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In this work, carbon quantum dots (CQDs) were synthesized by microwave irradiation and were electropolymerized on glassy
carbon electrode (GCE) to establish an electrochemical sensor for the selective detection of ascorbic acid (AA). Electrochemical
behaviors of the prepared sensor were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and
electrochemical impedance spectroscopy (EIS). Herein, two wide linear responses were obtained in ranges of 0.01-3mM and
4-12mM with a low detection limit of 10μM to AA. High sensitivities (44.13μA-1

μM-1 cm-2, 9.66 μA-1
μM-1 cm-2,

respectively) corresponding to the linear ranges were also achieved. In addition, the electrochemical sensor exhibited good
selectivity and robust anti-interference ability toward AA in the presence of dopamine (DA) and uric acid (UA). These
results showed that this sensor can be used as a promising tool to detect AA in real complex systems.

1. Introduction

Ascorbic acid (vitamin C, AA) plays a crucial role as an
essential nutrient and antioxidant in the human body,
which exists only in food and drugs and cannot be synthe-
sized by human beings themselves. The abnormal concen-
tration of AA can be related to various kinds of diseases
including scurvy, mental disorder, cancer, cold, AIDS,
and digestive disorder [1–5]. In addition, AA has been
found to participate in a lot of life processes, such as cell
division, iron absorption, acceleration of collagen synthe-
sis, melanogenesis inhibition, and metabolism [6–9]. Since
AA is so important, it is of great significance to develop a
rapid, sensitive analytical method for the detection of AA.
Up to now, several methods have been applied for AA
detection, such as chemiluminescence, fluorescence, elec-
trochemistry, chromatography, capillary electrophoresis
and colorimetry [10–15]. Of these, the electrochemical

method has attracted much interest owing to its simple
operation, fast response, high accuracy, high selectivity,
and effectiveness.

Dopamine (DA) and uric acid (UA) coexist with AA
in a biological environment [16–18]. Since the oxidation
peak potential of DA and UA is close to that of AA, they
often interfere with the electrochemical detection of AA.
To solve this problem, researchers have used a variety of
methods, among which the electrochemical sensor method
[19–25] exhibits excellent anti-interference effect, which
can effectively separate the peaks of AA, UA, and DA.
However, there are few reports on the application of
CQD modified electrode in the electrochemical detection
of AA.

CQDs are a novel category of carbon nanomaterials [26]
that have drawn considerable attention in recent years due to
its excellent properties including low toxicity [27], nonpollu-
tion [28], high stability [29], simple preparation [30], and
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extensive carbon sources. Until now, CQDs have been
used in the eletrochemical detection of dopamine [31],
L-cysteine [32], curcumin [33], and antipsychotics [34];
the results of these studies demonstrated that CQDs have
great application prospects in the eletrochemical field. To
date, methods synthesizing the CQDs have been studied
extensively, such as hydrothermal [35], laser ablation [36],
ultrasonic [37], microwave synthesis [38], and solvother-
mal [39]. Among them, the microwave method is simple,
short time-consuming, environmentally friendly, and low
cost.

In this paper, we have developed a sensor for AA deter-
mination based on CQDs, which were synthesized using
glucose as the carbon source and polyethylene glycol-200 as
the surface passivator through a one-step facile microwave
approach. This fabricated CQD electrode demonstrated
wider linear ranges and higher sensitivity toward AA com-
pared to other modified electrodes based on electrochemical
strategies. At the same time, the as-prepared sensor has
successfully separated the oxidation peak of AA, DA, and
UA. The electrochemical response of the as-prepared sensor
was greatly improved and finally realized the selective detec-
tion of AA. We envision that a CQD-based sensor will
become a crucial platform for determination of AA in a
complex system in the future.

2. Experimental

2.1. Reagents. AA was purchased from Lianxing Biotechnol-
ogy (Tianjin), polyethylene glycol-200 was bought from
Beijing Solarbio Science & Technology, dopamine hydro-
chloride was purchased from Sigma-Aldrich, UA was
obtained from Ron Chemical Reagent Company (Tianjin),
glucose was obtained from Tianjin Yingda Xigui Chemical
Reagent Factory, and 0.1M phosphate buffer solution (PBS)
(pH 7.0) was prepared by mixing a proper proportion of
Na2HPO4 and NaH2PO4. All the other reagents were pre-
pared with ultrapure water and directly used without fur-
ther treatment.

2.2. Apparatus. All electrochemical measurements were car-
ried out at the AMETEK PARSTAT 4000 electrochemical
workstation (AMETEK Commercial Enterprise (Shanghai)
Co., Ltd. Beijing Branch). All electrochemical experiments
were performed with a three-electrode cell with a modified
GCE as the working electrode, a platinum counter electrode
(CE), and a saturated calomel electrode (SCE) as the
reference electrode. A magnetic stirrer was acquired from
Ronghua Instrument Manufacturing (Jiangsu, China). Field
emission scanning electron microscopy (FESEM) images
were obtained from Nova NanoSEM 430 (FEI, USA).
High-resolution electron microscopy (HRTEM) and energy-
dispersive spectrometer (EDS) micrographs were acquired by
using FEI Talos F200X equipped with an energy-dispersive
spectrometer analyzer. CQDs were centrifuged using a LX-
400 centrifuge (Kylin-Bell Lab Instruments Co., Ltd.),
microwave reactor (LG Electronics, China), and dialysis
bags (Beijing Solarbio Science & Technology). All DPV
measurements in this paper were performed by applying a

sweep potential from -1.5V to +1.5V at pulse width of
0.2 s and an amplitude of 50mV.

2.3. Synthesis of CQDs. The CQDs were synthesized by one-
step microwave heating according to literature [40] with a
little modification. 20ml of polyethylene glycol-200 was
added into a mixture of 6ml of ultrapure water and 4 g
of glucose under stirring condition until the solution
became transparent and colorless; then, the mixed solution
was placed in a microwave reactor under medium heat
condition for 3 minutes. The obtained dark viscous solu-
tion was cooled down to room temperature, and then,
the appropriate amount of the solution was put into a
dialysis bag (cutoff Mn: 100-500Da) for 24 hours. Then,
the obtained light brown solution was centrifuged at
6000 r/min for 15min, bottom black precipitation was
removed, and the upper solution was collected and stored
in the refrigerator at 4°C.

2.4. Preparation of CQD Modified GCE (CQDs/GCE). Before
use, the GCE was polished to mirror with 0.05μm alumina
slurry, and then, the bare electrode was modified in CQD
solution with a three-electrode system using CV under the
conditions of -1~2V, 20 cycles, at 50mV/s. After modifica-
tion, the electrode was washed with ultrapure water and dried
for later use.

3. Results and Discussion

3.1. Characterization of CQDs. Morphology of CQDs was
characterized by a high-resolution transmission electron
microscope (HRTEM), field emission scanning electron
microscope (FESEM), and energy-dispersive spectrometer
(EDS). As is shown in Figure 1(a), the CQDs were found to
have a quasispherical shape with a size lower than 10nm,
which is consistent with the results reported by previous
literature [41, 42]. It can be seen from the inset of
Figure 1(a) that the prepared CQDs possess a lattice structure
with a lattice spacing of 0.14 nm, which can be attributed to
the (102) diffraction plane of graphite carbon [43]. From
the EDS analysis image (Figure 1(d)), the main element
composition of the CQDs is C, and the peaks of Cu, O, and
Si should be originated from the substrate. These results con-
firmed that the CQDs have been successfully synthesized.
Moreover, after the CQDs were electropolymerized on the
electrode surface (Figures 1(b) and 1(c)), the size of the
CQDs increased (close to one hundred nanometers), which
indicates that the electrochemical properties of CQDs can
be improved by electropolymerization.

3.2. Electrochemical Characterization. The electrochemical
properties of the bare GCE and CQDs/GCE were charac-
terized by CV using 20mM Fe(CN)6

3-/4- containing 0.1M
KCl as the electrochemical probe. As can be seen from
Figure 2(a), compared with bare GCE (curve A), the peak
current of CQDs/GCE (curve B) increased obviously and
the interspike interval was decreased. It may be that the
surface structure of CQDs can accelerate the electron
transfer rate of the redox system and increase the adsorption
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of AA at the sensor interface. These results suggest that the
prepared CQDs have good properties.

The EIS of different electrodes was measured under the
conditions of 10-2~105Hz, 0.24V bias potential, and 5V
amplitude in 20mM Fe(CN)6

3-/4- containing 0.1M KCl.
The direct part of the figure represents the diffusion pro-
cess, and the diameter of the semicircle shows the resis-
tance of the electron transfer. As shown in Figure 2(b),
the CQDs/GCE had a smaller semicircle (curve B) than
GCE (curve A), which suggested that the resistance of
the modified electrode was significantly decreased, indicat-
ing that CQDs/GCE has better conductivity. The result
was consistent with Figure 2(a).

DPV was also used to further evaluate the detection per-
formance of the modified electrode in 0.1M PBS (pH 7.0)
containing 0.5mM AA. Figure 2(c) showed that there was a
broad but inapparent oxidation peak (curve A) on GCE
and a narrow but obvious oxidation peak (curve B) on

CQDs/GCE. The oxidation peak current of CQDs/GCE
was about three times larger than that of the bare electrode,
which indicated that CQDs/GCE had obvious electrocata-
lytic oxidation effect on AA.

3.3. Effect of Scan Rate of AA. In order to further study the
reaction mechanism of AA on the as-prepared sensor sur-
face, the effect of the scan rate on electrochemical behavior
of AA was investigated. From Figure 3(a), it was observed
that the catalytic current of AA on CQDs/GCE increased
gradually with the increase of the scan rate, and the peak
current of redox showed a good linear relationship with the
scan rate in the range of 50-250mV s-1 (Figure 3(b)), and
the linear regression equation is demonstrated as the fol-
lowing, respectively: Ipa = ‐4:546‐0:272V (R2 = 0:99), Ipc =

19:947 + 0:028V (R2 = 0:99). The results indicated that the
reaction process of the modified electrode was controlled by
adsorption. In addition, the oxidation peak potential and
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Figure 1: FRTEM (a), FESEM (b, c), and EDS analysis (d) of as-prepared CQDs.
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reduction peak potential almost did not change, indicating
that CQDs/GCE had a good reversibility.

3.4. Electrochemical Sensing of AA on the CQDs/GCE. The
electrochemical response of CQDs/GCE toward AA was
studied by DPV. In the 0.1M PBS solution, a certain amount
of AA solution was added sequentially. As shown in
Figure 4(a), at low concentration, the oxidation peak poten-
tial of AA remained at 0V, and then, with the increase of
AA concentration, the oxidation peak of AA existed positive
transfer, which should be related to the change of the pH of
the detection solution resulting from the accumulation of
the oxidation product of AA. In addition, with the increase
of AA concentration, the peak current of AA also increased.
When AA concentration ranges from 0.01mM to 3mM
(R2 = 0:995) and from 4mM to 12mM (R2 = 0:991), the

oxidation peak current has a good linear relationship with
AA concentrations (Figure 4(b)), with a detection limit of
10μM (S/N = 3). Compared to many previous works based
on electrochemical strategies that have been reported
(Table 1), the modified electrode exhibited wider linear
range and higher sensitivity. The catalytic mechanism for
AA oxidation is shown in Scheme 1. The redox reaction
of AA on the CQDs/GCE sensor is an electrochemical pro-
cess based on two-proton and two-electron transfer, accom-
panied by the formation of dehydroascorbic acid.

3.5. Anti-interference of the Sensor. The anti-interference
ability of the sensor to AA in the presence of DA and UA
was investigated by DPV. As shown in Figure 5(a), three
well-separated peaks were obtained at CQDs/GCE (curve
B) while bare GCE (curve A) cannot separate the peaks of
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Figure 2: (a) CV grams of bare GCE (A) and CQDs/GCE (B) in 20mM Fe(CN)6
3-/4- containing 0.1M KCl. (b) Nyquist plots of bare GCE (A)

and CQDs/GCE (B) in 20mM Fe(CN)6
3-/4- containing 0.1M KCl. (c) DPV response of bare GCE (A) and CQDs/GCE (B) in 0.1M PBS (pH

7.0) containing 0.5mM AA.
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AA and DA. To further prove that the CQDs/GCE has
good selectivity to AA, we have set control groups that
only change the concentrations of AA (Figure 5(d)), DA
(Figure 5(b)), and UA (Figure 5(c)) while keeping two
other substances constant and changing the concentrations
of AA, DA, and UA simultaneously (Figure 5(e)). These
results showed that the existence of DA and UA could
not interfere with the electrochemical detection of AA on
the CQDs/GCE electrode. In addition, several possible
interfering substances in the real sample such as Na+,
Cl-, Mg2+, SO4

2-, and glucose at 100-fold concentration
were also examined by chronoamperometry technique at

the applied potentials of +0V, and different substances
were added every 100 seconds (Figure 5(f)), which further
indicated that the prepared sensor has good selectivity for
the detection of AA.

The reusability of the as-prepared sensor was investi-
gated by six modified electrodes (Figure 6(a)) that were fab-
ricated under the same condition in 0.1M PBS (pH 7.0)
containing 0.5mM AA. The relative standard deviation of
peak current was calculated as 3.58%, which indicated that
the sensor has good reproducibility. The sensitivity of the
sensor was calculated as the slope line of each electrode
area (0.2826 cm2), equal to 44.13 and 9.66μA-1

μM-1 cm-2,
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Figure 4: (a) Differential pulse voltammograms of different concentrations of AA in the ranges of 0.01~12mM on CQDs/GCE in 0.1M PBS
(pH 7.0). (b) The linear relationship between the peak current and AA concentrations.

0.00003

0.00002

0.00001

250 mV/s

50 mV/s

0.00000

–0.00001

–0.00002

–0.6 –0.4 –0.2 0.0

Potential (V)

C
u

rr
en

t 
(A

)

0.2 0.4 0.6

(a)

20

–20

R
2 = 0.9937

R
2 = 0.99676

–40

–60

–80

50 100 150

Scan rate (mV)

200 250

0

C
u

rr
en

t 
(A

)

(b)

Figure 3: (a) Cyclic voltammograms of 1mM AA on the CQDs/GCE at different scanning rates (50, 100, 150, 200, and 250mV s-1) in 0.1M
PBS (pH 7.0). (b) The effect of scanning rate on the peak current.

5Journal of Sensors



respectively. As shown in Figure 6(b), the long-term dura-
bility of CQDs/GCE was measured by chronoamperometry
[5, 59] under the conditions of 2000 s and 0V; the current
of the sensor decays rapidly at the beginning, which may be
due to the rapid adsorption of a large number of AA on the
sensor surface that makes the number of active sites
reduced quickly. After that, the adsorption of AA and the
release of active sites basically reached a balance, so the cur-
rent of the sensor tended to be stable [19]. Since the current
decay only occurs in the first few seconds, and then
remains stable for a long time, it proves that the sensor
has good stability.

3.6. Real Sample Analysis. To access the practical applica-
tion value of the CQDs/GCE sensor, DPV was used to
detect the fetal bovine serum diluted 10 times with 0.1M

PBS. The experimental results are shown in Table 2. The
recoveries of AA were in the range of 99.3%-102.6%, and
the relative standard deviation was lower than 3%, indicat-
ing that the sensor has important practical application of
significance.

4. Conclusions

The CQDs were successfully synthesized using a microwave
reactor, and the sensor based on CQDs was successfully
constructed. The CQDs/GCE had two wide linear ranges,
excellent sensitivity, and good stability. In particular, its
outstanding anti-interference ability further indicated that
CQDs are promising candidates for AA detection in real
sample analysis and are expected to be used for simultaneous
detection of AA, DA, and UA.

Table 1: Comparison of electrode performance with other modified materials based on electrochemical strategies.

Electrode material LOD (μM) Linear range (mM) Sensitivity (μA-1
μM-1 cm-2) Ref.

Q-chitosan/C 3 1 × 10‐2‐5 7:6 × 10‐2 [44]

PdNi/C 5 × 10‐1 1 × 10‐2‐1:8 — [45]

Cu2O/CuO/rGO 3 × 10‐1 1 × 10‐1‐1 1.375 [46]

AgNPs-Psi 8 × 10‐1 2 × 10‐2‐6 × 10‐1 1.279 [47]

Branch-trunk Ag hierarchical nanostructures 6 × 10‐2 1:7 × 10‐1‐1:8 1.2 [48]

rGO-SnO2 38.7 4 × 10‐1‐1:6 1:9 × 10‐2 [49]

TOAB/YD/MWCNT 1:8 × 10‐1 1:8 × 10‐1‐1:85 — [50]

PdNWs 2 × 10‐1 2:5 × 10‐1‐9 × 10‐1 — [51]

N-CDs 3 × 10‐1 1 × 10‐3‐7:5 × 10‐1 — [52]

SN-GSEC 7:5 × 10‐1 1 × 10‐3‐3 — [53]

BN 3:77 × 10‐3 3 × 10‐2‐1 — [54]

CuNWs/GO 5 × 10‐2 1 × 10‐3‐6 × 10‐2 — [55]

MWCNT/GO/AuNR 8:5 × 10‐7 1 × 10‐6 × 10‐5 7.61 [56]

GO-XDA-Mn2O3 6 × 10‐1 1 × 10‐2‐8 6:56 × 10‐1 [21]

CuZEA/RGO 11 2 × 10‐2‐2 × 10‐1 — [57]

Zn-NiAl LDH/rGO 1:35 × 10‐4 5 × 10‐4‐1:1 × 10‐2 — [58]

CQDs 10 1 × 10‐2‐3, 4-12 44.13/9.66 This work
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Scheme 1: Oxidation mechanism of AA on electrode surface.
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