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Abstract
Objective: Undiagnosed atrial fibrillation ( AF) p atients a re a t h igh r isk o f 
cardioembolic stroke or other complications. The aim of this study was to 
analyze the blood volume pulse (BVP) signals obtained from a wristband 
device and develop an algorithm for discriminating AF from normal 
sinus rhythm (NSR) or from other arrhythmias (ARR). Approach: Thirty 
patients with AF, 9 with ARR and 31 in NSR were included in the study. 
The recordings were obtained at rest from Empatica E4 wristband device 
and lasted 10 min. The analysis, on a 2 min segment, included spectral, 
variability and irregularity analysis performed on the inter-diastolic interval 
series, and similarity analysis performed on the BVP signal. Main results and 
Significance: Variability parameters were the highest in AF, the lowest in NSR 
and intermediate for ARR, as an example pNN50 values were, respectively, 
81 ± 8, 20 5± , 5 ±5 27 (p  <  0.05). The similarity parameters were the highest 
in NSR, the lowest in AF and intermediate for ARR, as an example using a 
threshold for assessing similarity of π /4: 0.9 ±0 0.09, 0.4 ±0 0.20, 0.5 ±8 0.23, 
all p  <  0.05. The rhythm classification was preceded by over-sampling (using 
synthetic minority over-sampling technique) the class of ARR, being it 
the smallest class. Then, the features selection was performed (using the 
sequential forward floating search algorithm) which identified two variability 
parameters (pNN70 and pNN40) as the best selection. The classification by 
the k-nearest neighbor classifier reached an accuracy of about 0 .9 for NSR 
and AF, and 0.8 for ARR. Using pNN70 and pNN40, the specificity for the 
three rhythms was Spnsr  =  0.928, Spaf  =  0.963, Sparr  =  0.768, while the 
sensitivity was Spnsr  =  0.773, Spaf  =  0.754, Sparr  =  0.758.
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1. Introduction

Atrial fibrillation (AF) may be paroxysmal, i.e. it can occur episodically and terminate 
spon-taneously, or is often asyntomatic (Page et al 1994), making the identification of 
subjects with this rhythm disorder even more difficult. Undiagnosed AF patients are at 
high risk of cardioembolic stroke or other complications and even an increased risk for 
death is associ-ated to AF (Anter et al 2009, Healey et al 2012, Soliman and et al 2014). 
Thanks to long-term oral anticoagulation therapy about two-thirds of AF related 
ischemic strokes can be prevented (Hart et al 2007). However, in about one fourth of 
patients with stroke or transient ischemic attack, AF is diagnosed only after the event 
(Sposato et al 2015), in absence of any preventive therapy. Thus, identification of patients 
with silent AF is one of the most impor-tant and critical factor for ischemic stroke 
prevention, as clinical benefit has been consis-tently observed by using oral 
anticoagulation therapy in patients with moderate to high risk of stroke (Hsu et al 2016). 
Opportunistic or systematic screening of the general population has been proposed as a 
tool for an appropriate identification of patients with asymptomatic AF (Benjamin and 
et al 2009). Recently, new technologies have been developed to monitor heart rate by 
means of everyday sensors, as mobile phone cameras (Lee et al 2013), thumb ECG 
(Hendrikx et al 2014), and videocameras (Couderc et al 2015, Iozzia et al 2016). These 
everyday sensors offer the possibility to record and study biosignals providing 
information which could help in discriminating patients with AF and other arrhythmias 
(ARR) from sub-jects in normal sinus rhythm (NSR), without symptoms. One of these 
devices is the Empatica wristband that can record the blood volume pulse (BVP) by using 
a photoplethysmografic (PPG) sensor.

The aim of this study was to analyze the BVP signals obtained from the wristband device 
and develop an algorithm to discriminate AF from NSR, and, more interestingly, from ARR.

2. Methods

2.1. Patients

We analyzed BVP signals recorded from 70 patients admitted to the Ospedale Maggiore 
Policlinico in Milan, Italy. Thirty patients had persistent AF (AF group), 9 suffered from 
other arrhythmias (ARR group), and 31 were healthy subjects (NSR group). The group of 
patients with other arrhythmias included patients with events of atrial flutter, ectopic 
ventricular beats, atrial tachycardia and variable conduction. Clinical characteristics are 
shown in table 1. All data were recorded between March and November 2015.

2.2. Protocol

All recordings were performed with the subject in a supine position, at rest. The subject was 
asked to stay as still as possible to reduce motion artifacts. While the patient layed in a relaxed 
position, the Empatica E4 wristband was applied on the wrist of the non-dominant arm, with 
the main part of the device facing upward, in a similar way to a regular wrist watch. 10 min 



Table 1. Clinical characteristics of the study population.

NSR AF ARR

N 31 30 9
Gender(male/female) 16/15 12/18 8/1
Age (years) ±40 17 (27–75) ±76 9 (58–89) ±65 15 (48–92)
Diabetes 0 6 2
Hypertension 3 20 4
Beta-blockers 2 22 3
Flecainide 4 0 0
Amiodarone 0 1 1
ACE-inhibitor 4 12 4

Note: NSR: normal sinus rhythm, AF: atrial fibrillation, ARR: other arrhythmias.

recording was acquired for each subject. The Empatica E4 wristband is a wearable wireless 
device designed for continuous, real-time data acquisition in daily life. The device is equipped 
with sensors for the registration of different biosignals: an electrodermal activity sensor, an 
infrared thermopile, a 3-axis accelerometer and a PPG sensor which measures the BVP signal. 
The BVP is sampled at 64 Hz.

2.3. Signal preprocessing

The first preprocessing step is the detection and removal of noise: the raw BVP signal may 
be noisy, due to artifacts, mainly caused by the patient moving his/her arm with the device 
on, during the measurement. To identify segments corrupted by noise, data from the 3-axis 
accelerometer were used: the norm of the accelerations on the three axes was computed and 
the deviation from the acceleration of gravity g calculated. The absolute value of the deviation 
was then compared to a threshold. When the threshold was exceeded, the algorithm classified 
that portion of the signal as noisy and discarded it from further analysis. The threshold was 
empirically set to 0.07g.

The second preprocessing step is the detection of systolic peaks and diastolic minima in the 
BVP signal. First, the diastolic minima are found by low-pass filtering the BVP signal using 
a moving-average of 23 samples (∼0.36 s), acting on the signal as a low-pass filter, 
similarly as in Mainardi et al (2009). Therefore, a smoother signal is obtained where the 
local minima are easily identifiable. These positions are taken as coarse temporal reference 
for each dias-tolic peak, whose timing is then refined by searching the minimum on the 
original signal in a 0.2-s window around it (see figure 1). To automatically locate the 
systolic peaks, first all local maxima in the BVP signal are detected. Then, using the 
information on the location of the diastolic minima, the first local maximum after each 
diastolic minimum is defined as a systolic peak (with the restriction that there can be only 
one peak for every cycle).

From the systolic peaks and diastolic minima, the inter-systolic and the inter-
diastolic intervals series are computed, respectively. These series can be used as a surrogate 
of the RR series, thus providing information on the heart rate of each subject.

2.4. Signal characterization

Twenty-four indexes were computed belonging to the following three classes: (i) Spectral 
analysis, (ii) Variability and Irregularity analysis, (iii) Shape analysis. Parameters from 
the first two classes were computed on the inter-systolic and inter-diastolic interval series, 



whereas shape analysis was performed on the BVP signal. All parameters were computed on 
a 2 min segment for each subject. All subjects had at least one 2 min segment without move-
ment artifacts.

2.4.1. Spectral analysis. Power spectral analysis of the inter-systolic and inter-diastolic inter-
val series was performed by means of an AR model:
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where e(n) is a gaussian white noise process, n is the discrete time index, p is the model 
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where the zi are the model poles. In this study, the model coefficients were estimated using 
the Levinson Durbin algorithm, the Andersons test (Kay and Marple 1981) was used to check 
the validity of the model, and the model order was selected by Akaike information criterion 
(Akaike 1970). Using Cauchy’s residue theorem, the AR spectrum, P ω( ) , can be divided into a 
sum of p components (Zetterberg 1969). Consequently, the spectrum can be decomposed into 

Figure 1. Diastolic minima detection: the local minima (t ∗i ) are found on the low-pass 
filtered signal (b) and reported on the original signal (a), where the minimum (ti) are 
found in a 0.2 s window (the grey rectangle) centered in t ∗i , represented by the dashed 
line.



bell–shaped curves, named the spectral components. The central frequency fi and the power Pi

of the ith spectral component can be computed as (Mainardi 2009)
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where ( )∠ ⋅  is the phase expressed in radians, and µ = 2 for complex pole pairs and µ = 1 for
real ones; σe

2 is the prediction error variance, and γ is the pole residue.
The spectral decomposition algorithm (Baselli et  al 1987, Mainardi 2009) was used to 

measure the central frequency and the power of the spectral components falling in the low 
frequency (LF, 0.03–0.15) and high frequency (HF, 0.15–0.40 Hz) bands.

2.4.2. Variability and irregularity analysis. Variability and irregularity quantify different prop-
erties: variability is related to the dispersion of data, whereas irregularity is related to the 
degree of unpredictability of the data fluctuations.

Variability analysis of the inter-diastolic intervals series includes the mean (M), the stand-
ard deviation (SD), the root of the mean squared differences of successive intervals, (rMSSD) 
and the percentage of interval differences of successive intervals greater than x ms (pNNx, 
with [ ]= …x 10, 20, , 100 ).

Irregularity of the inter-diastolic intervals series was assessed by sample entropy (SampEn), 
that quantifies the unpredictability of fluctuations. The presence of repetitive patterns of fluc-
tuation in a time series makes it more predictable than a time series in which such patterns are 
absent. SampEn reflects the likelihood that similar patterns of observations will not be followed 
by additional similar observations. A time series containing many repetitive patterns, i.e. a reg-
ular and predictable series, has a relatively small SampEn; a less predictable, i.e. more irregular 
process has a higher SampEn. In particular, SampEn is the negative natural logarithm of the 
conditional probability that two sequences of length m that match within tolerance r will also 
match at the m  +  1 length. Defining as A the total number of matches of length m  +  1 and B the 
total number of matches of length m, SampEn is computed as (Richman and Moorman 2000)

( / ) ( ) ( )= − = − +A B A BSampEn ln ln ln (4)

In this study, m was used equal to 1 and 2, while r equal to 0.25 times the standard deviation 
of the series, as commonly used (Sassi et al 2015).

2.4.3. Shape analysis. To assess wave similarity, each wave is represented as a point of the 
p-dimensional real space, the normalized waves are points belonging to the p-dimensional
unitary sphere. Hence, the morphological dissimilarity between two waves is evaluated by
using the standard metric of the sphere to compute their distance (Faes et al 2002)

( )= ⋅D w warccosi j
N N
i j, (5)

where wi
N and wj

N represent the ith and jth normalized waves, i.e. wi
N = /∥w wi i∥ and (⋅) denotes 

the scalar product. A measure of similarity between waves is obtained by calculating the relative 
number of similar pairs of waves in the recording. The similarity depends on the threshold ε used in 
evaluating the similarity, that is, two waves are considered to be similar when their distance is lower 
than ε. In this study, one pulse in the BVP signal is considered as wave and five different thresholds 
are tested in this study: ε = [ 2, 4,π π π π/ / / /8, 16, π / ]32 , defining Sim1, Sim2, Sim3, Sim4, Sim5. 
As an example, in figure 2 the similarity between pulses in the three rhythms is shown. It can be 
observed that in NSR the waves are very similar, whereas during AF the waves are more different, 
and they are in between for the patient with arrhythmias.



2.5. Statistical analysis

Kruskal–Wallis one-way analysis of variance was performed to compare the computed param-
eters during NSR, AF and ARR. If the p-value of the Kruskal–Wallis test was significant, an
unpaired t-test or Wilcoxon test with Holm’s correction was applied. A p  <  0.05 was consid-
ered statistically significant. All analyses and statistical tests were performed using MATLAB 
R2012b (The MathWorks, USA).

To distinguish NSR from AF and ARR, feature selection was first performed, then followed 
by classification.

A two-step features selection procedure was used: first, features with a significant p-value 
of the Kruskal–Wallis test were selected; second, a sequential forward floating search (SFFS) 
algorithm was used to identify a small subset of optimal features. The SFFS algorithm (Pudil 
et al 1994) is briefly described in the following. Starting from the empty set of features, the 
feature xi that maximizes the objective function J when combined with the k features that have 
already been selected (Yk) is added (forward step). The objective function values with differ-
ent number of features J(k) is memorized, where k indicates the number of features. After the 
forward step, a backward step is performed. The backward step consists in removing from Yk 
the feature that makes the objective function J*(k) larger than J(k), where J*(k) is the objective 
function after removing one feature. The backward step is repeated as long as J*(k) is larger 
than J(k), with k decreasing, with the constrain that the last added feature cannot be removed. 
In this study, the objective function was the average of the accuracy for AF and for ARR, in 
order to decrease the false negative rate.

A dataset (like the one in our study) is imbalanced if the classes are not approximately 
equally represented. A way to overcome this problem is to re-sample the original dataset, 
by oversampling the minority class. The algorithm used in this study is synthetic minority 
over-sampling technique (SMOTE): the minority class is over-sampled by creating synthetic 
examples. Briefly, the minority class is over-sampled by taking each minority class sample 
and introducing synthetic examples along the line segments joining the q minority class near-
est neighbors (q was chosen equal to 3) (Chawla et al 2002). In this study, we over-sampled 
the class of ARR, so that all the three classes were equally represented.

After the feature selection step, the classification was performed using the k-nearest neigh-
bor classifier. In the training phase, 2/3 of the data are used to build the model, whereas in 
the test phase the remaining 1/3 of the data are classified according to the model generated 
in the training phase (Kohavi 1995). SMOTE is applied before dividing the data in training 

Figure 2. Example of normalized pulses for three patients in (a) NSR, (b) AF and 
(c) ARR.



Table 2. Frequency domain parameters in the three groups (median (25th–75th
percentiles)).

NSR AF ARR
p-value
K–W

Pairwise 
significance

LF (frequency) 0.081 (0.061–0.110) 0.079 (0.055–0.105) 0.098 (0.053–0.104) ns —
HF (frequency) 0.244 (0.192–0.320) 0.217 (0.194–0.256) 0.211 (0.0198–0.272) ns —
LF (power) 5·10−7 (2·10−7–1·10−5) 2·10−5 (10−5–6·10−5) 9·10−6 (2·10−6–2·10−4) ns —
HF (power) 2·10−7 (7·10−8–4·10−6) 10−5 (9·10−6–3·10−5) 6·10−6 (3·10−6–2·10−5) 0.008 NSR versus 

AF
NSR versus 
ARR

Note: NSR: normal sinus rhythm, AF: atrial fibrillation, ARR: other arrhythmias.

and testing sets, and a check is performed to obtain unduplicated data. The k-nearest neighbor 
classifier with k equal to 3 was used in this study (Kononenko 2001). Leave-p-out cross-
validation (p  =  30) was performed with 100 bootstrap repetitions, from which performance 
metrics were averaged (Kohavi 1995).

3. Results

3.1. Signal characterization

Tables 2 and 3 show results obtained analyzing the inter-diastolic intervals series in the three 
groups along with the p-values of the Kruskal–Wallis test (results for the inter-systolic inter-
vals series are not shown as they were very similar). In particular, table 2 reports the spectral 
parameters and it can be observed that some of them are significantly different when comparing 
AF or ARR to NSR, but they are not able to distinguish AF from ARR. In particular, the power 
in the HF band was found to be significantly lower in NSR than in patients with arrhythmias.

Many of the variability and irregularity parameters are significantly different among all the 
three groups, as shown in table 3 . Among the variability parameters, all the pNNx are signifi-
cantly different when comparing NSR to arrhythmias as well as when comparing AF to ARR. 
In particular, pNNx tend to have high values for patients with AF, low values for subjects 
in NSR and values in-between in presence of ARR. The irregularity parameter, SampEn, is 
significantly different across the groups: SampEn is higher during AF than during NSR or in 
patients with ARR. Moreover, SampEn is higher in subject in NSR than during ARR.

Table 4 shows the results on the similarity of the waves morphology for different thresholds 
(different rows). It can be observed that in each rhythm the smaller the threshold, the lower the 
value of the similarity index. When comparing the different rhythms, for all the tested thresh-
olds, NSR always has the highest similarity, AF has the lowest values and the ARR group has 
intermediate values.

3.2. Rhythm classification

Globally, seventeen parameters were found significantly different in the three rhythms (as 
shown in the previous section): figure 3 shows the mean accuracy for the three rhythms using 
only one of these 17 parameters at a time. It can be noted that the classification with one vari-
ability (pNNx) parameter makes the accuracy for AF and NSR the highest. Good accuracy for 
AF and NSR is obtained also with the similarity parameters, whereas irregularity parameters 



Table 3. Variability and irregularity parameters in the three groups (median 
(25th–75th percentiles)).

NSR AF ARR
p-value
K–W

Pairwise 
significance

M 834 (772–918) 877 (808–1035) 918 (763–997) ns —
SD 89 (70–174) 330 (266–509) 223 (176–580) 0.001 NSR versus AF

NSR versus ARR
pNN10 84 (78–88) 97 (96–98) 92 (86–96) 0.0006 All
pNN20 51 (40–65) 93 (89–94) 82 (62–90) 10−11 All
pNN30 51 (40–65) 93 (89–94) 82 (62–90) 10−11 All
pNN40 29 (20–45) 87 (82–92) 69 (39–79) 10−19 All
pNN50 15 (10–28) 84 (76–88) 57 (32–74) 10−22 All
pNN60 15 (10–28) 84 (76–88) 57 (32–74) 10−22 All
pNN70 8 (5–20) 78 (66–83) 48 (25–69) 10−24 All
pNN80 7 (3–12) 75 (60–81) 41 (25–66) 10−24 All
pNN90 7 (3–12) 75 (60–81) 41 (25–66) 10−24 All
pNN100 5 (1–11) 70 (54–77) 35 (23–65) 10−22 All
rMSSD 108 (66–273) 470 (390–726) 356 (267–785) 0.0006 NSR versus AF

NSR versus ARR
SampEnm=1 1.031 

(0.395–1.396)
1.349 
(1.156–1–458)

0.365 
(0.190–0.821)

0.0004 All

SampEnm=2 0.924 
(0.391–1.370)

1.297 
(1.089–1.496)

0.340 
(0.147–0.758)

0.0002 All

Note: NSR: normal sinus rhythm, AF: atrial fibrillation, ARR: other arrhythmias.

are worse in classifying the three rhythms, being the worst for NSR. The accuracy for ARR is 
about 0.7 with almost all the parameters.

Figure 4 shows the accuracy for NSR, AF and ARR, obtained using an increasing num-
ber of parameters, as selected by the SFFS algorithm. In figure 4, the nth dot represents the 
mean accuracy (over the 100 repetitions) obtained using n parameters. It can be observed that 
passing from one to two parameters, the mean accuracy increases, then it is almost constant, 
and then when new parameters are added, slightly decreases. Table 5 shows the best selected 
parameters using up to six parameters. It can be noted that the mean accuracy significantly 
increased using two parameters compared to only one parameter, for all the three rhythms. 
Using two parameters, namely pNN70 and pNN40, seems to be the best compromise which 
balances the number of features and the accuracy values. In particular, using these two param-
eters, the specificity and sensitivity are shown in table 6.

4. Discussion

In this study, we assessed for the first time, the possibility to discriminate A F from NSR 
and ARR by using biosignals recorded by a wristband device. The main finding is that AF 
can be well detected, with high sensitivity and high specificity, using only few 
parameters computed on the BVP signal. The differences between AF and NSR signals are 
usually very pronounced, as the heart rate during AF, without atrioventricular node block, is 
much more irregular (Corino et al 2002). This causes the RR series and, similarly, the inter-
diastolic inter-vals series to be more variable and more irregular during AF (Corino et al 
2014). In addition, during AF as R waves may not be coupled with an adequate left ventricular 
output to generate 



discrete pulses, thus the arterial blood pressure and consequently the BVP signal may look dif-
ferent from those in NSR (Mainardi et al 2009). However, AF irregularity may cause problems 
in discriminating AF from ARR, that can include atrial tachycardia, atrial flutter, and prema-
ture ventricular contractions. In respect to this, it is worth noting that the classifier was able to 
correctly classify AF from ARR with an average false negative rate of  ∼25%.

Previous studies have shown that recording the BVP signal by a pulse oximeter, similar 
information to that from HRV analysis can be obtained (Lu et al 2008, Gil et al 2010). Simil-
BVP signals have been recently extracted from everyday sensors as smartphone (Lee et al 
2013) or video cameras (Couderc et al 2015), with the aim of detecting AF episodes. In Lee 
et al (2013), AF was detected from pulsatile signals in the human fingertip using the camera 
of an iPhone 4 s. They computed parameters similar to those in our study assessing variability 
and irregularity (rMSSD, SampEn and Shannon entropy). The accuracy using rMSSD was 
0.98 (without cross-validation), but the protocol included 25 patients with AF before and after 
cardioversion, thus in NSR, without the presence of the ARR group. In Couderc et al (2015), 
they used a video camera to record an individuals face and extract the subtle beat-to-beat 

Table 4. Similarity indexes in the three groups (median (25th–75th percentiles)).

Threshold NSR AF ARR
p-value
K–W

Pairwise 
significance

Sim1 π/2 0.98 (0.98–0.99) 0.92 (0.82–0.94) 096 (0.92–0.98) 10−6 All

Sim2 π/4 0.92 (0.85–0.98) 0.44 (0.20–0.52) 0.66(0.41–0.78) 10−16 All

Sim3 π/8 0.64 (0.44–0.87) 0.10 (0.02–0.13) 0.36 (0.08–0.56) 10−15 All

Sim4 π/16 0.19 (0.09–0.51) 0.01 (10−4–0.02) 0.08 (0.01–0.28) 10−7 All

Sim5 π/32 0.02 (0.01–0.12) 10−5 (0–10−4) 0.002 (0-0.04) 10−4 All

Note: NSR: normal sinus rhythm, AF: atrial fibrillation, ARR: other arrhythmias.
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Figure 3. Mean accuracy for NSR, AF and ARR, obtained using only the parameter as 
indicated on the y-axis.



variations of skin color reflecting the cardiac pulsatile signal. They analyzed recordings from 
11 patients with AF undergoing electrical cardioversion, before and after the procedure, thus 
comparing AF and NSR, introducing a novel quantifier of pulse variability called the pulse 
harmonic strength. Among the 407 epochs of 15 s of synchronized ECG and videoplethys-
mographic signals, the pulse harmonic strength was associated with a 20% detection error 
rate, while the error rate of the automatic ECG-based measurements ranged between 17% 
and 29%. It is worth noting that some differences exist between these studies and ours. Our 

Figure 4. Mean  ±  the standard deviation (black line and the grey area, respectively) of 
the accuracy for (a) NSR, (b) AF (c) and ARR.



protocol included patients with ARR, such as atrial tachycardia, that makes the correct clas-
sification of AF more difficult: in our classification, the AF group was very rarely misclassified 
as NSR, being the false negative rate (AF classified as NSR) only 0.02. Moreover, the wrist-
band device allows the recording without patient interaction, i.e. once the device is on, the 
patient does not need to be compliant.

With the aim of detecting paroxysmal AF, there is the need of monitoring the patients for 
longer periods. A recent study assessed the possibility of using a handheld device (thumb 
ECG) to record short ECG (Hendrikx et al 2014). The main finding was that intermittent ECG 
recording was superior to routine 24 h Holter ECG in manually detecting relevant paroxys-
mal arrhythmias in a patient population reporting symptoms of palpitations, dizziness/presyn-
cope. The intermittent recordings were repeated over four weeks, both regularly twice daily 
and when having symptoms. During this period the compliance was high, as the 95 included 
patients had a median of 59 registrations. Another possibility for long monitoring is using an 
insertable cardiac monitor (Di Odoardo et al 2016, Sanders et al 2016). In Sanders et al (2016) 
the implantable cardiac monitor correctly identified 37 of the 38 patients with Holter-detected 
AF (diagnostic sensitivity of 97.4%) and 97 of the 100 patients without AF according to 
Holter analysis (diagnostic specificity of 97.0%). The main disadvantage of these two devices 
are, respectively, the need of high compliance of the patients and the invasive nature and cost 
of the insertable cardiac monitor. On the contrary, the wrist-band device can be used for longer 
periods, without causing discomfort to the patients and without needing their compliance. 
However, further studies are needed to investigate whether the results of this study will hold 
when analyzing patients with paroxysmal AF, that, being a previous stage of the arhhythmia, 
is characterized by less remodeled atria.
   Given the increasing number of people at risk for AF, and the high prevalence of paroxys-
mal and asymptomatic AF, a wider screening of people at risk, using non-invasive 
comfortable 

Table 5. Selected parameters (using at maximum six) and the corresponding accuracy 
(mean  ±  one standard deviation) for the three rhythms.

Selected features Accuracy NSR Accuracy AF
Accuracy 
ARR

pNN70 ±0.86 0.06 ±0.88 0.05 ±0.75 0.07
pNN70, pNN40 ±0.88 0.05a ±0.91 0.05a ±0.80 0.06b

pNN70, pNN40, Sim5 ±0.87 0.06 ±0.92 0.05 ±0.80 0.07
pNN70, pNN40, Sim5, Sim4 ±0.88 0.05 ±0.91 0.05 ±0.80 0.06
pNN70, pNN40, Sim5, Sim4, SampEnm=1 ±0.88 0.06 ±0.92 0.04 ±0.80 0.06
pNN70, pNN40, Sim5, Sim4, SampEnm=1, Sim3 ±0.87 0.06 ±0.92 0.05 ±0.81 0.06

a p  <  0.01,
b p  <  0.0001 Accuracy using two features versus accuracy using one feature.

Table 6. Sensitivity and specificity using tow parameters (pNN70 and pNN40) for the 
three rhythms.

Rhythm Specificity Sensitivity

NSR 0.928 0.773
AF 0.963 0.754
ARR 0.768 0.758

NSR: normal sinus rhythm,
AF: atrial fibrillation,
ARR: other arrhythmias.



devices may be helpful. Empatica E4 wristband device, used in this study, is a wearable wire-
less device designed for continuous, real-time data acquisition in daily life, being non-invasive 
and worn like a regular wrist watch, without causing discomfort to the patient, not even after 
prolonged acquisitions. The results highlighted the possibility to discriminate AF from NSR 
and more interestingly from ARR based on 2 min recording, thus laying the groundwork for 
longer recordings for patients at risk of AF. The results were obtained with the patients laying 
still, in controlled condition. Therefore additional studies will be needed to assess the feasibil-
ity of AF detection by using wristband device during daily activities, where artifacts caused by 
daily activity may prevent the detection of events. The first step toward this final goal was to 
analyze the BVP wristband signals and develop an algorithm for discriminating AF from sinus 
rhythm and other arrhythmias. To test this possibility, we analyzed the most stable situation to 
avoid external disturbance.

Finally, it is worth noting that the most relevant parameters were those assessing wave-
form similarity as well as variability of the inter-diastolic intervals series. These variability 
parameters, despite their simplicity, have been previously found to be predictive of long-
term clinical outcome in a population of patients with mild-to-moderate heart failure and 
AF (Cygankiewicz et al 2015). Thanks to their simplicity, they might be even implemented 
on the device itself.
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