process [7]. The output of the layer that is fully linked

is the weighted sum of the outputs of the layers that are

below it. Equation (4) represent the mathematical equation

of fully connected layer as

ol;ki ¼ f wl:k
i xl�1;k

i þ bl;ki

� �
: ð4Þ

Dropout layer: During the training of CNN layer, there

are some chances of over fitting of model, so avoid the

overfitting in proposed model we have used the dropout

layer in which we remove the same layer to generalize the

node value [7]

3.3.2 Training Algorithm

To train the CNN model, a technique backward propaga-

tion gradient descent is used. It is used to calculate the

network hyper parameters and the loss function, which is

the difference between the actual output, that was seen and

the predicted output, that should have been observed. There

are many different kinds of hyper parameters, some of

which are the sample weight coefficient of the pooling

layer, the network weight of the fully connected layer, and

the offset for each layer. Both forward and backward

propagation are required for training a CNN model. During

the forward propagation stage of the neural network, the

training input is gathered and then used to calculate the

output vectors of the hidden and output layers.

For fully connected forward CNN network of l� 1 layer

with feature m is derived as

Fig. 8 Architecture of proposed CNN model for classification

Table 3 Architecture of CNN network with layers

Layers Type Output Kernel size Stride

L-1 Convolution 360 9 16 1 9 13 1

L-2 Average-pooling 179 9 16 1 9 3 2

L-3 Convolution 179 9 32 1 9 15 1

L-4 Average-pooling 89 9 32 1 9 3 2

L-5 Convolution 89 9 64 1 9 17 1

L-6 Average-pooling 44 9 64 1 9 3 2

L-7 Convolution 44 9 128 1 9 19 1

L-8 Average-pooling 21 9 128 1 9 3 2

L-9 Dropout 21 9 128 – –

L-10 Fully connected 1 9 35 – –

L-11 Fully connected 1 9 5 – –

L-12 SoftMax 1 9 5 – –
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XðlÞ ¼ f ðlÞ W ðlÞXðl�1Þ þ BðlÞ
� �

: ð5Þ

Then, the computation of feature matrix is

x
ðlÞ
1

..

.

x
ðlÞ
n

0

B@

3

75 ¼ f ðlÞ
w
ðlÞ1
1 . . . w

ðlÞn
1

..

. . .
. ..

.

w
ðlÞ1
m . . . w

ðlÞn
m

0

B@

3

75
x
ðl�1Þ
1

..

.

x
ðl�1Þ
n

0

B@

3

75þ
b
ðlÞ
1

..

.

bðlÞn

0

B@

3

75

0

B@

1

CA:

ð6Þ

Here, XðI�1Þ is a layer a feature vector of length m;XðIÞ is

a column vector of length n;W ðIÞ is a matrix of m rows and

n columns, BðIÞ is a column vector of length n, and f ðlÞ is a
non-linear activation function of layer l.

There are many convolutional layers present in convo-

lution kernels. By applying the appropriate convolution

kernels to the features from the preceding layer, we may

generate additional features. After the convolution layer

(with learnable convolution kernels

K
ðlÞ
1;1; . . .;K

ðlÞ
i;1; . . .;K

ðlÞ
1;j; . . .;K

ðlÞ
i;j and learnable bias

B
ðlÞ
1 ; . . .;B

ðlÞ
j is executed. Each feature map X

ðlÞ
1 ; . . .;X

ðlÞ
j

� �

is based on the following calculation formula:

ðlÞ lð Þ
j ¼ f lð Þ

X

i2Mj

X
l�1ð Þ
i � K

lð Þ
i;j

� �
þ B

lð Þ
j

 !
: ð7Þ

Here, Mj is the collection of feature maps used in the

training process, � is the convolution operation, and f ðlÞ is
the activation function.

It is common practice for a CNN model to use a pooling

layer after the convolutional layer to further compress the

features. The output is created through numerous fully

connected layers after several convolutional layers and

pooling layers have been applied to the input features to

turn them into a vector.

Fast convergence is achieved by activating the hidden

layer using the linear rectification function (Rectified

Linear Unit, ReLU) in this research. The result of the

function for the column vector input x1; . . .; xnð �T is

f ðxÞi ¼
xi; xi [ 0;
0; xi � 0;

for i in f1; . . .; ng;
�

x ¼ x1; . . .; xnð �T .
ð8Þ

Fig. 10 Variation of accuracy with epochs

Fig. 9 Left model-high loss;

right model-low loss [24]

Page 9 of 14    80 

123



SoftMax activation function is used by the output layer

to normalize the output for probability distribution. For an

input column vector x1; . . .; xnð �T , the function output is

f ðxÞi ¼
exiPn
j¼1 e

xi
; for i in f1; . . .; ng

x ¼ x1; . . .; xnð �T :
ð9Þ

The loss function calculates the absolute value of the

discrepancy between the predicted output hat and the actual

output math bfy. In this particular piece of work, we make

use of the cross-entropy loss function, which, when applied

to an n-class classification issue

Loss by0 ; y
� �

¼ �
Xn

i¼1

y
0

ilogbyi þ 1� yið Þlog 1� byið Þ
� i

;

ð10Þ

by0 ¼ ey1; . . .; ~ynð � represents the predicted output and one-

hot encoding of the true class is represented by

y ¼ y
0
1; . . .; yn

� �

f xið Þ ¼ exiPn
j¼1 e

xi
, for i in f1; . . .; ng

x ¼ x1; . . .; xnð �T :
ð11Þ

During the forward propagation phase, the actual values

of the output layer’s output vectors are compared to the

expected values. Furthermore, the weights of the network

are factored into the loss function calculation. Gradient

descent updates the weights of each neuron in each layer,

and the loss is transmitted back to the layers from which it

originated. This is done to reduce the amount of time

required to complete the process. After the gradients of the

loss function have been calculated using chain rules, the

weight is updated in the opposite direction as the gradient

of the loss function. The creation of a cost function for

neuron output at each hidden layer allows for continuous

tweaking of the network’s hyperparameters. Each hidden

layer receives this function. When the network achieves the

desired error rate, the training is considered complete.

In the proposed model, the following architecture is

used, as shown in Fig. 8. The first layer is rather

Fig. 11 Variation of loss with epochs

Table 4 Performance comparison of proposed model with training–

testing ratios in % using proposed CNN model

Train–test ratio (%) Overall accuracy (%) Loss

Train 50–test 50 99.04 0.061

Train 60–test 40 98.90 0.072

Train 70–test 30 99.20 0.072

Train 80–test 20 99.40 0.057

Train 90–test 10 99.3 0.032

Table 5 Performance metrics of classification of various classes using

20% test data

Classes Accuracy (%) Precision Recall F1 score

N 99.18 98.0 97.0 97.5

L 99.83 99.3 99.7 99.5

R 99.85 99.4 99.7 99.5

A 99.34 97.9 98.7 98.3

V 99.62 99.2 98.8 98.9
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complicated, since it uses a kernel with a size of 13, as well

as a total of 16 filters. The output of layer 2 is reduced from

179 to 16 X 179 using an average-pooling layer with a size

of 3. The following are the configuration options for Layer

3, which is a convolving of the Feature Map from Layer 2:

kernel size 15, filter count 32. We are able to reduce the

total number of neurons from 176*16 to 89*32 using a

third layer that aggregates averages. At the layer 5 com-

putation level, 64 filters are employed, and the convolution

kernel size is 17. By applying a layer of average-pooling

with a size of 3 to the output of layer 5, we are able to

decrease the output size to 44964, which is much less than

the original. The output of layer 6 is made even more

complicated by the 7 layer, in which kernel size is 19 and a

with 128 filter number. We will now proceed with the

construction of a layer of average pooling that has three

tiers in layer 8. Because of this, Layer 9 has a dropout rate

of 50%. The 35 neurons that make up the boundary

between layer 10 and layer 11 are to blame for this shift in

behavior. The last phase consisted of establishing a con-

nection between 5 neurons located in layer 11 and the

SoftMax layer. When an average-pooling layer is created,

an activation function in the form of a rectifier linear unit

(ReLU) is utilized initially. This is done at every

opportunity.

Fig. 12 Confusion matrix using 20% test data without normalization

Table 7 Comparison with

previous work in terms of

overall accuracy

Reference Feature extraction Classifier Overall accuracy (%)

[16] Pan Tompkins ? PCA NN ? LS-SVM 93

[17] 1D-CNN SoftMax 97.5

[18] Wavelet NN 92.7

[19] 1D CNN SVM 99.2

[20] 1D-CNN ? Residual Block SoftMax 97.8

[22] Discrete Wavelet NNWs 94

[23] CWT SVM ? GA 97.2

Proposed work 1D-CNN Softmax 99.4

Table 6 ECG classification performance comparison with different

classifiers

Classifier Accuracy (%) Precision Recall F1 score

SoftMax (CNN) 99.40 98.78 98.78 98.74

SVM 99.71 99.8 98.6 99.2

Random forest 98.68 99.0 93.4 95.8

KNN 98.98 98.4 95.4 96.6
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3.4 Performance Metrics

The success of the CNN model is measured in terms of %

accuracy and loss value, both of which are useful in

evaluating performance in multi-class classification

problems.

3.4.1 Accuracy

The overall accuracy of the model is displayed, which is

the proportion of samples that were correctly labeled by the

classifier [24]. Equation (12) for determining accuracy as

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
: ð12Þ

Here, TP is True positive, TN is True negative, FP is

False positive, and FN is False negative. The number of

correct predictions divided by the total number of input

data is the ratio.

3.4.2 Loss

A loss is a numerical value that reflects how far the model’s

prediction was off in a certain case. If the model’s forecast

is perfect, the loss is zero; otherwise, the loss is greater.

The goal of training a model is to find a set of weights and

biases that, on average, result in a minimal loss across all

cases. Figure 9 shows a high loss model on the left and a

low loss model on the right.

• The arrows represent loss.

• The blue lines represent predictions.

3.4.3 Precision

It informs you what percentage of optimistic forecasts were

truly positive

Precisionformula ¼ TP

TPþ FP
: ð13Þ

3.4.4 Recall

It tells you what proportion of all positive samples the

classifier predicted correctly. Other synonyms for it include

True-Positive Rate (TPR), Sensitivity, and Probability of

Detection. Use Eq. (14) to compute Recall

Recall ¼ TP

TPþ FN
: ð14Þ

3.4.5 F -Score

It is a measure that combines precision and recall. It is the

harmonic mean of precision and recall in mathematics. It is

computed by Eq. (15) as

F� Score ¼ 2� Precision � Recall

Precisionþ Reca
¼ 2TP

2TPþ FPþ FN
:

ð15Þ

4 Results and Discussion

The MIT-BIH database was used to evaluate the perfor-

mance of the provided technique. With a batch size of 36,

the training of the model comprises a total of 60 epochs.

The model accuracy curves and loss curves with respect to

the number of epochs are shown in Figs. 10, 11. Where, in

Fig. 10, the x-axis represents the number of epochs used by

the softmax layer, and the y-axis represents the accuracy of

the model obtained during training and testing on data

samples. Similarly, in Fig. 11, the y-axis represents the

training and test loss of the model using the Adam opti-

mizer in the softmax layer. As the accuracy and loss

become saturated, these graphs suggest that the model has

been correctly trained after the ideal value of network

weights has been obtained. Furthermore, the test loss looks

to be virtually identical to the training loss, indicating that

the model has been fine-tuned to minimize loss.

Table 4 compares the performance of dataset in which

we have used 50, 40, 30, 20, and 10%, data in test dataset.

This table shows the total accuracy and loss for each train–

test ratio that was calculated. The CNN model’s overall

best testing accuracy for 5 class classification was 99.40

percent, which was found by utilizing an 80:20 training test

ratio.

The total classification accuracy rate using 12-layer deep

1D-CNN employing an 80:20 train–test ratio is 99.40%.

Each class’s individual accuracy is also computed and

displayed in Table 5.

For the class of right bundle block (R) beats, the model

gets the highest level of accuracy with 99.86% accuracy,

and normal (N) beats have the lowest accuracy with

99.19%. In Fig. 12, the confusion matrix associated with

the presented CNN model is likewise obtained and illus-

trated. The confusion matrix provides a succinct summary

of the categorization of the various individual classes. The

CNN is made up of a feature extractor and a classifier, with

the convolution and pooling layers acting as feature

extractors and the SoftMax layer acting as a classifier. In

this figure, we have obtained the best-performing confusion

matrix on the dataset when the data are split in an 80–20

train–test ratio using a softmax layer with a CNN model.
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We modified the SoftMax layer to support vector

machine classifiers, random forest classifiers, and k-nearest

neighbor classifiers to compare the performance of each

technique to SoftMax. Table 6 shows comparison between

SoftMax, SVM, random forest and k-nearest neighbor

classifiers based on overall accuracy, typical recall, typical

precision, and typical F1 score.

4.1 Comparison with Existing Approaches

Table 7 shows a comparison of the present work with

several other existing approaches. When compared to other

proposed approaches and published experimental findings,

we can see that the proposed strategy enhances heartbeat

classification accuracy. This not only is connected to the

notion of applying the wavelet transform to cope with

noisy ECG signals, but this also demonstrates that the

enhanced CNN model also is adequate for 1D signal

classification. In these comparison papers, components are

compared in depth.

5 Conclusion

In today’s environment, CVD is a big health issue. ECG is

extremely important in the early detection of cardiac

arrhythmia. Unfortunately, specialist medical resources are

scarce, making virtual identification of ECG signal difficult

and time-consuming. This study we develop a deep

learning CNN model that classifies ECG heartbeats into

five micro-classes automatically. Because this model is

fully automated, no additional systems, such as feature

extraction, feature selection, or classification, are required.

When the model has been properly trained, it may be used

to the process of predicting ECG signals in patients who

have arrhythmia. Experiments performed on the arrhythmia

database (also known as the MIT-BIH database) show that

our approach is more effective and efficient in classifying

ECG signals. Due of its reduced computing cost, the CNN

model that was proposed may be used for categorizing

long-term ECG data and identifying sickness episodes in

real time. In addition, one can apply these DL models to

the analysis of other existing signal databases such as

electroencephalogram signals and electromyogram signals

that are also important in the healthcare system to diagnose

potential disease in humans being. According to the results,

our proposed method achieved an average accuracy of

99.40%, precision of 98.78%, recall of 98.78%, and F1

score of 98.74%. It is a simple but effective paradigm for

remote cardiac diagnosis of patients that can be imple-

mented on e-health-based devices. These applications are

possible because of the model’s flexibility. It is of great use

to wearable technology.
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