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Abstract: The Chinese Loess Plateau suffers from serious gully erosion induced by natural and human
causes. Gully-affected areas detection is the basic work in this region for gully erosion assessment
and monitoring. For the first time, an unmanned aerial vehicle (UAV) was applied to extract gully
features in this region. Two typical catchments in Changwu and Ansai were selected to represent loess
tableland and loess hilly regions, respectively. A high-powered quadrocopter (md4-1000) equipped
with a non-metric camera was used for image acquisition. InPho and MapMatrix were applied
for semi-automatic workflow including aerial triangulation and model generation. Based on the
stereo-imaging and the ground control points, the highly detailed digital elevation models (DEMs)
and ortho-mosaics were generated. Subsequently, an object-based approach combined with the
random forest classifier was designed to detect gully-affected areas. Two experiments were conducted
to investigate the influences of segmentation strategy and feature selection. Results showed that
vertical and horizontal root-mean-square errors were below 0.5 and 0.2 m, respectively, which were
ideal for the Loess Plateau region. The overall extraction accuracy in Changwu and Ansai achieved
was 84.62% and 86.46%, respectively, which indicated the potential of the proposed workflow for
extracting gully features. This study demonstrated that UAV can bridge the gap between field
measurement and satellite-based remote sensing, obtaining a balance in resolution and efficiency for
catchment-scale gully erosion research.

Keywords: unmanned aerial vehicle (UAV); gully erosion; gully-affected areas; object-based image
analysis; random forest; Loess Plateau

1. Introduction

Soil erosion is a serious environmental problem which causes high economic costs [1].
Many approaches have been proposed for monitoring and predicting soil erosion at different
scales [2–5]. Gully erosion, the main type of soil erosion by water, is a major land degradation
process that adversely affects land management and agriculture [6]. In the past century, an increasing
number of researches focus on the gully erosion due to its ubiquity and severity [7]. Evaluation of
gully-affected areas is the basis for control and monitoring of gully erosion; as such, detection of these
areas has become a growing interest in gully erosion community [8–10].
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Gully extraction method depends on the development of geographic data acquisition.
Field investigation is the most traditional method. In the early stage, tapes, rulers, and micro-topographic
profilers are commonly used [11,12]. Recently, latest measurement technologies, such as terrestrial laser
scanning (TLS) [13], airborne laser scanning (ALS) [14], 3D photo-reconstruction [15], and total station [16],
are adopted. Both TLS and ALS are able to efficiently acquire high resolution dataset for erosion
monitoring and related fluvial geomorphology studies [3,17,18]. Recent experiments in different
regions including Australia, Peru, and England prove that the TLS gains more adoption than ALS for
catchment-scale studies because it is more flexible and accurate [19–21]. However, the heavy fieldwork
complicates the application of such method for a large region [18].

With a large number of earth observation satellites launched, abundant imagery can be used
to assess gully erosion [22]. Optical satellite sensors, including the medium-resolution imagery
(e.g., Landsat and Spot) and high-resolution imagery (e.g., IKONOS and Quick Bird), are increasingly
available. The current frequently used imageries in geoscience are Worldview-3 and Pleiades [23,24],
with a ground sampling distance in panchromatic mode of 0.31 and 0.5 m, and 1.00 and 2.00 m in
multispectral mode, respectively. Remote sensing based method for extracting gully features shows two
advantages over field investigation. On the one hand, multi-temporal and multi-resolution geographic
data covering almost the world are easily obtained [25–27]. On the other hand, remote sensing not only
provides spectrum and texture information but also generates the digital elevation models (DEMs)
when the satellite possesses stereoscopic capabilities [28,29]. Remote sensing is mainly carried out on
satellite or manned aircraft, which are good options for regional-scale data acquisition because of their
wide coverage and stable performance [30]. Nevertheless, the application of conventional platforms is
limited for the increasing demanding of environmental modeling at catchment scale because of their
high cost, low flexibility, and poor spatial and temporal resolution [31].

The use of unmanned aerial vehicle (UAV) can bridge the gap between field investigation
and satellite and aircraft-based remote sensing [32]. UAV-based remote sensing is suitable
for catchment-scale surveys, which is more flexible than traditional remote sensing. Recently,
many publications prove that UAV can be regarded as a credible tool for monitoring soil erosion [33],
coastal area [34], precision agriculture [35], glacier dynamic [36], and landslide [37], in which the
created high-resolution DEM and ortho-image mosaics can provide further detailed information.

As the method for data acquisition transfers from the field investigation to remote sensing,
the extraction method also improves greatly. In the early stage, visual interpretation, which is based
on the spectrum difference and interpreter’s knowledge, is the main choice [38,39]. However, manual
interpretation is restricted to low efficiency and uncertainty which has been replaced by automatic
method. Pixel and object-based are two kinds of automatic method for gully feature extraction.
Although, the pixel-based method has been applied in many studies [40,41], the object-based method
is proven to be more advanced because it can integrate the spectral, shape, and textural information
instead of spectral information only [42,43]. The recent papers show that object-based method is the
mainstream in processing high-resolution imagery [44–47].

Although UAV shows potential in gully features extraction at catchment scale, existing studies
are conducted in limited regions, such as Morocco [32] and Saxon loess province [33]. According to
experiments all over the world, the contribution of gully erosion to overall soil loss rates and sediment
production rates by water erosion range from 10% to 94% [6]. Significant differences in gully erosion
conditions lead to varying gully sizes, shapes, and densities in different regions. Thus, further studies
are needed to investigate UAV-based method for gully feature extraction in other typical areas.

The Chinese Loess Plateau is known for its serious soil erosion and land degradation, which are
caused by both natural and anthropogenic factors [48]. Gully erosion in this region accounts for
60%–70% of the total soil loess [49], with a large number of developed gullies shaping the distinct
loess landform [50]. The Loess shoulder-lines divide the total area into upland and gully-affected areas
with totally different topographic signatures, land use, and types of soil erosion [51]. Gullies in this
region can be divided into three types: floor, bank and hillslope gullies [52]. Although some studies
have discussed the extraction of gully features in Chinese Loess Plateau, specifically on catchment
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scale [53–55], the use of UAV is currently limited. The present study aims to: (1) apply the UAV on the
Chinese Loess Plateau to generate the high-resolution DEMs and ortho-mosaics; and (2) investigate
the object-based method for detection of gully-affected areas by using UAV-acquired dataset.

2. Study Area

The Loess Plateau is located in the middle and upper reaches of the Yellow River, and covers
an area of 640,000 km2 [56]. Based on the loess landscape, Loess Plateau can be divided into loess
tableland and loess hilly regions [51]. Loess tableland can be regarded as the early stage of loess
landform, which retains its original paleolandforms with a large plain area. With the development of
erosion, the plain area will be reduced gradually and replaced by the narrow loess ridges and isolated
loess mounds [57]. The loess hilly regions suffer from more intensive soil erosion than loess tableland
region; consequently, the geomorphologic landscape of the former becomes ruined and complex.

In this case, two study sites were selected to represent two typical loess landforms. The study
site representing loess tableland is located in the northwest of Changwu County, which is a part
of Xialiu catchment. This study site, which consists of plain area, hillslope area and deep gullies,
covers approximately 2.33 km2. The elevation in this site ranges from 981 to 1220 m. The other study
site is a part of Zhifang catchment, covering 3.42 km2, and located in southern Ansai County. This site
is the typical loess hilly region with the elevation ranging from 1129 to 1417 m. The gully-affected area
covers more than 60% of total area, with many intensely developed gullies. The locations and pictures
of study sites are shown in Figure 1.

 

Figure 1. Location of study areas, the worldview-3 images and the photos captured during the filed
investigation in (A) Ansai and (B) Changwu.
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3. Method

The two methods employed in this paper (Figure 2) are: (1) UAV photogrammetry for obtaining
high-resolution DEM and ortho-mosaics; and (2) object-based detection of gully-affected areas by using
generated datasets. During data acquisition, strict regulations should be observed from outdoor survey
to indoor image processing so that the accuracy metrics can satisfy the requirements. For detection
part, objected-based approach and random forest (RF) classifier were applied with two experiments
for optimizing segmentation and classification steps.

Figure 2. Flowchart of the proposed methodology.

3.1. UAV-Based Data Acquisition

3.1.1. UAV Description

In this study, microdrone md4-1000 is applied (Figure 3a), which is a miniaturized VTOL aircraft
(Vertical Take off and Landing). The entire system consists of an aerial vehicle, a ground station with
the software for mission planning and flight control, a radio control transmitter, and a telemetry
system [58]. Md4-1000 can fly for approximately 45 min (depending on payload and wind) at
15 m/s. This microdrone can fly by remote control or automatically using microdrone GPS waypoint
navigation software.

The maximum recommended payload of md4-1000 UAV is 0.80 kg. A digital system camera,
Sony ILCE-7R (Sony Corporation, Tokyo, Japan), was mounted on the UAV. This camera acquired
images in true color (Red, Green, and Blue bands) with 8-bit radiometric resolution. The camera
was also equipped with a 50 mm zoom lens. The camera’s sensor is 7360 × 4912 pixels, and the
images are stored in a secure digital SD-card. Image triggering is activated by the UAV according to
the programmed flight route. The camera was also equipped with GPS receiver, altimeter and wind
meter, so that the onboard computer system can record a timestamp, the GPS location, flight altitude,
and vehicle principal axes (pitch, roll, and heading) at the time of each shoot.



ISPRS Int. J. Geo-Inf. 2016, 5, 238 5 of 21

 

Ⅱ

Figure 3. Illustration of the unmanned aerial vehicle (UAV) and outdoor survey: (a) microdrone
md4-1000; (b) base control points surveying; and (c) the rover used to measure photo control points.

3.1.2. Outdoor Survey

The outdoor survey can be divided into two steps: image acquisition and ground control survey.
For image acquisition, three individuals, namely, a ground station operator, a radio control pilot and
a visual observer, were needed for the secured use of the UAV. Weather condition should be also
considered, particularly to prevent influence of the wind and rain. In this study, the operations of the
UAV were performed in the morning when wind was relatively low to ensure flight stability and image
quality [36]. The flight plans in the two study areas were designed using the flight planning software.
The images were taken with an average overlap of 70% in flight direction and 60% overlap in flight
strip. It should be noted that the spacing between flight lines in Ansai is uneven. It is because that more
terraces are distributed in the right part so that less flight line is needed due to the gentle topography.

Ground control points (GCPs) are required to update the horizontal and vertical accuracies.
Although the direct georeferenced system is employed in some studies [59], there are high requirements
for the camera and GPS which are expensive and heavy at this stage. Two kinds of GCPs, namely,
base control points (BCPs) and photo control points (PCPs), were implemented to obtain a highly
precise coordinate information. In each study area, three BCPs were installed for building the GPS
network covering the entire study area. Each BCP was measured for nearly 1.5 h with Topcon HIPER
II G in static mode (Figure 3b). Compared with BCP, more PCPs are needed. The placement of PCPs
should be between the flight lines and located in the overlap areas. In this study, 38 PCPs and 53 PCPs
were collected for Changwu and Ansai, respectively, by using the GPS rover (Figure 3c). Horizontal
coordinates were referenced to China Geodetic Coordinate System 2000, and the vertical values were
referred to the National Vertical Datum 1985. Locations of the GCPs and flight lines can be seen in
Figure 4.
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Figure 4. Overview of the survey design including the flight lines, locations of base control points
(BCPs), photos control points (PCPs) and independent check points (ICPs). The background images
are acquired from Google TM Earth. Transformations from China Geodetic Coordinate System 2000
to Mercator were made for all ground control points (GCPs) and fight lines using the projection tool
in ArcMap.

3.1.3. Indoor Image Processing

Indoor image processing includes aerial triangulation, DEM generation, and ortho-mosaics
calculation. Aerial triangulation refers to the process for obtaining the true positions and orientations
of the images by using the photographs covering the same object, exposed from different positions.
The number of GCPs is usually limited; as such, a large number of tie points are created for conjugate
points identified across multiple images [60]. The input data for aerial triangulation contain scanned
images, camera calibration, and the GCPs. Aerial triangulation was performed in the Trimble’s Inpho
6.0 by using the bundle-block adjustment, which is widely adopted in previous studies [31]. To make
triangulation successful, root mean square error (RMSE) was calculated for the orientation of image
block. If the error exceeds the threshold value, refinement is needed by removing the blunder tie points.

After the triangulation process, the DEMs and ortho-mosaics can be created with a high resolution
because of the stereoscopic overlap of the images [32]. Only image pairs with well-suited overlap
and good quality were selected. The removal of redundant images can reduce the processing time.
MapMatrix 4.0 developed by Visiontek Inc. was used for this step. Although MapMatrix can produce
a DEM automatically using the feature-matching technology, manual editing is also necessary for the
study areas with large relief. In this study, automatic algorithm was also applied for generating a
robust surface. Subsequently, the terrain features, such as the peck points, ridge lines, and valley lines,
were collected for creating a high-resolution DEM. To improve the DEM quality, the editing work is
needed to modify the elevation to eliminate the influences of the buildings and vegetation. Finally,
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the DEM at 1 m resolution was exported, and the ortho-image mosaics at 0.2 m were calculated after
input images were orthorectified.

3.1.4. Accuracy Assessment

To investigate the accuracy of the DEM data, some independent ground truth points are needed.
The spatial continuous data are the most suitable options [61]; however, no reference data are available
for the selected study area with such high-resolution requirements. Instead, some independent check
points (ICPs) were surveyed, with 33 ICPs in Changwu and 37 ICPs in Ansai. According to the
requirements for monitoring the gullies, the majority of these points were chosen along the gully
border lines (Figure 4). The measurements of ICPs were similar to those of GCPs. The vertical error
was calculated by the differences between the elevation of ICPs and the DEM data. The horizontal
deviation was calculated by measuring the displacements between the ICPs and the ortho-mosaics.
The RMSE was used to evaluate the accuracy according to Equation (1):

RMSEz =

√

1
n

n

∑
i=1

(Zdi − Zri)
2 (1)

where Zdi is the i-th measured value from DEM or ortho-mosaics, and Zri is the corresponding reference
data from the ICPs.

3.2. Object-Based Gully-Affected Areas Detection

3.2.1. Data Preparation

In addition to the high-resolution DEM and ortho-mosaics, a large amount of information should
be prepared for gully feature extraction. In existing papers, topographic features derived from DEM
exhibit potentials in distinguishing the natural objects related to terrain factors, such as landslide [62],
riverscape [63] and gully erosion [45]. In the present study, shaded relief, slope, roughness, and specific
catchment area (SCA) [64], which were involved into the further segmentation and classification steps,
were created from the original DEM.

Reference data are the indispensable part of this method. The reference data in training area were
employed to optimize the parameters and determine the rule-sets. For the test area, reference data
were used for accuracy assessment. Field investigation was conducted in April 2016 to obtain the
credible reference and further understanding of the shape, distribution, and development of gullies
in these two study areas. The final reference data were digitized manually via integrating imagery
features, expert knowledge, and the field investigation.

3.2.2. Segmentation

Compared with the pixel-based method, the analysis unit of object-based method transfers from
one pixel to object, in which image segmentation is key step. Among all kinds of segmentation
method, multi-resolution image segmentation algorithm (MRIS) [65] is the most widely used and is
implemented in the eCognition software. The MRIS is a region growing algorithm, which starts from
one pixel by merging adjacent pixels based on a heterogeneity criterion [66].

Image segmentation directly influences the final classification result. The selection of layers is
the key issue to obtain the suitable objects using eCognition. In existing studies for gully feature
extraction, only imagery is used in the segmentation step, and the terrain information is ignored.
DEMs and its derived topographic layers has proven the potentials to improve the segmentation result
in geomorphic mapping [67,68]. In this paper, two segmentation strategies were designed to evaluate
whether the topographic information could improve the segmentation accuracy: (1) only ortho-mosaics
were used with three optical bands (DOM strategy); and (2) the DEM and ortho-mosaics, including
three optical bands, slope, roughness, and shaded relief (hillshade), were integrated (OSRH strategy).
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The heterogeneity criterion depends on the segmented layers and parameters, including scale,
shape, and compactness. Scale factor controls the object size, which is the key factor in MRIS.
Two methods are commonly used to obtain the optimized scale parameter: (1) local variance based
method [69]; and (2) spatial autocorrelation based method [70]. Since Drăguţ [71] proposed the
Estimation of Scale Parameter (ESP) using local variance method in 2010, ESP-Tool has been widely
employed to determine the scale parameter because it is user-friendly. The improved version, which
supports the multiple layer parameterization, was employed in the present study [72]. In addition to
the scale factor, shape factor determines the weight of shape heterogeneity, and color heterogeneity
should also be emphasized. Within the shape criterion, the weight assignment between compactness
and smoothness is determined by compactness factor. However, more attention has been paid to the
selection of scale parameter, litter discussion is made for shape and compactness.

In this study, scale, shape, and compactness were all considered for determining the most suitable
parameter combination. First, the visual assessment, which can reduce the time cost, was used
for determining the possible range of each parameter (Table 1). Second, ESP-Tool was used for
each parameter combination. Any deleted scale value within the range could be saved for further
investigation. Third, the goodness of segmentation was evaluated using the following metrics:
under-segmentation, over-segmentation and Euclidian distance [73,74]:

OR = 1 −
∑ |ri ∩ sk|

∑ |ri|
(2)

UR = 1 −
∑ |ri ∩ sk|

∑ |sk|
(3)

ED = sqrt

(

OR2 + UR2

2

)

(4)

where r is the reference data and s is the segmentation dataset. OR and UR are area-based metrics
which describe the match degree between ground-true and segmentation results. ED is the combined
metrics which can be regarded as the “closeness” to the ideal segmentation result.

Table 1. The selection range of parameter for segmentation.

Study Area Segmentation Strategy Scale Shape Compactness

Changwu
DOM [500,600] [0.3,0.5] [0.5,0.7]
OSRH [450,550] [0.3,0.5] [0.5,0.7]

Ansai
DOM [300,350] [0.3,0.5] [0.5,0.7]
OSRH [300,350] [0.3,0.5] [0.5,0.7]

3.2.3. Image Classification: RF

RF is an ensemble machine learning algorithm proposed by Leo Breiman [75]. This supervised
method can build a forest of decision tree based on the classification and regression tree algorithm
(CART). Compared with CART algorithm, two improvements were achieved by using bootstrap
sampling and randomized node optimization. For each tree, the bootstrap, a kind of random sampling
with replacement, was performed; hence, the same sample may be selected several times, while others
could not be selected at all. To estimate the RF model performances, the out-of-bag error was calculated
in the cross-validation technique. For each node, the decision was selected with user-defined number
of feature selected randomly, instead of using all the features. Those two mechanisms caused RF to
exhibit high classification ability and processing speed. Currently, RF is widely used in earth science
community [76].

Two user-defined factors are involved in RF model: the number of trees that will grow (nTree)
and the number of randomly selected features (mTry). Based on the results published to data,
nTree is typically set to 500, and mTry is set to the square root of the variable number [76]. Currently,
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many studies focus on the influence of feature selection on the classification accuracy. In RF method,
variable importance (VI) is employed to optimize the feature space based on the Mean Decrease in
Gini (MDG) or the Mean Decrease in Accuracy (MDA). MDG describes how each variable contributes
to the homogeneity of nodes. MDA is a measure based on the out-of-bag error calculation. The more
accuracy decreases because of the exclusion of a variable, the higher MDA it will be. In this study,
MDA was used for feature selection as the majority reports did.

Metric calculation of each object is needed between the segmentation and classification
steps. Four kinds of metrics, including spectral, textural, geometric, and topographic information,
were calculated per object (Table 2). Among the total 36 variables, spectral and geometric features are
commonly used in object-based image analysis. Texture features, which can improve the classification,
are also widely used. Eight features derived from Grey Level Co-occurrence Matrix (GLCM) proposed
by Haralick [77] were calculated based on two bands. One feature is the red band, which represents
the image texture, and the other is shaded relief layer created in ArcMap which represents the terrain
texture. In addition, topography is a key factor for the initiation and development of gullies [78].
In this paper, the mean values of the slope, roughness, shaded relief, and SCA were calculated for
each object.

Table 2. Overview of the features adopted for gully-affected areas detection in this paper.

Feature Type Feature Name Acronym Number

Spectral
information

Mean band Value Red; Green; Blue 3
Band Rations (red/blue, blue/green) Ratio_RB; Ratio_BG 2

Mean brightness B 1
Maximum difference index MaxDiff 1

Topographic
information

Mean DEM Elevation 1
Mean Slope Slope 1

Mean Roughness Roughness 1
Shaded relief Hillshade 1

Mean Specific catchment area SCA 1

Texture
information

GLCM Homogeneity Hom_DOM; Hom_Shade 2
GLCM Dissimilarity Dis_DOM; Dis_Shade 2

GLCM Entropy Ent_DOM; Ent_Shade 2
GLCM Correlation Cor_DOM; Cor_Shade 2

GLCM Contrast Con_DOM; Con_Shade 2
GLCM Angular Second Moment Ang_DOM; Ang_Shade 2

GLCM Mean Mean_DOM; Mean_Shade 2
GLCM Standard Deviation StdDev_DOM; StdDev_Shade 2

Geometric
information

Shape index SI 1
Length-width LW 1

Roundness Roundness 1
Asymmetry Asymmetry 1

Compactness Compactness 1
Area Area 1

Length Length 1
Rectangular Fit RF 1

4. Results

4.1. DEM and Ortho-Mosaics Generation

After the field investigation and indoor image processing in April 2016, the high-resolution
DEM and ortho-mosaics were generated. Figure 5 shows the shaded relief images of both areas.
The 1 m resolution DEM can reflect the overall erosion conditions, morphological characteristics,
and micro topography with detailed information. Two enlarged areas for each study areas were
selected representing the natural gully-affected areas and man-made terrace areas. For gully erosion
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research, the DEM-based digital terrain analysis is important. The ortho-mosaics, in which the image
context and 3D perception are useful for visual interpretation and landscape extraction, are also needed.
As shown in Figure 6, a large amount of land surface information, such as the cropland, vegetation,
and houses, can be expressed.

 

Figure 5. Shaded relief images of the digital terrain models (DEMs) for: Changwu (left); and
Ansai (right).

Figure 6. Ortho-mosaics for: Changwu (left); and Ansai (right).

Accuracy assessment is necessary before using data. The ICPs for both areas were measured
during the outdoor survey. The vertical error was calculated between the heights of ICPs and
corresponding values from DEM. Furthermore, the horizontal error was determined according to
the differences between ICPs and the ortho-mosaics. Figure 7 and Table 3 summarize the statistics.
The vertical RMSEs in Changwu and Ansai are 0.245 and 0.339 respectively. The horizontal errors are
relative lower, with RMSE reaching 0.083 and 0.143. Many factors, including the GPS system error,
measurement error for GCPs and the errors caused by indoor image processing, contribute to the
output error. The terrain characteristics exert considerable influence on the accuracy. The two selected
study areas are all located in Loess Plateau. The large topographic relief causes difficulty during
GCPs surveying. In addition, the photogrammetric restitution and DEM extraction in these two study
areas need further manual work, which also contributes to the error estimate. Hence, the accuracy is
relatively lower than that of UAV photogrammetry in coastal areas [34] and mudflat [79]. The reason



ISPRS Int. J. Geo-Inf. 2016, 5, 238 11 of 21

why Changwu owns higher accuracies than Ansai can also be explained by this reason. Nevertheless,
in the present study, the accuracy remains satisfactory according to the requirements for detection of
gully-affected areas.

− −
−
− −
− −

Figure 7. Boxplots of error measured between independent control points and the generated DEM
(Vertical) and ortho-mosaics (Horizontal).

Table 3. Statistics of the vertical error and horizontal error (all values in m).

Error type Study Area Max Min Average Std. Dev. RMSE

Horizontal error
Changwu 0.314 −0.136 −0.05 0.084 0.083

Ansai 0.355 −0.355 0.12 0.079 0.143

Vertical error
Changwu 0.376 −0.801 −0.021 0.247 0.245

Ansai 0.684 −0.904 −0.03 0.341 0.339

4.2. Detection of Gully-Affected Areas

According to the discussion in Section 3.2.2, two segmentation strategies were used. The goodness
assessments of segmentation using the candidate parameters are shown from Tables 4–7 to determine
the most suitable segmentation parameters. ED value is used for determining the most desirable
segmentation parameters. The error metrics based on OSRH strategy are obviously lower than the
corresponding values based on DOM strategy, which prove that topographic information can improve
the segmentation results significantly. Two sets of parameters based on OSRH were finally obtained:
481, 0.4, and 0.7 for Changwu, and 327, 0.3, and 0.7 for Ansai.

Table 4. Segmentation accuracy metrics for Changwu based on DOM strategy. (Cpt: compactness,
OS: over segementation, US: under segmentation, ED: Euclidian distance.)

Scale Shape Cpt OS US ED Num

515 0.5 0.5 0.122 0.108 0.115 576
512 0.5 0.6 0.135 0.096 0.117 573
520 0.5 0.7 0.115 0.120 0.117 570
535 0.4 0.5 0.131 0.109 0.120 594
536 0.4 0.6 0.130 0.112 0.121 608
538 0.4 0.7 0.116 0.121 0.119 577
574 0.3 0.5 0.104 0.111 0.107 595
560 0.3 0.6 0.118 0.113 0.116 594
564 0.3 0.7 0.098 0.108 0.103 604
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Table 5. Segmentation accuracy metrics for Changwu based on OSRH strategy.

Scale Shape Cpt OS US ED Num

461 0.5 0.7 0.078 0.093 0.089 580
470 0.5 0.6 0.058 0.098 0.08 558
482 0.5 0.5 0.067 0.106 0.088 529
481 0.4 0.7 0.052 0.078 0.066 562
506 0.4 0.5 0.062 0.09 0.078 544
506 0.4 0.6 0.071 0.082 0.077 534
516 0.3 0.7 0.078 0.08 0.079 584
534 0.3 0.6 0.098 0.075 0.087 563
546 0.3 0.5 0.097 0.08 0.089 540

Table 6. Segmentation accuracy metrics for Ansai based on DOM strategy.

Scale Shape Cpt OS US ED Num

314 0.3 0.5 0.076 0.119 0.100 378
334 0.3 0.6 0.111 0.108 0.109 357
327 0.3 0.7 0.100 0.111 0.106 372
322 0.4 0.5 0.123 0.104 0.114 333
320 0.4 0.6 0.097 0.112 0.104 363
318 0.4 0.7 0.138 0.118 0.129 339
300 0.5 0.5 0.095 0.134 0.116 365
305 0.5 0.6 0.079 0.129 0.107 356
307 0.5 0.7 0.131 0.096 0.115 373

Table 7. Segmentation accuracy metrics for Ansai based on OSRH strategy.

Scale Shape Cpt OS US ED Num

318 0.3 0.5 0.069 0.103 0.088 337
334 0.3 0.6 0.067 0.103 0.087 320
327 0.3 0.7 0.061 0.091 0.077 342
317 0.4 0.5 0.074 0.107 0.092 325
328 0.4 0.6 0.068 0.104 0.088 328
318 0.4 0.7 0.074 0.092 0.083 338
300 0.5 0.5 0.078 0.111 0.096 338
305 0.5 0.6 0.078 0.104 0.092 348
307 0.5 0.7 0.079 0.100 0.090 355

According to the segmentation results, RF model can be used for predicting the gully-affected
area. The 15 selected features in the two study areas are shown in Figure 8 after calculating the mean
value of MDA from 10-fold replicate runs. The topographic features in the two study areas rank on the
top, thereby indicating that the gully distributions are closely related to the characteristics of terrain.
Texture features also dominate the VI ranking, with seven selected in Changwu and eight selected in
Ansai. Notably, the texture features derived from DEM achieve relatively better positions in VI rank
than those of ortho-mosaics. This is because the terrain texture reflects the land surface without the
influences of vegetation and man-made buildings; hence, terrain texture possesses better performance
for improving the accuracy than image texture. Except brightness, which ranked third place in Ansai,
almost all of the spectral and shape metrics rank beyond 15th place, thereby exhibiting minimal effect
in improving the classification accuracy.
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Figure 8. Feature importances for: (a) Changwu; and (b) Ansai.

To investigate the influences of feature number on the classification accuracy, the RF model
was built using different number of features based on the VI rank. The classification assessments
of the RF model are shown in Figures 9 and 10. In general, both Changwu and Ansai achieve their
highest F-measures using all features, with 84.62% in Changwu and 86.46% in Ansai. The accuracies
in Changwu appear stable when the selected features are more than 8. When the feature number
becomes less than 8, the producer’s accuracy (PA) decreases dramatically leading a low F-measure.
However, the user’s accuracy (UA) in this range even experiences a slight increase. Such behavior
of RF classifier is caused by the class imbalance problem, in which the minority class will be over
predicted [80]. The estimation of balance class would be regarded as an intelligent guess on designing
the RF model [62]. In this paper, a further discussion about such problem is not conducted only
because it is not serious within the recommended range (8–36). The results in Ansai are almost the
same. The classification results can be acceptable if the selected number is more than 10. When the
feature number is less than 10, PA and UA decrease simultaneously. The class imbalance problem does
not happen in Ansai, which can be explained as the natural class-distribution in Ansai is more close to
the balanced sample than Changwu. The RF models based on all the features display the most suitable
performances; thus, these models were used for obtaining the final gully-affected areas in both areas
(Figure 11).



ISPRS Int. J. Geo-Inf. 2016, 5, 238 14 of 21

Figure 9. Evolution of classification accuracy related to the number of selected variables in Changwu.

Figure 10. Evolution of classification accuracy related to the number of selected variables in Ansai.
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Figure 11. Detected gully-affected areas in: Changwu (left); and Ansai (right).

The Ansai area suffers from more serious gully erosion with steeper topography, but it achieves
a higher accuracy than Changwu. This phenomenon can be explained by the sample strategy for
generating training and test dataset. An integrated watershed could be regarded as the ideal unit
to generate the representative training samples. In this study, the experiments in Ansai were in
accordance with this requirement. The left sub-watershed was used as the training area, and the right
part, which included another sub-watershed and a sector of hillslope area, was selected as the test area.
For Changwu, the whole survey area only contains one watershed; hence no natural boundary was
present for generating the training dataset. The current sample strategy may be biased, which leads to
a lower accuracy than expected.

5. Discussion

5.1. Comparison with Existing Studies

UAV photogrammetry, a cutting-edge technology, was applied in two catchments of Loess Plateau
of China. The fieldwork of UAV-based method is much less than the conventional surveying method;
meanwhile, the operation flexibility is higher than established RS-based method.

As the demand for high-resolution topographic data increases dramatically, UAV-based
photogrammetry is undergoing explosive development. Tarolli stated that high resolution topographic
data can provide an opportunity for better understanding the earth surface process [81]. Hence,
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the UAV photogrammetry possesses various application fields besides the gully features extraction
present in this paper.

The object-based approach is also used in this paper, which has proven its ability in different
regions. Nonetheless, only few studies adopt this method in the Loess Plateau region for extracting
gully features. In previous studies, significant amount of work focuses on the extraction of gully
border line (also named loess shoulder line). Although the gully border line can also be used for
determining the gully-affected areas, the extraction methods are uncertain and not universal [82,83].
The accessibility of data exerts significant influence on the method design. In the existing studies,
high-resolution DEM is not available; hence, extracting the border line based on the gray difference
is more practicable than the area-wide mapping. The proposed method exhibits several advantages.
First, the information derived from the high resolution DEM and ortho-mosaics is fully used, which is
in line with the development trend. Second, our method is a general workflow, which can be
expanded to other catchments easily. Third, the detection accuracies are high and stable. In addition,
the object-based approach can support hierarchical classification; consequently, both gully-affected
areas and independent gullies can be extracted.

5.2. Limitations for the Application of UAV in Loess Hilly Region

The time cost for the use of UAV in two study areas is more than expected, about two days
were spent for outdoor survey in Ansai and one and half day in Changwu. The placing and
surveying of GCPs, specifically for the GCPs located in the gully-affected areas which are hard
to reach, are time consuming. Although photogrammetric processing is sensible to the distribution
and number of GCPs [32], a balance between the accuracy and time cost should be considered.
Such balance is a common problem for the area characterized with steep topography. For indoor
processing, the feature-based matching technique adopted in Inpho and MapMatrix allows the
automatic generation of the DEM and ortho-mosaics. However, automatic processing without
operator interventions may cause considerable systematic errors in areas with steep topography.
Therefore, a semi-automatic workflow was applied in our study areas. These two reasons reduce the
efficiency of UAV photogrammetry in Loess Plateau compared with the published studies in areas
with gentle topography.

This study mainly aims to detect gully-affected area, which can be regarded as a specific type of
landform [84]. Some studies focused on extracting specific types of gullies [85]. In the Chinese Loess
plateau region, gullies can be divided into three kinds: hillslope, bank and floor gullies. As shown
in Figures 5 and 6, the 1 m DEM is sufficient for detecting gully-affected area, and hillslope and
bank gullies can also be recognized. UAV photogrammetry can be used for gully feature mapping in
different levels. The existing studies showed its potentials in hillslope gully extraction [33,70]. However,
challenges still exist. The floor gullies, developing in the floor of valley, are difficult to be reflected
using UAV photogrammetry because of the deep location and small terrain openness; the traditional
field measurement is still more suitable in this case. For bank gullies, the UAV photogrammetry
possesses difficulties for modeling the gullies in considerably steep slope, due to the limitation of
shooting angle. The aerial oblique imaging which supplements the traditional vertical photography
can be used in the further study to overcome such restriction [72,86].

6. Conclusions

Inspired by the application of UAV in environmental modeling, we applied a low-cost and
highly efficient device for gully feature extraction in the Chinese Loess Plateau region. Although
the topographic relief in the two selected study areas is high caused by the gully erosion, the UAV
can still obtain the 1 m DEM and 0.2 m ortho-image mosaics successfully. According to the highly
detailed productions, an object-based method combined with the RF classifier was used to detect the
gully-affected areas.
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Three contributions were provided by this paper: (1) an integral workflow for detection of
gully-affected areas that includes UAV photogrammetry for data generation and object-based approach
for feature mapping; (2) the segmentation step was optimized by considering the improvements of
topographic features; and (3) the experiments in the two catchments of Chinese Loess Plateau provided
a new method for extracting gully features in this region.

Further study is required to increase the accuracy for detecting gully-affected areas
and independent gullies. In addition, multi-temporal UAV data will be acquired to monitor
gully development.
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(Romania). Nat. Hazards 2015, 79, 255–289. [CrossRef]

10. Zhang, S.W.; Li, F.; Li, T.Q.; Yang, J.C.; Bu, K.; Chang, L.P.; Wang, W.J.; Yan, Y.C. Remote sensing monitoring
of gullies on a regional scale: A case study of Kebai region in Heilongjiang Province, China. Chin. Geogr. Sci.

2015, 25, 602–611. [CrossRef]
11. Casalí, J.; López, J.J.; Giráldez, J.V. Ephemeral gully erosion in southern Navarra (Spain). Catena 1999, 36,

65–84. [CrossRef]
12. Casalí, J.; Loizu, J.; Campo, M.A.; De Santisteban, L.M. Accuracy of methods for field assessment of rill and

ephemeral gully erosion. Catena 2006, 67, 128–138. [CrossRef]
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68. Drăguţ, L.; Eisank, C. Automated object-based classification of topography from SRTM data. Geomorphology

2012, 141, 21–33. [CrossRef] [PubMed]
69. Espindola, G.M.; Camara, G.; Reis, I.A.; Bins, L.S.; Monteiro, A.M. Parameter selection for region-growing

image segmentation algorithms using spatial autocorrelation. Int. J. Remote Sens. 2006, 27, 3035–3040.
[CrossRef]

70. Woodcock, C.E.; Strahler, A.H. The factor of scale in remote sensing. Remote Sens. Environ. 1987, 21, 311–332.
[CrossRef]
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