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Abstract 

Introduction: Brain multimodal monitoring including intracranial pressure (ICP) and brain tissue oxygen pressure 
 (PbtO2) is more accurate than ICP alone in detecting cerebral hypoperfusion after traumatic brain injury (TBI). No data 
are available for the predictive role of a dynamic hyperoxia test in brain-injured patients from diverse etiology.

Aim: To examine the accuracy of ICP,  PbtO2 and the oxygen ratio (OxR) in detecting regional cerebral hypoperfusion, 
assessed using perfusion cerebral computed tomography (CTP) in patients with acute brain injury.

Methods: Single-center study including patients with TBI, subarachnoid hemorrhage (SAH) and intracranial hemor-
rhage (ICH) undergoing cerebral blood flow (CBF) measurements using CTP, concomitantly to ICP and  PbtO2 moni-
toring. Before CTP,  FiO2 was increased directly from baseline to 100% for a period of 20 min under stable conditions 
to test the  PbtO2 catheter, as a standard of care. Cerebral monitoring data were recorded and samples were taken, 
allowing the measurement of arterial oxygen pressure  (PaO2) and  PbtO2 at  FiO2 100% as well as calculation of OxR 
(= ΔPbtO2/ΔPaO2). Regional CBF (rCBF) was measured using CTP in the tissue area around intracranial monitoring by 
an independent radiologist, who was blind to the  PbtO2 values. The accuracy of different monitoring tools to predict 
cerebral hypoperfusion (i.e., CBF < 35 mL/100 g × min) was assessed using area under the receiver-operating charac-
teristic curves (AUCs).

Results: Eighty-seven CTPs were performed in 53 patients (median age 52 [41–63] years—TBI, n = 17; SAH, n = 29; 
ICH, n = 7). Cerebral hypoperfusion was observed in 56 (64%) CTPs: ICP,  PbtO2 and OxR were significantly differ-
ent between CTP with and without hypoperfusion. Also, rCBF was correlated with ICP (r = − 0.27; p = 0.01),  PbtO2 
(r = 0.36; p < 0.01) and OxR (r = 0.57; p < 0.01). Compared with ICP alone (AUC = 0.65 [95% CI, 0.53–0.76]), monitoring 
ICP +  PbO2 (AUC = 0.78 [0.68–0.87]) or ICP +  PbtO2 + OxR (AUC = 0.80 (0.70–0.91) was significantly more accurate in 
predicting cerebral hypoperfusion. The accuracy was not significantly different among different etiologies of brain 
injury.
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Introduction
Acute severe brain injury, either secondary to trauma 
or non-traumatic events, is still associated with a sig-
nificant burden of long-term neurological sequelae [1, 2] 
and represents one of the major causes of morbidity and 
mortality in previously healthy population [3]. On the 
opposite to the initial brain injury, whose severity can be 
barely modified, secondary brain injuries (SBIs) could be 
detected and potentially avoidable. Those SBI, including 
either cerebral (i.e., brain edema, tissue hypoxia, seizures) 
or systemic (i.e., hypotension, hypocapnia, hypoxemia, 
dysglycemia, hyponatremia, fever and anemia) events, 
can enhance the extent of the primary brain insult and 
further contribute to poor outcome in this setting [4–7].

Following the occurrence of SBI, cerebral blood flow 
(CBF) might become inadequate to provide sufficient 
oxygen and nutrients supply to meet the metabolic needs 
of the injured brain [8]. Imaging techniques can provide 
relevant information on CBF alterations after acute brain 
injury; in particular, cerebral computed tomography per-
fusion (CTP) imaging, which was initially introduced to 
estimate the infarct core size and evaluate the time win-
dow for thrombolysis and thrombectomy in ischemic 
stroke [9], can detect perfusion deficits associated with 
cerebral vasospasm, which might occur in patients suf-
fering from subarachnoid hemorrhage (SAH), or reduced 
CBF around contusion areas and cerebral perfusion het-
erogeneity in the early phase of TBI [10, 11]. However, 
CTP is not a bedside tool, does not provide continuous 
CBF measurement and can be associated with some 
adverse events, such as high-dose radiation exposure and 
an increased risk of elevated intracranial pressure (ICP) 
during the in-hospital transfer to the radiology unit [12].

As such, alternative monitoring tools are available to 
estimate the occurrence of brain hypoperfusion at the 
bedside. Among them, ICP and cerebral perfusion pres-
sure (CPP) monitoring are widely recommended, in 
particular for TBI patients, to identify patients at risk of 
brain hypoperfusion. Nevertheless, CBF might be inad-
equate even in the absence of abnormal ICP/CPP values 
[13]; as such, invasive brain tissue oxygenation  (PbtO2) 
monitoring could provide additional information on 
the equilibrium between oxygen delivery, diffusion and 
consumption within the brain parenchyma and detect 
the occurrence of tissue hypoxia even in the absence 
of elevated ICP [14]. In one study, the combination of 

ICP and  PbtO2 monitoring was more accurate than ICP 
monitoring alone in detecting cerebral hypoperfusion in 
TBI patients [15]. However, this study included only 30 
CTPs and focused only on TBI with predominantly dif-
fuse injury, which would limit the generalizability of 
these findings to a larger cohort of brain-injured patients. 
Moreover,  PbtO2 cannot directly reflect CBF values, as 
brain oxygenation is also influenced by other factors, 
such as hemoglobin values, brain temperature, microvas-
cular impairment and arterial oxygenation [16]. Changes 
in arterial oxygen pressure  (PaO2) could result in con-
comitant changes in  PbtO2, whose magnitude is depend-
ent from local regulatory mechanisms, brain metabolism 
as well as the adequacy of regional perfusion. As such, 
one may argue that a challenge of increased arterial 
oxygenation could provide a more significant increase 
in  PbtO2 in those area with sufficient vascular supply, 
while the tissue oxygen response would be more limited 
in hypoperfused areas. In one study, van Santibrink et al. 
showed that increased tissue oxygen response was asso-
ciated with poor prognosis in TBI patients [17]; however, 
no data on the association of such response with regional 
perfusion were provided.

Therefore, the aim of this study was to assess the role of 
a dynamic oxygen challenge to identify cerebral hypop-
erfusion in brain-injured patients. We hypothesized that 
a higher tissue oxygen response could correlate with 
increased regional CBF values in these patients.

Methods
Study population
This was an analysis of prospectively collected data 
including all adult (> 18  years of age) patients with an 
acute primary brain injury (i.e., TBI, SAH or intracranial 
hemorrhage, ICH) admitted to the ICU of Erasme Hospi-
tal, Brussels, Belgium, between January 2016 and August 
2019. Eligible patients were those: (a) having a  PbtO2 
monitoring catheter, which was inserted according to 
the decision of senior ICU physician and an experienced 
neurosurgeon; (b) underwent daily dynamic oxygen 
challenge (see below) as part of routine assessment of 
 PbtO2 function; (c) underwent a CTP within 3  h from 
the dynamic oxygen challenge. Data for all measurements 
were recorded into the patient management data system 
(PDMS, Picis Critical Care Manager, Picis Inc., Wakefield, 
USA). Exclusion criteria were a malfunctioning  PbtO2 

Conclusions: The combination of ICP and  PbtO2 monitoring provides a better detection of cerebral hypoperfusion 
than ICP alone in patients with acute brain injury. The use of dynamic hyperoxia test could not significantly increase 
the diagnostic accuracy.
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catheter, the lack of data on the dynamic oxygen chal-
lenge, poor-quality CTP images (i.e., inadequate contrast 
medium injection and/or artifacts), baseline-inspired 
oxygen fraction  (FiO2) on the ventilator ≥ 80% and the 
use of prone positioning and/or extra-corporeal mem-
brane oxygenation. The study was approved by the ethi-
cal committee of the Erasme Hospital (Comité d’Ethique 
Hospitalo—Facultaire Erasme—ULB; P2021/348), which 
waived the need of informed consent given the observa-
tional design of the study analyzing recorded data into 
the PDMS.

Patients’ management and dynamic oxygen challenge
Patients were managed according to local protocols, 
based on international recommendations [18–20]. A tri-
ple lumen bolt allowing the insertion of a  PbtO2 probe 
(IM3.ST_EU, Integra LifeSciences Corporation, Plains-
boro, NJ, USA), alone or in association with an 8-con-
tact depth EEG electrode and a microdialysis catheter, 
was placed in the operating room by a neurosurgeon in 
patients with TBI, SAH or ICH, who had indications for 
ICP monitoring (i.e., abnormal CT-scan findings and a 
Glasgow Coma Score on admission < 9). The bolt was 
positioned in the normal-appearing brain area of the 
injured side (TBI or ICH) or, in case of aneurysmal SAH, 
on either the ipsilateral side of the aneurysm (i.e., ante-
rior circulation) or on the right side (i.e., no aneurysm 
identified or aneurysm located in the posterior circula-
tion). Other continuously monitored variables included 
heart rate, mean arterial pressure (MAP), peripheral oxy-
gen saturation, end-tidal carbon dioxide and body tem-
perature (i.e., with urinary or esophageal probes), ICP 
and CPP; CPP was calculated as the difference between 
MAP and ICP; MAP was zeroed at the level of the left 
atrium. ICP and CPP targets were < 20 and > 60 mmHg, 
respectively.

After the initial daily assessment of the patient includ-
ing arterial blood gas analyses (ABG), a dynamic oxygen 
challenge, i.e., increasing of  FiO2 to 100% for 20  min, 
was performed and another ABG repeated at the end of 
this period. As such,  PaO2 and  PbtO2 were measured at 
baseline and after the dynamic oxygen challenge. This 
dynamic challenge was part of the routine management 
of patients and performed by an experienced intensivist 
(FST), whenever possible. Apart from the dynamic oxy-
gen challenge, all other relevant physiological variables 
were kept stable. The oxygen ratio (OxR) was then cal-
culated as follows: OxR =  (PbtO2 at  FiO2 100% −  PbtO2 at 
baseline)/(PaO2 at  FiO2 100% −  PaO2 at baseline).

Data collection
For all patients, demographics, comorbid diseases, rea-
sons for ICU admission as well as ICU length of stay and 

hospital mortality were collected. The severity of disease 
scores (i.e., Glasgow Coma Scale on admission, World 
Federation of Neurological Surgeons—WFNS—score in 
SAH patients, Marshall and modified Fisher scores for 
cerebral CT-scan in TBI or SAH patients, respectively, 
location and volume of ICH) was collected. Intracra-
nial hypertension was defined by the ICP value above 
20  mmHg immediately before the dynamic challenge 
test; also, brain tissue hypoxia was defined by a  PbtO2 
below 20 mmHg at the same moment.

Neurological outcome at hospital discharge was 
assessed using the Glasgow Outcome Scale (GOS); 
favorable neurological outcome (FO) was considered as a 
GOS 4–5, while unfavorable outcome (UO) as GOS 1–3.

Cerebral CT perfusion scan
Cerebral CTP was performed using a multidetector row 
CT (FORCE Dual Energy, Siemens Healthcare, Erlan-
gen, Germany) and considered the reference method to 
identify areas of cerebral hypoperfusion. The indication 
for CTP was based on the decision of the attending ICU 
physician after discussion with a senior radiologist and, 
in general, based on the suspicion of cerebral vasospasm 
(SAH) or to assess the extension of cerebral hypoperfu-
sion (TBI, ICH); the decision to perform CTP was inde-
pendent from the results of the dynamic hyperoxia test. 
All available CTPs paired by a dynamic oxygen challenge 
were considered for the final analysis. The method of 
acquisition was similar to what previously described by 
Bouzat et al. [15]; scanning was initiated 5 s after injec-
tion of 50  mL of iohexol (300  mg/mL of iodine; GE 
Healthcare, Milwaukee, WI), at a rate of 5 mL/s, with the 
following variables: 80 kV, 240 mAs, 0.4 rotations/s, and 
total duration of 50  s. The series evaluated 16 adjacent 
5-mm-thick sections of brain parenchyma. Post-pro-
cessing of CTP data was performed by two experienced 
neuroradiologists, using a dedicated software (Brilliance 
Workspace Portal; Philips Medical Systems, Cleveland, 
OH), focusing on one region of interest (ROI), which 
was manually drawn around the probe (surface area, 
~ 50  mm2) to calculate regional CBF (Fig.  1). Assess-
ment of regional CBF was performed blindly to ICP and 
 PbtO2 data. Low regional cerebral blood flow (rCBF) was 
defined by a value below 35 mL/100 g × min [15].

Study outcomes
The primary outcome of the study was to compare the 
accuracy of ICP,  PbtO2 or OxR and their combinations to 
detect cerebral hypoperfusion in brain-injured patients. 
Secondary outcomes included: (a) the accuracy to detect 
cerebral hypoperfusion of all these variables according to 
the underlying brain disease.
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Statistical analysis
Data were analyzed using R statistical software ver-
sion 4.0.3 (R Foundation for Statistical Computing), 
Prism (GraphPad Software Inc.) and IBM SPSS Statis-
tics for Macintosh 27 (Armonk, NY, USA). Categori-
cal variables were expressed as count (percentage) 
and continuous variables as mean ± standard devia-
tion (SD) or median [25th–75th percentiles]. The 
Kolmogorov–Smirnov test was used, and histograms 
and normal-quantile plots were examined to verify 
the normality of distribution of continuous variables. 
Differences between groups were assessed using the 
Chi-square test or Fisher’s exact test for categori-
cal variables and Student’s t-test, or Mann–Whitney 
U-test for continuous variables, as appropriate. The 
discriminative ability of each variable or combination 
to predict cerebral hypoperfusion was evaluated using 
receiver operating characteristic (ROC) curves with 
the corresponding area under the curve (AUROC), and 
sensitivity, specificity, positive (PPV) and negative pre-
dictive value (NPV) were computed. For each variable, 
the optimal predictive threshold was calculated using 
the Youden’s index. Differences between AUROCs 
were assessed using the DeLong analysis. Correla-
tions between monitoring variables and CTP data were 
measured with Pearson’s correlation coefficient. All 
tests were two-tailed, and statistical significance was 
set at the 5% level.

Results
Study population
Over the study period, 123 patients underwent  PbtO2 
monitoring; of those, 70 (n = 43, no CTP; n = 4, poor-
quality imaging; n = 9 with  FiO2 > 80%; n = 14, no 
dynamic challenge test—Additional file  1: Fig. S1) were 
excluded leaving 53 patients for the final analysis. Char-
acteristics of the study population are shown in Table 1; 
median age was 52 [41–63] years; and 25 (44%) were 
female. Admission diagnosis was SAH in 29 (51%), TBI in 
17 (30%) and ICH in 7 (12%) patients. Overall mortality 
was 28%; median GOS at hospital discharge was 3 [1–3].

Cerebral CT perfusion
A total of 87 CTPs were performed; one patient had 6 
examinations, two underwent 4 CTPs, one patient 3 
CTPs, twenty-one 2 CTPs and the 28 remaining patients 
one CTP; 56 (64%) CTPs were performed in SAH, 20 
(23%) in TBI and 11 (13%) in ICH patients. The median 
time between the insertion of  PbtO2 catheter and CTP 
was 6 [3–9] days; no correlation between the time to 

Fig. 1 Patient with severe subarachnoid hemorrhage, who 
underwent a cerebral CT-perfusion (CTP) on day 2. White circle 
indicated the region of interest (ROI) for CTP analysis of regional 
cerebral blood flow (rCBF); rCBF was estimated at 12.8 mL/100 g 
× min, while intracranial pressure and cerebral perfusion pressure 
were 16 mmHg and 73 mmHg, respectively, and baseline  PbtO2 was 
22 mmHg (for a  PaO2 of 119 mmHg). Measured OxR was 0.14

Table 1 Characteristics of the study population. Data are 
presented as count (%) or median [IQRs]

GCS Glasgow Coma Scale, WFNS World Federation of Neurosurgical Societies, 
GOS Glasgow Outcome Scale, ICU intensive care unit

n = 53

Age, years 52 [41–63]

Female/male ratio 25/28

GCS on admission 9 [5–14]

Subarachnoid hemorrhage 29

 Fisher classification

 3 7

 4 22

 WFNS classification

 1 5

 2 4

 3 0

 4 7

 5 13

Traumatic brain injury 17

 Marshall classification

 3 4

 4 6

 5 2

 6 5

Intracerebral hemorrhage 7

 Hematoma > 30 mL 6

GOS at hospital discharge 3 [1–3]

30-day mortality 15 (28)

ICU length of stay, days 21 [15–29]
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insertion of the catheter and baseline  PbtO2 (r = 0.001; 
p = 0.97) and  PbtO2 at  FiO2 of 100% (r = − 0.13; p = 0.24) 
was observed.

Brain hypoperfusion and dynamic oxygen test
Fifty-six (64%) CTPs were associated with regional cer-
ebral hypoperfusion; CTPs showing cerebral hypoperfu-
sion had higher ICP, lower  PbtO2 at baseline and at  FiO2 
of 100% and lower OxR (Fig. 2) when compared to others; 
however, no differences in CPP,  PaO2, hemoglobin and 
 PaCO2 were observed between the two groups (Table 2).

The OxR had the highest correlation with regional CBF 
(r = 0.57; p < 0.001), when compared to ICP (r = − 0.35; 
p = 0.01) and  PbtO2 at baseline (r = 0.36; p = 0.006—
Fig. 3). An ICP > 20 mmHg had a specificity of 21% and a 
sensitivity of 97% to detect brain hypoperfusion, while a 
 PbtO2 < 20 mmHg had a specificity of 62% and a sensitiv-
ity of 84% to detect brain hypoperfusion. An OxR < 0.20 
had a 48% specificity and 81% sensitivity to detect brain 
hypoperfusion.

Intracranial hypertension was present in 13 (25%) 
of CTPs; of those, 12 (92%) had brain hypoperfusion; 
among the 74 CTPs without intracranial hypertension, 
44 (60%) had brain hypoperfusion (Additional file  1: 
Fig. S2). Brain hypoxia was present in 30 (58%) CTPs; of 
those, 26 (87%) had brain hypoperfusion; among the 57 
CTPs without brain hypoxia, 30 (52%) had brain hypop-
erfusion. A total of 23/56 (41%) with CTPs showing brain 
hypoperfusion had neither intracranial hypertension nor 
tissue hypoxia (Additional file  1: Table  S1). Low OxR 

(i.e.,  < 0.20) was present in 33 (38%) of CTPs; of those, 27 
(81%) had brain hypoperfusion; among the 54 CTPs with-
out low OxR, 29 (54%) had brain hypoperfusion. A total 
of 11 out of 23 CTPs with brain hypoperfusion showed 
only low OxR, without intracranial hypertension or tis-
sue hypoxia (Additional file  1: Fig. S2). While the com-
bination of at least two abnormal parameters between 
ICP (> 20 mmHg),  PbtO2 (< 20 mmHg) and OxR (< 0.20) 
resulted in brain hypoperfusion on CTP in 82–100% of 
cases, the absence of at least of these two abnormal val-
ues was associated with brain hypoperfusion in 39–47% 
of cases (Additional file 1: Figs. S2 and S3).

Predictors of brain hypoperfusion
As reported in Table  3 and Fig.  2, the most accurate 
variables to detect brain hypoperfusion were  PbtO2 at 
baseline and OxR. Different combinations of neuromoni-
toring data (i.e., ICP with  PbtO2; ICP with OxR; ICP with 
 PbtO2 and OxR) resulted in significantly higher AUC 
than ICP alone (p = 0.01, p = 0.04 and p = 0.02 vs. ICP, 
respectively); the combination of ICP and  PbtO2 yielded 
similar results than the combination of ICP,  PbtO2 and 
OxR.

Subgroup analyses
Differences in main characteristics between patients 
with and without hypoperfusion on CTP, according to 
the presence of a traumatic (n = 19) or non-traumatic 
(n = 68) brain injury, are reported in Additional file  1: 
Tables S2 and S3. Correlations of ICP,  PbtO2 and OxR 
with rCBF are reported, according to the presence of a 
traumatic or non-traumatic brain injury, in Additional 
file 1: Tables S4 and S5; results were similar to those of 
the entire cohort. In CTP associated with TBI (n = 19), 
the highest AUC to predict brain hypoperfusion was 
observed for the combination of ICP,  PbtO2 at baseline 
and OxR (0.90 [0.75–1.00]), although it was not sig-
nificantly different than ICP and  PbtO2 or ICP and OxR 
(Additional file 1: Table S4). In CTP with non-traumatic 
brain injury (n = 68), the highest AUC to predict brain 
hypoperfusion was observed for the combination of ICP, 
 PbtO2 at baseline and OxR (0.79 [0.69–0.90]), which was 
significantly better than ICP alone (p = 0.01) but not sig-
nificantly different than ICP and  PbtO2 or ICP and OxR 
(Additional file 1: Table S5).

Discussion
In this retrospective observational study, we observed 
that a multimodal evaluation including ICP and  PbtO2 
could more accurately detect brain hypoperfusion in 
a heterogeneous population of brain-injured patients. 
The dynamic hyperoxia test, which allowed to compute 
the OxR, did not significantly improve the diagnostic 

Fig. 2 Representation of brain tissue oxygen pressure  (PbtO2) and 
arterial blood partial pressure of oxygen  (PaO2) during hyperoxia test 
at  FiO2 100%. Each test is represented by two points united by one 
straight line. Depending on regional cerebral blood flow (rCBF) points 
and lines are black full circles united by black lines (normal rCBF) 
or grey triangles united by grey dotted lines (oligemia, i.e., regional 
cerebral blood flow < 35 mL/100 g × min). The blue line unit means 
of  PbtO2 and  PbtO2 at  FiO2 100% in the group with normal rCBF and 
the red line units means in the group with oligemia
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Table 2 Differences in main available data on the day of cerebral CT perfusion (CTP), according to the presence of brain 
hypoperfusion (i.e., regional cerebral blood flow < 35 mL/100 g × min). Data are presented as count (%) or median [IQRs]

ICP Intracranial pressure, CPP cerebral perfusion pressure, PbtO2 brain tissue oxygen pressure, PaO2 arterial blood partial pressure of oxygen, rCBF regional cerebral 
blood flow, NMBA neuromuscular blocking agents

ALL (n = 87) Brain hypoperfusion (n = 56) No brain hypoperfusion 
(n = 31)

p value

Baseline

ICP, mmHg 13 [9–17] 15 [9–19] 11 [8–15] 0.02

CPP, mmHg 94 [80–110] 95 [81–112] 86 [79–108] 0.36

PbtO2, mmHg 21 [19–23] 20 [18–22] 22 [21–25] < 0.01

PaO2, mmHg 110 [98–124] 112 [97–127] 109 [99–122] 0.79

FiO2 at baseline, % 35 [30–40] 35 [30–40] 30 [30–40] 0.04

PaO2/FiO2 at baseline 327 [283–365] 312 [269–357] 338 [297–370] 0.10

PEEP,  cmH2O 8 [5–10] 8 [5–10] 8 [5–10] 0.68

pH 7.42 [7.38–7.44] 7.42 [7.38–7.44] 7.41 [7.39–7.43] 0.82

PaCO2 baseline, mmHg 39 [36–43] 39 [37–42] 38 [35–41] 0.06

Sodium, mmol/L 140 [138–144] 140 [138–144] 140 [138–142] 0.59

Hemoglobin, g/dL 10.3 [9.1–11.4] 10.2 [9.6–11.6] 10.5 [8.9–11.3] 0.56

Glucose, mg/dL 134 [121–145] 133 [119–144] 138 [126–154] 0.20

Body temperature, °C 37.1 [36.8–37.5] 37.2 [36.7–37.6] 37.1 [36.9–37.5] 0.98

Sedatives, n (%) 48 (55) 31 (55) 17 (55) 1.00

Opioids, n (%) 54 (62) 34 (61) 20 (65) 0.82

NMBAs, n (%) 22 (25) 14 (25) 8 (26) 1.00

Norepinephrine, n (%) 66 (76) 43 (77) 23 (74) 0.80

Inotropic agents, n (%) 20 (23) 13 (23) 7 (23) 1.00

End of the dynamic oxygen challenge

PbtO2, mmHg 79 [56–95] 62 [46–88] 91 [81–119] < 0.01

PaO2, mmHg 359 [319–410] 345 [315–407] 378 [339–418] 0.08

pH 7.42 [7.38–7.43] 7.42 [7.37–7.44] 7.42 [7.39–7.43] 0.74

PaCO2,mmHg 39 [36–44] 39 [36–44] 38 [36–42] 0.72

Oxygen ratio 0.23 [0.15–0.29] 0.21 [0.12–0.27] 0.28 [0.22–0.33] < 0.01

rCBF, mL/100 g × min 31.3 [22.6–41.3] 25.6 [15.4–31.2] 49.3 [40.4–68.0] < 0.01

Fig. 3 Correlation between baseline intracranial pressure, baseline brain oxygen pressure  (PbtO2) and oxygen ratio with regional cerebral blood 
flow (CBF)
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accuracy of this multimodal approach to detect brain 
hypoperfusion. Similar results were observed when trau-
matic and non-traumatic brain injuries were analyzed 
separately.

The most accurate technique to quantify CBF in criti-
cally ill patients is CTP; indeed, assessment of CBF veloc-
ities using transcranial Doppler cannot provide absolute 
values of CBF [21], while thermodilution techniques are 
invasive and require repeated calibrations; their use can 
be limited in patients with fever or when the probe is 
placed close to large vessels and suffer from progressive 
drift of measured CBF values, which can result in inap-
propriate therapeutic decisions [22]. As CTP required 
patient’s transportation (i.e., increased risk of hypoten-
sion, hypoxemia, increased ICP) and is associated with 
not neglectable radiations exposure [12], bedside sur-
rogates of CBF are necessary to provide continuous and 
reliable assessment of brain hemodynamics in acute 
brain-injured patients. Elevated ICP is often used in clini-
cal practice to identify patients at risk of brain hypop-
erfusion; however, CBF can also be within high ranges 
after TBI, indicating hyperemia, which would result in a 
poor correlation of ICP with absolute CBF values [23]. 
Moreover, brain hypoperfusion can occur also in brain-
injured patients with ICP values below the cutoff of 
20–22 mmHg, which has been commonly used to define 
“intracranial hypertension”, independently from cerebral 
perfusion pressure (CPP) values [14]. Our data are in line 
with previous studies that reported a limited accuracy 
for ICP and CPP to predict CBF values or brain hypop-
erfusion, while a good correlation between  PbtO2 and 
CBF was observed [24–26]; moreover, we showed that 
this correlation was present also for non-traumatic brain 

injuries, such SAH and ICH. Importantly, the  PbtO2 
probe was placed into the “at-risk” area (i.e., normal 
appearing but close to a contusion or injured region), and 
our results might not be applicable in cases where probe 
insertion might target different cerebral areas. Moreo-
ver, we focused only on the area surrounding the  PbtO2 
catheter, as we included not only patients with diffuse 
brain injury (i.e., as it might be the case for TBI patients 
with diffuse axonal injury), but also many with focal 
injury (i.e., traumatic contusion or intracerebral hemor-
rhage), in whom the regional CBF might not correlate 
adequately with the global CBF of the ipsilateral cerebral 
hemisphere.

Importantly, median ICP and  PbtO2 were within nor-
mal values, i.e., clinical scenarios where performing 
additional measures, including neuroimaging, can be 
debatable. As such, our findings should be considered as 
physiological investigations of the relationship between 
CBF and neuromonitoring data rather than a support to 
perform more frequently CTP in this setting.

Previous studies have tried to improve the accuracy of 
multimodal neuromonitoring to detect brain hypoperfu-
sion by adding, as an example, cerebral microdialysis (i.e., 
in particular, reduced cerebral glucose or high lactate to 
pyruvate ratio, which might suggest anaerobic metabo-
lism occurring because of tissue hypoxia) [15]. However, 
cerebral microdialysis is available only in few centers, 
and interpretation of its data requires one-hour fluid 
collection, i.e., it might not be sensitive enough to rapid 
changes in CBF, which could be detected by monitoring 
systems providing real-time values. The dynamic hyper-
oxia test at the bedside could potentially help to improve 
the accuracy of multimodal neuromonitoring to detect 
brain hypoperfusion. Indeed, normal  PbtO2 might be still 
associated with brain hypoperfusion in patient treated 
with permissive hyperoxia (i.e.,  PaO2 > 150 mmHg) [27]; 
in this setting, normal  PbtO2 values would not reflect 
normal CBF values but the high levels of dissolved oxygen 
at the arterial capillary side, which might increase inter-
stitial oxygen diffusion and global delivery. Moreover, low 
 PbtO2 values could be observed in the presence of nor-
mal or high CBF values, in particular in case of reduced 
arterial oxygen content (i.e., anemia or hypoxemia) or 
increased cerebral oxygen consumption (i.e., fever, agita-
tion or fever) [16]. In one study, the OxR was weakly but 
significantly correlated with ICP and CPP in TBI patients 
[17]; no direct CBF assessment was performed in this 
population. However, in a subgroup of patients in whom 
hyperventilation (i.e., inducing a reduction of CBF) was 
performed, the OxR was significantly reduced by more 
than 10%, suggesting a potential relationship between the 
magnitude of  PbtO2 response to hyperoxia and the base-
line CBF. In another study including 83 TBI patients, the 

Table 3 Correlation between regional CBF and monitoring 
parameters. The discriminative ability of each variable or 
combination to predict cerebral hypoperfusion (i.e., regional 
CBF < 35 mL/100 g × min) was evaluated using receiver 
operating characteristic curves with the corresponding area 
under the curve (AUROC), and sensitivity, specificity, positive 
(PPV) and negative predictive value (NPV) were computed

ICP intracranial pressure, CPP cerebral perfusion pressure, PbtO2 brain tissue 
oxygen pressure, CI confidence intervals

Correlation with rCBF AUROC (95% CI)

ICP r = − 0.27; p = 0.01 0.65 (0.53–0.76)

PbtO2 r = 0.36; p < 0.01 0.75 (0.64–0.85)

Oxygen ratio r = 0.57; p < 0.01 0.75 (0.63–0.85)

CPP r = 0.01; p = 0.92 0.57 (0.44–0.70)

ICP +  PbtO2 – 0.78 (0.68–0.87)

ICP + OxR – 0.78 (0.68–0.88)

ICP +  PbO2 + oxygen 
ratio

– 0.80 (0.70–0.91)
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OxR was significantly different across different ranges of 
CBF values, being lower for CBF of < 10 or 11–15 mL/100 
g × min and higher for CBF > 40 mL/100 g × min) [28].

Which are the clinical implications of our findings? 
As the increase in  PbtO2 following hyperoxia might be 
reduced in the presence of low CBF, the OxR might be 
easily used at the bedside to identify patients at risk of 
brain hypoperfusion. Although absolute OxR values did 
not increase the accuracy of ICP and baseline  PbtO2 to 
detect brain hypoperfusion in our cohort, the presence 
of low OxR values (i.e., < 0.2) could identify still some 
patients with low CBF values despite ICP and  PbtO2 
within “normal ranges”. Conversely, normal OxR in the 
presence of slightly elevated ICP with still normal  PbtO2 
might suggest the presence of cerebral hyperemia; also, 
isolated low  PbtO2 with normal OxR might imply an 
imbalance between oxygen delivery and consumption 
that is independent from CBF, i.e., low oxygen content or 
increased oxygen consumption. This might help to fur-
ther individualize patients’ care according to the underly-
ing mechanisms resulting in tissue hypoxia. Importantly, 
it is important to consider that CTP, especially if used 
in isolation, had limited diagnostic utility to predicting 
infarct after ischemic stroke [29]; hence, using one single 
CTP imaging as the “gold standard” to assess hypoper-
fusion can be somewhat debatable, and, although being 
used in other studies [15], will deserve further confirma-
tory analyses in brain-injured patients.

This study has several limitations to acknowledge. First, 
the study was single-center and local practices might 
limit generalizability of the results. Second, we included 
both traumatic and non-traumatic injuries; although 
these diseases have a significant heterogeneity in patho-
physiology and overall management, main results about 
OxR were similar in the subgroup analysis. Third, we did 
not specifically assess whether OxR, on admission or 
repeatedly measured during the ICU stay, might be asso-
ciated with patients’ outcome, as suggested into another 
study [17]. Also, we did not evaluate whether fluctuations 
of ICP and  PbtO2 might also provide more clinically rel-
evant information on brain perfusion than baseline ICP/
PbtO2 values or OxR in this setting. Fourth, we did not 
assess how CBF might respond to hyperoxia; in previous 
studies, the authors observed a slight decrease in ICP fol-
lowing breathing  FiO2 100%, which might suggest intact 
autoregulatory mechanisms, resulting in vasoconstric-
tion in response to elevated oxygen pressure to maintain 
a constant tissue oxygen delivery [28]. Fifth, the preva-
lence of brain hypoperfusion in our study was particu-
larly high, reflecting clinical decision of the attending 
physicians to explore patients at risk of brain hypoper-
fusion. A prospective study including all brain-injured 
patients with neuromonitoring, independently on the 

pretest probability of brain hypoperfusion, could pro-
vide a more extensive and reliable assessment of the role 
of OxR to detect low CBF values in this setting. Sixth, 
 PbtO2 probes were placed in the anterior and middle cer-
ebral artery territories; therefore, changes in posterior 
vascular territories were not specifically evaluated. Sev-
enth, one may argue that, in the small area where brain 
oxygenation is measured, CBF would be highly negatively 
impacted by the instrumented probe. However, regional 
CBF varied across a wide ranges of values in our study, 
i.e., many patients had normal or high CBF values. If the 
tip would have been a reason for low CBF, then oligemia 
would have been observed in all patients. Moreover, the 
tip was placed in the region “at risk”, i.e., the cerebral 
area suffering from contusion, edema or vasospasm; as 
such, it was expected to have lower regional CBF in the 
analyzed region than other normal appearing areas (in 
particular for TBI and ICH). In a previous study [15], a 
similar methodological approach was used than in our 
study; also, the authors showed that regional CBF was 
correlated (although with same variance) with global 
CBF. Finally, measurement of absolute CBF might not 
adequately assess the degree of tissue hypoxia; indeed, 
CBF values within “normal” ranges might still be insuf-
ficient for cerebral areas at high metabolic rates or when 
low arterial oxygen content is present. However, most of 
therapeutic strategies aim at increasing brain perfusion 
in acute brain injured patients, and the assessment of 
CBF remains a relevant end-point in this setting.

Conclusions
In a heterogeneous population of acute brain-injured 
patients, cerebral multimodal monitoring with ICP and 
 PbtO2 detected regional cerebral hypoperfusion with 
a higher accuracy than ICP alone. Although the abso-
lute values of OxR, which was derived from a dynamic 
hyperoxia test, did not significantly increase the accu-
racy of ICP and  PbtO2 to detect brain hypoperfusion, 
low OxR might be still useful to identify those patients 
with low CBF values despite ICP and  PbtO2 values 
within normal ranges.
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