
Detection of bursts in extracellular spike trains

using hidden semi-Markov point process models

Surya Tokdar
Department of Statistics

Carnegie Mellon University

Pittsburgh, PA 15213

Email: stokdar@stat.cmu.edu

Phone: (412) 268 3556

Fax: (412) 268 7828

Peiyi Xi
Department of Statistics

Carnegie Mellon University

Pittsburgh, PA 15213

Ryan C. Kelly
Department of Computer Science

Center for the Neural Basis of Cognition

Carnegie Mellon University

Pittsburgh, PA 15213

Robert E. Kass
Department of Statistics

Center for the Neural Basis of Cognition

Carnegie Mellon University

Pittsburgh, PA 15213

May 20, 2009

Abstract

Neurons in vitro and in vivo have epochs of bursting or “up state” ac-
tivity during which firing rates are dramatically elevated. Various meth-
ods of detecting bursts in extracellular spike trains have appeared in
the literature, the most widely used apparently being Poisson Surprise
(PS). A natural description of the phenomenon assumes (1) there are two
hidden states, which we label “burst” and “non-burst,” (2) the neuron
evolves stochastically, switching at random between these two states, and
(3) within each state the spike train follows a time-homogeneous point
process. If in (2) the transitions from non-burst to burst and burst to
non-burst states are memoryless, this becomes a hidden Markov model
(HMM). For HMMs, the state transitions follow exponential distributions,
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and are highly irregular. Because observed bursting may in some cases be
fairly regular—exhibiting inter-burst intervals with small variation—we
relaxed this assumption. When more general probability distributions are
used to describe the state transitions the two-state point process model
becomes a hidden semi-Markov model (HSMM). We developed an effi-
cient Bayesian computational scheme to fit HSMMs to spike train data.
Numerical simulations indicate the method can perform well, sometimes
yielding very different results than those based on PS.

Keywords: Hidden Markov Model, Markov-Modulated Poisson Process, Pois-
son Switching Model, Poisson Surprise, Rank Surprise, Up State
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1 Introduction

Extracellularly-recorded spike trains often contain clusters of several spikes, sep-
arated by unusually small inter-spike intervals (ISIs). Such clusters may repre-
sent sudden epochs of elevated firing rate due to a neuron’s intrinsic dynamics, a
response to bistable network behavior, or oscillations traveling through a region
of the brain (Koch, 2004; Doiron et al., 2003; Cooper et al., 2005; Izhikevich et
al., 2003; Wilson and Cowan, 1972). They are called “bursts” or “up states”
depending on the context. Analysis of bursting or up state data requires iden-
tification of when the bursts occur, their number, and their duration. From
extracellular measurements alone, however, there is an immediate problem of
definition: when the underlying voltage fluctuations are not observed, it is un-
clear what should constitute a burst. In this paper we discuss a conceptually
simple approach: at each time point t we assume there is—for a given neuron—
an unobserved dichotomous state, which we label “burst” or “non-burst”. The
statistical problem then becomes one of identifying the hidden states, which
may be accomplished using maximum likelihood or Bayesian methods. This
approach seems quite natural, and accords well with theoretical conceptions of
both intrinsic bursting and up/down networks. We ignore any distinction here
between bursts and up states, because the statistical detection methods will be
the same regardless of the physiological situation, and we use the term “burst”
throughout.

Some authors have devised extracellular burst-detection methods based on
interspike interval (ISI) length, often with a criterion for a minimal number of
spikes with small ISIs (Lo et al., 1991; Martinson et al., 1997; Corner et al.,
2002; Turnbull et al., 2005; Tam, 2002). A conceptual difficulty for such meth-
ods, illustrated in Figure 1, is that spike trains generated from pure renewal
processes—such as those produced by simple integrate-and-fire models—can
exhibit clusters of neurons that have the appearance of bursts. In some circum-
stances these “null cases” might be ruled out by substantive considerations. In
most others, one needs a careful, model-based calibration to determine whether
or not a cluster of short ISIs represents a burst.

A very popular burst-detection method, called Poisson Surprise (PS) (Leg-
endy and Salcman, 1985), offers such a calibration based on a probabilistic
model on the ISIs. With PS, one calculates a surprise value S to measure how
unlikely it is that a cluster with n spikes in a time interval T , would occur by
chance. The method performs its chance calculation under the assumption that
the ISIs are independent realizations from an exponential density. This amounts
to assuming the neuron to spike according to a time homogeneous Poisson pro-
cess. It is, however, known that spike trains often exhibit distinctly non-Poisson
behavior (Koch, 2004; Gourevitch and Eggermont, 2007). To avoid the Poisson
assumption Gourevitch and Eggermont (2007) proposed a rank surprise (RS)
index, which again computes a surprise value but instead uses the distribution
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Figure 1: Spike train simulated from inverse Gaussian renewal model. By
chance, spikes tend to form clusters, resembling bursts. The inverse Gaussian
mean was 30.8 spikes per second with shape parameter 19.3, which were max-
imum likelihood estimates from an inverse Gaussian fit to the retinal ganglion
data analyzed below.

of ISI ranks to perform the chance calculation.

Both PS and RS calibrate clusters of ISIs under the null model that all ISIs
in the spike train are generated from a pure renewal process. An alternative is to
specify a model that directly accommodates the existence of both bursting and
non-bursting phases via a hidden binary state. We have developed point process
models in which the firing rate is one of two values according to whether a binary
hidden state is bursting or non-bursting. With an appropriate probability model
on the hidden state, Bayes’s rule may be used to compute—for every time t—the
conditional probability that the hidden state was bursting at t given the entire
spike train recorded from the neuron. The time intervals where this probability
exceeds a certain cutoff (such as 0.5) are then declared to be bursts.

The simplest two-state model for neural spike trains is a switching Poisson
(SP) process (or Markov-modulated Poisson process) (Scott 1999; Abeles et al.,
1995) in which spiking activity follows two homogeneous Poisson processes, one
for each state, and the state transitions from non-bursting to bursting and burst-
ing to non-bursting occur according to a Markov chain. Such hidden Markov
models (HMMs) (Baum and Petrie, 1966; Rabiner 1989) have two potential
restrictions. First, the neural activity within bursting and non-bursting states
continues to be considered Poisson, which may well be inaccurate. Second, as
a Markov model the transitions are assumed memoryless. This means that the
inter-burst intervals (and inter-non-burst intervals) follow exponential distri-
butions, which are maximally irregular (they are distributions that maximize
entropy subject to being positive with a fixed expectation). Thus, spike trains
that exhibit regular bursting activity (such as roughly oscillatory bursting) will
be poorly fit by HMMs, and this may cause sub-optimal behavior of the detec-
tion algorithm. We relaxed both the within-state Poisson assumption and the
between-state exponential assumption by implementing a switching gamma pro-
cess model in which the state transitions were also governed by gamma distribu-
tions. The latter formulation makes this a hidden semi-Markov model (HSMM).
The parameters of the gamma distribution, and therefore the ISI distributions
in both bursting and non-bursting states, are learned from the data, and the
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bursting and non-bursting state transitions are estimated. The purpose of this
article is to describe our HSMM implementation and study its effectiveness.

An appealing feature of HMMs is computational tractability, most often via
an expectation-maximization algorithm known as the Baum-Welch algorithm.
This algorithm uses a fast forward-backward recursion to perform maximum
likelihood estimation of model parameters and conditional probability evalua-
tion of the hidden state given the estimated parameters. Chib (1996) developed
a variation of this to construct a Markov Chain Monte Carlo (MCMC) algorithm
for a Bayesian treatment of this model. In the Bayesian setting, the conditional
probability evaluation requires an additional integration over the model param-
eters with respect to their joint posterior distribution given the observed spike
train. Chib (1996) noted that the Markov chain structure of the HMM model
allows efficient sampling from the posterior distribution through a Gibbs sam-
pler. The computational approach we have developed applies Gibbs sampling
to HSMMs by expanding the state space so that the HSMM takes a Markovian
form. In Section 2 we provide details of our implementation; in Section 3 we
give results from a small simulation study, comparing our HSMM to PS and RS,
and also to a point-process HMM; in Section 4 we apply the HSMM to a data
set analyzed previously by several other authors; and in Section 5 we discuss
the results.

2 Methods

2.1 Hidden Binary Model

We denote the hidden binary state of the neuron at time t by C(t) with C(t) =
1 coding a bursting state, C(t) = 0 a non-bursting state. We suppose the
observation time interval is [0, T ] and assume that on this interval C(t) can
have only finitely many transitions between its two states. The waiting time
from one transition to the next will be called an inter-transition interval (ITI).
The ITIs are assumed independent. Those corresponding to the bursting state
(C(t) = 1) are from a density f ITI

1 (·) and those from a non-bursting state are
from a density f ITI

0 (·).

Within each state, we consider the neural spike train to be governed by a
renewal process with an inter-spike interval (ISI) probability density f1 or f0
depending on the state level. Such a conception may be technically inaccurate
because transitions may occur in the midst of an ISI. However, for simplicity we
assume that every ISI is regulated by the state of the neuron at the completion
of the previous spike. (As we mention in the discussion, we also investigated an
alternative method that did not make this assumption, but it was much more
cumbersome and gave similar results in the cases we examined.) More formally,
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letting yi be the i-th ISI and τi =
∑i
j=1 yj denote the time of the i-th spike, the

first ISI Y1 is assumed to follow f ISI
C(0) and the subsequent ISI’s are conditionally

modeled as:
yi | (y1, · · · , yi−1, C[0, τi−1]) ∼ f ISI

C(τi−1)
(1)

with C[0, T ] = {C(t) : 0 ≤ t ≤ T}. Each of the four densities f ITI
s , f ISI

s ,
s ∈ {0, 1} is assumed known only up to finitely many parameters, all of which
are collected together into a vector θ. In addition to the hidden binary burst
states, the vector θ must be learned from the data.

2.2 Burst Detection

Note that the hidden process C[0, T ] completely determines the bursting and
non-bursting states of the neuron. After observing the spike train, statistical
inference about C[0, T ] can be drawn from its posterior distribution given y1:n =
(y1, · · · , yn) (or equivalently given τ1:n = (τ1, · · · , τn)). Identification of whether
the neuron is bursting at a time point t ∈ [0, T ] is based on the posterior
probability Pr(C(t) = 1 | y1:n). Under the interpretation of this posterior
probability as a reasonable degree of belief as to whether the neuron is bursting
at time t, the most intuitive cutoff value would be .5, i.e., the neuron would
be determined to be bursting whenever the reasonable degree of belief favored
bursting rather than non-bursting. Using this cutoff, we would identify the
neuron as bursting at time t if Pr(C(t) = 1 | y1:n) > .5. Other cutoff values
could be used and, in fact, we do use other cutoffs in examining properties of
the procedure, below. These posterior probabilities were computed by using an
efficient Markov chain Monte Carlo (MCMC) method. Our assumption that
the distribution of yi depends only on the state si = C(τi−1) ensures that the
posterior distribution of C[0, T ] factors as

p(C[0, T ] | y1:n) = p(C[0, T ] | s1:n)p(s1:n | y1:n)

where s1:n = (s1, · · · , sn). For this reason, we focused our MCMC on sampling
only from p(s1:n | y1:n).

We designed our MCMC to produce a sample of (s1:n, θ) from their joint
posterior distribution given y1:n. Our MCMC algorithm alternates between
updates of θ and of s1:n. We update θ by using a Multiple-Try Metropolis move
(Liu et al. 2001) that leaves the conditional posterior density p(θ | s1:n, y1:n)
invariant. This density is easy to compute (up to a normalizing constant), see
expression (2) below. We use a Gibbs update for s1:n, which is essentially a
random draw of s1:n from the conditional posterior p(s1:n | y1:n, θ). Below we
describe this update in more detail.
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2.3 Sampling from p(s1:n | y1:n, θ)

Given θ, the pair (s1:n, y1:n) defines a hidden Markov model when f ITI
1 and f ITI

0

are exponential densities. This results in the property that C(t, T ] is condition-
ally independent of C[0, t) given C(t) for any 0 ≤ t < T , which ensures that
the si’s form a Markov chain. For such models where the si’s live on a finite
state space, Chib (1996) developed an efficient algorithm to sample from the
posterior distribution of s1:n given Y1:n. He introduced a Gibbs sampler that
sampled all of s1:n in a single draw, which made the procedure much faster than
Metropolis-Hastings samplers where the hidden states were updated one at a
time.

Chib’s method, however, relies on the Markov property of s1:n and thus does
not apply to the case where f ITI

1 and f ITI
0 are not exponential densities. We

have introduced a suitable variable augmentation which induces the required
Markov property on an extended state space. The basic idea is to archive with
every spike time τi the time since the last transition. Although this time cannot
be exactly determined from y1:n and s1:n, it can be bracketed by (ri − yi, ri)
where

ri = yi−mi+1 + · · ·+ yi

with mi = min{j > 0 : si−j 6= sj}. If we restrict C(t) from having more than
one transition between two successive spikes, then

p(s1:n, y1:n | θ) = p(s1)f ISI
s1 (y1)

n∏
j=2

Bernoulli(I(si = si−1) | φsi−1,ri−1,yi−1) (2)

where Bernoulli(x | p) = px(1− p)1−x denotes a Bernoulli pdf with probability
p, I(·) denotes the indicator function and φs,r,y = (1−F ITI

s (r))/(1−F ITI
s (r−y))

is the probability that an ITI in state s will stretch beyond r given that it is
already larger than r − y; here F ITI

0 and F ITI
1 are the cumulative distribution

functions corresponding to f ITI
0 and f ITI

1 . With these definitions (si, ri, yi) forms
a Markov chain with the distribution of s1 = C(0) unspecified.

We now present details of our adaptation of Chib’s method to sample from
p(s1:n, r1:n | y1:n, θ) where r1:n = (r1, · · · , rn). In the following we suppress θ
from the notations, because all computations are done for θ fixed at its current
value in the MCMC. The following notations and derivations closely follow the
constructions given in Chib (1996). For any vector x1:n = (x1, · · · , xn), let xi:j
denote the sub-vector (xi, xi+1, · · · , xj), 1 ≤ i ≤ j ≤ n. Notice that

p(s1:n, r1:n | y1:n) = p(sn, rn | y1:n)
n−1∏
i=1

p(si, ri | si+1:n, ri+1:n, y1:n)

with

p(si, ri | si+1:n, ri+1:n, y1:n) ∝ p(yi+1:n, si+1:n, ri+1:n | si, ri, y1:i)p(si, ri | y1:i)
∝ p(yi+1, si+1, ri+1 | si, ri)p(si, ri | y1:i).
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Because r1:i is always completely determined by y1:i and s1:i, the first probability
distribution above can be written as

p(yi+1, si+1, ri+1 | si, ri) =
I(ri+1 = I(si+1 = si)ri + yi+1)p(si+1, yi+1 | si, ri).

Therefore, once the pdfs p(si, ri | y1:i) are known, (s1:n, r1:n) can be easily
sampled from p(s1:n, r1:n | y1:n) by sequentially sampling (sn, rn), (sn−1, rn−1)
and so on. Below we outline how these pdfs can be computed in a recursive
manner—this again follows the strategy in Chib (1996) but with some important
differences.

Let lij = yi + yi−1 + · · · + yi−j+1, i = 1, · · · , n and j = 1, · · · , i. It is
clear that the i-th pdf gi(si, ri) = p(si, ri | y1:i) is to be evaluated only at
(si, ri) ∈ {0, 1} × {lij ; j = 1, 2, · · · , i}. Suppose these evaluations have been
done for a given i. Then the next pdf gi+1(si+1, ri+1) can be evaluated at the
desired values via the following two steps:

1. Prediction:

p(si+1 = 1, ri+1 = li+1,1 | y1:i)

=
i∑

j=1

gi(si = 0, ri = lij)Bernoulli(1 | φ(0, lij))f(yi+1 | λ(1, 0, lij , θ))

p(si+1 = 0, ri+1 = li+1,1 | y1:i)

=
i∑

j=1

gi(si = 1, ri = lij)Bernoulli(0 | φ(1, lij))f(yi+1 | λ(0, 1, lij , θ))

p(si+1 = 1, ri+1 = li+1,j | y1:i)
= gi(si = 1, ri = li,j−1)Bernoulli(1 | φ(1, li,j−1))f(yi+1 | λ(1, 1, li,j−1))
p(si+1 = 0, ri+1 = li+1,j | y1:i)

= gi(si = 0, ri = li,j−1)Bernoulli(0 | φ(0, li,j−1))f(yi+1 | λ(0, 0, li,j−1))

2. Update:

gi+1(si+1, ri+1) =
p(si+1, ri+1 | y1:i)

ci+1

where

ci+1 =
1∑
k=0

i+1∑
j=1

p(si+1 = k, ri+1 = li+1,j | y1:i).

The algorithm described above demands O(n2) flops and storage. This can
be reduced to O(n) by splitting the spike train into contiguous segments and
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updating the states of the ISI’s within each segment together. Choosing these
segments to be of length O(w), the entire train can be updated with only O(nw)
flops and storage. In our examples we chose the segment length randomly from
a discrete uniform distribution on the integers in [5; 20]. The segments are
created and processed from right to left until the whole train is covered. Notice
that choosing the window length as large as n would be practically infeasible
except for very small spike trains. On the other hand choosing the window too
short would resemble the less inefficient one-state-at-a-time update.

3 Simulation Study

After implementing the HSMM described above we assessed its performance,
comparing it to HMM, PS and RS. For our comparisons we used spike trains
simulated from 5 distinct processes, which we call settings, chosen to combine
realistic ISI distributions together with features that might pose a challenge to
the methods. We then evaluated the methods based on estimated number of
bursts and ROC curves.

Each setting corresponded to a model that was likely to produce clusters
of small ISIs purely by chance in addition to, and in one case dominating, a
hidden binary process C(t) having moderate regularity in its transitions. The
first setting was the “null” setting illustrated in Figure 1; the second and third
settings were inverse Gaussian and gamma switching processes with the ISI dis-
tributions either largely overlapping (setting 2) or clearly separated (setting 3)
under the bursting and non-bursting states; the fourth setting produced non-
bursting state ISIs from a mixture model, which is different than the HSMM
and might confuse a burst detection algorithm; the fifth setting used an expo-
nential distribution for the down-state durations, which makes the inter-burst
durations maximally irregular and state identification more difficult to detect.
More specifically, the processes we considered were as follows:

1. (Null.) Here we set C(t) = 0 for all t ∈ [0, T ]. We generated spike trains
from a pure renewal process with ISI distribution f ISI

0 given by an inverse
Gaussian with shape 19.33 and mean 30.76, as in Figure 1.

2. (IGovlp.) The hidden state C(t) follows a switching gamma process with
f ITI
1 = Gamma(10, 10/(25ms)) and f ITI

0 = Gamma(10, 10/(200ms)). We
chose the average duration of 25ms for an bursting state and 200ms for a
non-bursting state according to the HSMM fit to the goldfish data. The
bursting state ISIs were simulated from f ISI

1 = Gamma(20, 20/(7ms)).
Our fit to the retinal ganglion data (described below) provided the choice
of 7ms as the average bursting state length. We generated the non-
bursting state ISIs according to the inverse Gaussian distribution of the
Null process described above.
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3. (IGsep.) Same as IGovlp but we instead generated the down state ISIs
from an inverse Gaussian distribution with shape 150 and mean 50ms.
This choice ensured that the two ISI distributions were well separated—-
the shortest non-bursting state ISIs were likely to be considerably larger
than most bursting state ISIs.

4. (Gmix.) Same as IGovlp but we instead generated the down state ISIs
from the mixture (2/3)Gamma(10, 10/(10ms))+(1/3)Gamma(10, 10/(75ms)).
The first component of the mixture had a substantial overlap with f ISI

1 .

5. (IGirr.) Same as the IGsep setting but we instead generated the non-
bursting state ITI of C(t) from f ITI

0 = Exponential(1/(200ms)) distribu-
tion. Thus C(t) was memoryless during the down state.

In all cases the spike trains were 10s in duration, with about 500 spikes per
record on average.

We implemented HSMM burst detection with a switching gamma model
given by

f ISI
0 = Gamma(α0, α0/µ0)
f ISI
1 = Gamma(α1, α1/µ1)
f ITI
0 = Gamma(15, 15/λ0)
f ITI
0 = Gamma(15, 15/λ1)

with θ = (α0, α1, µ0, µ1, λ0, λ1). We modeled the ISI shapes α0 and α1 with
a log-normal prior: logαi ∼ Normal(log(10), 12). Similarly, we modeled the
ISI means (in ms) as logµi ∼ Normal(log(20), 22) and the ITI means (in ms)
as log λi ∼ Normal(log(100), 42). We first obtained an MCMC estimate to the
burst probability pi = Pr(si = 1 | y1:n) for each ISI. We labeled each ISI with
si = 1 if pi was at least as large as a chosen cutoff level, and 0 otherwise.
We considered each contiguous string of states with si = 1 to be a burst. An
estimate of the time the neuron spent in the bursting state is the sum of the
ISIs with si = 1. Cutoffs used were 0.00, 0.01, · · · , 1.00, 1.01.

We implemented HMM burst detection by modifying the HSMM algorithm
described above so that f ITI

i = Exponential(1/λi), i = 0, 1. Note that this HMM
is more general than the switching Poisson process model because it allows non-
Poisson firing within burst and non-burst periods. We implemented the PS and
RS methods via the exhaustive surprise maximization (EMS) search technique
of Gourevitch and Eggermont (2007) with a chosen surprise cutoff − log(α)
with α in {0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 05}. To maintain parity
between all four methods, we did not count the bursts made of a single ISI and
truncated f ISI

0 at the 75-th percentile of the observed ISI values. Both these
limits are hard coded in the EMS implementation of Gourevitch and Eggermont
(2007).
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To evaluate burst count accuracy of the 4 methods we assessed the root
mean squared error (RMSE). Each method requires a choice of cutoff, and each
method will falsely identify some non-burst clusters of spikes as bursts. To
make the methods comparable, we started with the null model, where there
are no bursts, and picked cutoff values that produced roughly the same number
of (false) bursts for each method; we then assessed the ability of the methods
to track burst counts for the remaining 4 settings, where bursts were truly
present—this is analogous to the standard statistical practice of fixing type I
error and then examining power. Results are given in Table 1. In each of the
non-null settings, the RMSE for HSMM was much smaller than those for PS and
RS. HSMM and HMM had similar results except in the cases IGovlp and Gmix,
where the RMSE for HMM was about 3 times larger than that for HSMM.
Figure 3 shows a visual summary of burst detection by all four methods on a
simulated spike train.

Comparisons of the type given in Table 1 are important but, because the
cutoffs were fixed according to null-setting performance, they are only part of
the story. We examined all methods across a range a cutoffs using ROC curves.
For each method, for a set of cuttoffs, we evaluated both sensitivity (proportion
of time in bursting state correctly identified) and specificity (proportion of time
in non-bursting state correctly identified). For every method, as the cutoff is
increased bursts become harder to detect, so that the specificity increases and
the sensitivity decreases. The ROC curve plots sensitivity on the y-axis and 1−
specificity on the x-axis. An optimal ROC curve begins at the origin, hugs the
y-axis up to (0,1), and then moves to the point (1,1) along the line y = 1. ROC
curves for the 4 methods in the 4 non-null settings are displayed in Figure 2.

We draw three general conclusions from the ROC analysis. First, HSMM
performs as well as the other methods, and for the IGovlp and Gmix settings it
performs better; the curves for HSMM were generally to the left of the others,
meaning that HSMM was much more specific, spending significantly less time
falsely identifying bursting states; and the curves for HSMM were also generally
above those for the other methods, meaning that HSMM was generally spending
more of the time correctly identifying bursting states. Second, in some cases PS
and RS with particular cutoffs performed well, with RS outperforming PS in
the IGovlp and Gmix settings, where the 4 methods clearly differed. However,
it should be noted that a key feature of these curves is their upper left-most
point, which is obtained for a particular “optimal” cutoff, and that cutoffs near
this optimal cutoff have generally good sensitivity and specificity. Such cutoffs
that allowed PS and RS to perform well in some settings produced unreliable
results in other simulation settings. In the Null case we found that the ability
of any method to handle false burstiness depends crucially on the cutoffs. Thus,
in particular, in the last case, IGirr, which had memoryless switching from
non-bursting to bursting state, all methods performed well according to the
curves in Figure 2; but the cutoff values for which RS and PS attained the good
sensitivity and specificity in IGirr were much smaller than those that would
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Setting HSMM HMM PS RS
Null (0) 15 14 14 14

IGovlp (38) 1 3 10 14
IGsep (38) 0 1 4 16
Gmix (38) 8 23 8 15
IGirr (81) 5 3 106 88

Table 1: Root mean squared error (RMSE) of estimated burst counts according
to 5 distinct model settings (first column). One hundred simulated spike trains
were used for every setting. For all settings the average true burst counts are
given in parentheses. To ensure the methods were comparable under the null
setting, we used probability cutoffs of 0.5 for HSMM and 0.8 for HMM, and
surprise cutoffs of − log(0.01) for PS and − log(0.05) for RS.

typically provide good performance in the Null setting. Third, in Gmix, which
we designed to contradict the assumptions of the HSMM (the HSMM could not
possibly provide fit the bimodal f ISI

0 because it is based on a unimodal gamma
density), the HSMM performed extremely well.

One additional point worth mentioning is that the HMM usually produced
a nice fit to the ISI histogram for the spike trains generated under Gmix. The
reason is that the non-burst ISI distribution from the first component of the
mixture was similar to the burst ISI distribution—and the HMM identified both
kinds of ISIs as burst ISIs. Consequently, it did a poor job of burst detection
but that was not apparent from its fit to the ISI histogram. In general, goodness
of fit can not be judged solely from a fit to the ISI histogram.

4 Data Analysis

To illustrate our proposed method on real data we use a spike train recorded
from a goldfish retinal ganglion cell neuron in vitro (Brown et al. 2004; Levine
1991; Iyengar and Liao 1997). The data include 971 spikes recorded over about
30 seconds. The plot of the spikes from this neuron in Figure 4 shows some ap-
parent clusters of spikes with shorter intervals, and these clusters are separated
by spikes with longer intervals between them.

We analyzed this spike train with HSMM, HMM, PS, RS as well as with
the switching Poisson (SP) model which is a special case of HMM with the
shape parameters of the ISI densities fixed at 1. The cutoffs were probability
.5 for HSMM, HMM, and SP, and surprise − log .01 for PS and − log 0.05 for
RS. Based on the simulations reported above, we would expect HSMM to be
the most accurate, and the question remains whether the methods are appre-
ciably different for this data set. HSMM found 127 bursts, whereas PS and
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Figure 2: ROC curves for HSMM, HMM, PS and RS approximated from 100
simulated spike trains, for each of the 4 non-null simulation settings. Each (x, y)
point on a curve corresponds to sensitivity and 1− specificity for a particular
cutoff value.
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Figure 3: Burst detection with HSMM, HMM, PS and RS on a spike train
simulated from a two-state model (IGovlp, see text; only the first 3s of a total
of 10s are shown here). We generated ISIs in the bursting state from a gamma
distribution with shape 20 and mean 7ms and in the non-bursting state from a
2:1 mixture of two gamma distributions with means 10ms and 75ms each with
shape of 10. The gamma distributions controlling the durations of the bursting
and non-bursting states each had shape 10 and with mean 25ms and 200ms
respectively. The vertical bars show the spike times, color coded according to
the hidden state of the preceding ISI: bursting state ISIs are marked as black,
the non-bursting states one are marked as grey. The horizontal lines above the
spikes represent (from bottom to top) burst detection with HSMM (probability
cutoff: 0.5), HMM (probability cutoff: 0.5), PS (surprise cutoff: − log(0.01)) and
RS (surprise cutoff: − log(0.05)). The thick dark strips on each line denotes the
time intervals identified as bursts. Note that the HMM cutoff here was smaller
than that in Table 1; this cutoff produced 33 false bursts for the Null simulation
in Table 1.
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Figure 4: First 3 seconds of 971 spikes recorded over about 30 seconds in vitro,
from a goldfish retinal ganglion cell neuron. It is obvious that groups of spikes
with shorter ISIs are separated by individual spikes with longer ISIs.
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Method HSMM HMM SP PS RS
Number of bursts 127 133 122 91 51

Time (ms) spent in up state 3240 3482 3651 2273 902
(percentage) (11%) (12%) (12%) (8%) (3%)

Average up state firing rate (Hz) 145 148 138 173 227
Average burst length (ms) 26 26 30 25 18

Table 2: Goldfish retinal ganglion cell data: summary of estimated bursting
activity for each of 5 methods.

RS found many fewer—the latter turned out to be extremely conservative by
comparison—and by several other burstiness measures the three hidden-state
models gave similar results, but the surprise methods made the neuron appear
less bursty. We checked the fit of HSMM, HMM and SP with a P-P plot. The
P-P plot uses a basic result about the probability integral transform, which is
that when a random variable X follows a theoretical probability distribution
having a cumulative distribution function F (x) the probability integral trans-
formed random variable F (X) is uniformly distribution on the interval (0,1).
This implies that when a theoretical model describes the variation in a variable
well, a plot of the probability integral transform of the ordered observations
(fitted cumulants) against the corresponding probabilities for a uniform distri-
bution (uniform cumulants) should fall close to the line y = x (see also Brown
et al. 2001). As shown in Figure 5, the HSMM appeared to give the best fit
among these three hidden-state methods.

5 Discussion

PS is a fast and simple method of detecting bursts in extracellular spike trains,
and RS is a useful modification of it. Because the goal is to identify a pair
of unknown states (burst vs. non-burst), we developed algorithms for fitting
point-process HSMMs that are based on hidden binary states. We wished to
find out whether building a statistical model from this simple intuition would
lead to improved burst detection results. The HSMM is more attractive, intu-
itively, than the hidden Markov switching Poisson process model both because
neural spike trains often exhibit non-Poisson spiking behavior, and because the
switching process may be different than the maximally irregular switching as-
sumed by the HMM. HSMM code, written by the first author, is available on
the web site of the last author.

Our results support the notion that PS can be an effective method when
bursting states are well discriminated from non-bursting states, or when an
experimenter has confidence in the choice of the PS cutoff value. Our results also
illustrate the additional boost in performance that RS can provide in comparison
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Figure 5: P-P plot (also called a KS plot) for HSMM, HMM and SP fits to
goldfish data. A good fit should produce a plot along the diagonal line. The
light grey band in the background represents the ±1.63/

√
n pointwise band

corresponding to the Kolmogorov-Smirnov criterion. HSMM fits reasonably
well, and HMM is nearly as good, but the SP model fits poorly.

with PS. On the other hand, for cases in which the bursts are not clearly isolated,
or the trade-off between identifying too many bursts or too few bursts is unclear,
hidden state models are likely to be preferable. Overall, our simulation results
indicated that HSMM performs as well as other methods and in some cases
performs much better.

When we applied the three hidden-state and two surprise-based methods to
the goldfish retinal ganglion spike train we found that the three hidden-state
methods produced similar results according to several measures of burstiness.
Consistently with some of our simulation results, this suggests that for many
situations hidden Markov models should perform well. An additional idea is to
(i) transform all ISIs by taking logarithms and then (ii) apply standard (off the
shelf) two-state HMM software. We tried this, too, for our simulated data and
found the results to be nearly the same as those for the HMM model. Thus,
we expect this relatively easy method to be useful in many situations. In more
difficult scenarios where there may be some subtlety in discriminating bursting
and non-bursting states, we recommend the HSMM.

As we showed in detail, our implementation takes advantage of the semi-
Markovian structure of HSMMs by extending the Gibbs sampling method of
Chib (1996). It assumes that each ISI may be assigned to either the bursting
state or the non-bursting state, and does not allow mid-ISI transitions. We
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also explored an alternative method that does allow mid-ISI transitions, along
the general lines used by Scott (1999) for switching Poisson process models. We
found that in practice this alternative approach did not produce greatly different
results, and we therefore preferred to present the more computationally efficient
method. For convenience we used gamma distributions to describe both ISIs and
ITIs. We would expect that in most cases, replacing gammas with alternative
two-parameter families, or introducing more general families, would not have a
large impact on results. However, the algorithm we described was formulated
to allow such further generality. It is also possible that faster methods based
on EM-type algorithms may be possible based on the same general idea of
exploiting the Markovian structure inherent in these HSMMs. This is a topic
for future research.
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