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Abstract

Background: To make sense out of gene expression profiles, such analyses must be

pushed beyond the mere listing of affected genes. For example, if a group of genes

persistently display similar changes in expression levels under particular experimental

conditions, and the proteins encoded by these genes interact and function in the

same cellular compartments, this could be taken as very strong indicators for co-

regulated protein complexes. One of the key requirements is having appropriate

tools to detect such regulatory patterns.

Results: We have analyzed the global adaptations in gene expression patterns in the

budding yeast when the Hsp90 molecular chaperone complex is perturbed either

pharmacologically or genetically. We integrated these results with publicly accessible

expression, protein-protein interaction and intracellular localization data. But most

importantly, all experimental conditions were simultaneously and dynamically

visualized with an animation. This critically facilitated the detection of patterns of

gene expression changes that suggested underlying regulatory networks that a

standard analysis by pairwise comparison and clustering could not have revealed.

Conclusions: The results of the animation-assisted detection of changes in gene

regulatory patterns make predictions about the potential roles of Hsp90 and its co-

chaperone p23 in regulating whole sets of genes. The simultaneous dynamic

visualization of microarray experiments, represented in networks built by integrating

one’s own experimental with publicly accessible data, represents a powerful

discovery tool that allows the generation of new interpretations and hypotheses.

Keywords: gene expression, microarray analysis, visualization, yeast, stress response,

molecular chaperones, Hsp90, inhibitor, gene deletion

Background

In the current post-genomic era, an increasing amount of data is generated by the

application of high-throughput technologies. Expression profiling analyses using DNA

microarray approaches are extensively used to study global changes in gene expression

patterns of multiple cell types and tissues under different conditions. Moreover, there

are publicly accessible databases containing the experimentally established DNA bind-

ing sequences for transcription factors (TF). To identify interaction partners of a
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protein of interest, several large-scale methods such as yeast two-hybrid screens,

tandem affinity purification followed by mass spectrometric analyses, and protein chips

are commonly used. Proteome-wide studies to identify protein-protein interaction

(PPI) partners for many proteins have resulted in several publicly available and well-

curated databases, which can be used to elucidate and to explore PPI networks. The

integration of this large amount of data from many sources in a comprehensive and

insightful way requires the use of computational tools to combine, to manipulate and

to visualize the information [1-3]. Visualization constitutes in itself a challenge. This is

particularly true for the multivariate type of data that omics approaches generate. A

multitude of tools have been developed that allow both still and animated data visuali-

zation [4,5]. However, it is increasingly recognized that visualizing data is more than

just presenting it; it also constitutes an exploration tool [6]. It could even be argued

that the characteristics of human pattern recognition [7] make the human subject a

powerful ally of mathematical algorithms for the discovery of principles in complex

data.

Hsp90 is an abundant molecular chaperone that is essential for many cellular regula-

tory and signal transduction systems by promoting the functionally competent state of a

large list of client proteins. Hsp90 recruits a cohort of associated partners or co-chaper-

ones, which form a variety of multiprotein complexes with Hsp90. These co-chaperones

assist Hsp90 by modulating its ATPase cycle and by facilitating its interactions with var-

ious client/substrate proteins [8-10]. An extensively studied Hsp90 co-chaperone is p23

(known as Sba1 in the budding yeast Saccharomyces cerevisiae) [11,12]. This ubiquitous

acidic protein binds and stabilizes the ATP-bound dimeric form of Hsp90 [10,13,14],

inhibits ATP hydrolysis and thereby traps Hsp90 in a state with high affinity for client

proteins [15,16]. Hsp90 inhibitory drugs such as geldanamycin and radicicol, and post-

translational modifications, such as the hyperacetylation of Hsp90, lead to the release of

p23 from Hsp90, which destabilizes the Hsp90-substrate interaction [17,18]. Moreover,

it was found that in the absence of p23, yeast and mammalian cells are viable [19,20],

but become hypersensitive to Hsp90 inhibitors [21]. Considering the biochemically

established important role of p23 in regulating Hsp90, we wanted to investigate the tran-

scriptional adaptations of budding yeast when p23 is removed from the Hsp90 complex

either genetically or pharmacologically. We carried out microarray experiments with

wild-type and p23-deficient S. cerevisiae strains, in which Hsp90 function was addition-

ally impaired with the Hsp90 inhibitor radicicol.

Early on, it became apparent that the classical pairwise comparison and subsequent

clustering of the microarray data, based on changes in gene expression alone, would be

insufficient to reveal more complex underlying regulatory patterns. We therefore

linked and grouped the genes according to their relationships in expression across

experiments, their interactions at the protein level, and their cellular localization.

Moreover, we explored the possibility that some genes might be coregulated by the

same TFs by searching for the presence of enriched TF binding sites in their promo-

ters. All these approaches combined together allowed us to visualize and to detect reg-

ulatory patterns of genes affected (directly or indirectly) simultaneously by Hsp90 and

p23. The results of these analyses are of heuristic value to build new hypotheses for

further validation experiments.
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Methods

RNA sample preparation and microarray analysis

The strain BY4741 (Mata his3∆1 leu2∆0 met15∆0 ura3∆0) was used as the wild-type

strain and its derivative BYP2 [21] as the ∆sba1 strain. The strains were grown in

YEPD with 10 μM radicicol or with the same volume of the vehicle DMSO for about

14 hours to reach the desired OD600 ≈ 0.6-1.0. RNA was extracted from triplicate cul-

tures using the hot-phenol method and subsequently cleaned up further on columns

with the QiaGen RNA purification Kit. RNA quality was assessed with a BioAnalyzer

(Bio-Rad). Expression profiles for these four experimental conditions using triplicate

samples were determined using the YG_S98 gene chips from Affymetrix at the geno-

mics platform of the University of Geneva. The data are available from ArrayExpress

at EBI (access code E-TABM-573). The raw data obtained from the expression profil-

ing was analyzed with the software GeneSpring 7.3. The samples were subjected to a

2-way Anova statistical test and a cut-off of p-value < 0.05 with the volcano plot for

pair-wise comparisons between two experimental conditions.

TF binding site analysis

Sequence retrieval: 1000 nucleotides upstream of the transcription start sites were

retrieved from the S. cerevisiae Refseq genomic DNA sequence available at NCBI for

the set of genes characterized by a 1.5 fold change in expression when Hsp90 was

inhibited with radicicol in wild-type cells (Additional File 1 Table S1). Similarly, 1000

nucleotides upstream of the transcription start sites for all Refseq annotated S. cerevi-

siae genes were retrieved to be used as the background/control sequences. TF identifi-

cation: TRANSFAC Professional 11.4 was used as described previously [22] except that

it was done with the set of all fungal TF binding sites retrieved from matrix.dat in

TRANSFAC. The over-represented TF binding sites were sorted by their relative over-

representation in the target sequence set (see Additional File 2 Table S2).

Yeast reporter gene assays

The reporter gene assays were done with yeast strain YNK100 (relevant genotype: pdr5-

101) [23] transformed with the plasmids pSTRE-LacZ(TRP1) [24] and pLG/Z [25],

which contain the STRE from the CTT1 promoter and the UAS of the GAL1 promoter,

respectively, upstream of a minimal CYC1 promoter driving b-galactosidase expression.

The transformants with pSTRE-LacZ(TRP1) and pLG/Z were grown in YEP comple-

mented with 2% glucose and 2% raffinose/2% glycerol, respectively. Overnight cultures

were diluted to a density of OD600 = 0.3, incubated for 4 hours before adding 30 μM

radicicol in ethanol or vehicle alone. In the case of the pLG/Z transformants, galactose

was added at the same time to induce reporter gene expression. After an additional 3

hours of incubation, b-galactosidase activities were measured using standard protocols

and normalized to cell densities (OD600). For all growth conditions and strains, the

growth temperature was 25°C. The data points represent the averages of three and two

independent experiments with replicates for the STRE and GAL reporters, respectively.

Integration of microarray data with PPI networks

PPI network generation and expression data integration using Cytoscape (http://www.

cytoscape.org) has been extensively described by Cline and colleagues [26]. Briefly, all
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the physical interactions annotated in the BioGrid database for S. cerevisiae (release

2.0.49) were formatted into an Excel spreadsheet and then uploaded into Cytoscape

using the function “Import Network from a table”. From this network, the first level of

PPIs was retrieved for the list of genes showing significant fold change in all microar-

ray experiments. One “node” in this network corresponds to a gene/protein and the

connection between them is called “edge” and it refers to the interaction between

these two nodes. The expression data was then loaded onto this network, importing

the fold change values in a tab-delimited format. This allows one later to compute a

correlation network using the Cytoscape plugin ExpressionCorrelation (http://www.

baderlab.org/Software/ExpressionCorrelation). This plugin facilitates the assembly of a

co-expression network, integrated into the PPI network, from microarray data, by com-

puting the Pearson correlation coefficient for all pairwise comparisons. We used a cut-

off of 0.9 in this analysis, and so, any correlations above these threshold values are

displayed again as an edge between two nodes. Network images were generated using

Cytoscape version 2.6.1 and each node was placed according to its annotated intracel-

lular localization (Gene Ontology [GO] cellular component) in cellular compartment

layers using the plugin Cerebral [27]. All the schemes were first exported as Cerebral

views from Cytoscape and then loaded into Adobe Illustrator for editing. The anima-

tion was generated in Adobe Illustrator and exported as a Flash file.

Results

Microarray analysis and data organization in a graph

Using a microarray experiment, we evaluated gene expression responses in yeast when

the function of Hsp90 was disrupted by radicicol (referred to as hsp90i in Tables and

Figures) in the presence and/or absence of p23 (referred to as WT and ∆p23, respec-

tively). Note that radicicol has been widely used in budding yeast as a specific pharma-

cological inhibitor of Hsp90. Hsp90 is the only known target of radicicol in vivo in this

organism, although it should not be ignored that it has been shown to bind a few

other proteins with a related ATP binding fold in vitro or in other organisms [28-30].

Based on pairwise comparisons between different experimental conditions, a total of

185 genes (Additional File 1 Table S1) were found to be up- or down-regulated by 1.5

fold or more in at least one comparison. In order to make the information more intel-

ligible, we organized the data, represented by the list of genes mentioned above, in net-

works based on additional information that could be obtained about these genes and

their protein products from public databases. The flow chart of our new data analysis

pipeline is presented in Figure 1. Genes are first organized graphically according to

PPIs of their protein products based on data manually extracted from the BioGRID

database [31]. Next, graph connectivity is further enriched by taking into account the

pairwise differential changes in expression of the query genes for different conditions

in the experiment. This information is superimposed on the PPI network (Figures 1A

and 2). Thus, nodes represent genes (and gene products, i.e., proteins), and edges

represent physical interactions of the proteins or correlations of expression levels of

the respective genes across all given conditions. Furthermore, the intracellular localiza-

tion for each node (protein) is obtained from the Gene Ontology (GO) database [32]

and this information is used to reorganize the graph further (Figures 1A and 2) using

the layout provided by the Cytoscape plugin Cerebral [27]. With Cerebral, nodes get
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positioned according to their intracellular localization and their connectivity with topo-

logical neighbors; at the same time, they get “geographically” separated from unrelated

nodes. As a result, highly interconnected nodes with similar intracellular localization

get closer in the generated graph [27] (Figures 1A and 2). All these manipulations

group the nodes in a graph according to their PPIs, co-expression, and intracellular

localizations. Thereafter, nodes are colored with a red-to-green gradient according to

their expression values, where red and green represented up-regulation and down-reg-

ulation, respectively (Figures 1B and 2A). At this point, individual dependency graphs

[3] relate to a single pairwise comparison of experimental conditions and are more or

less multivariate depending on what additional data were incorporated with the origi-

nal gene expression profiles.
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Figure 1 Flow chart of the microarray data analysis. To illustrate the procedure, we arbitrarily used a

set of 8 genes, whose expression varies across 3 different pairwise experimental comparisons and whose

corresponding proteins undergo a certain number of interactions. (A) Generating a set of networks based

on pairwise comparisons of experimental conditions. The starting point for this procedure is an initial set of

differentially regulated genes (Gene list). This gene list is used to generate a network where nodes are

genes (or proteins), which are first connected by edges based on available protein-protein interaction

information (PPIs, black lines). The network connectivity is further enriched by the addition of extra edges,

which indicate that the expression of linked genes is correlated across all given experimental conditions

(grey dashed lines). Thus, the latter is based on tracking expression correlation between genes in pairwise

comparisons as shown in panel B. Finally, the layout of the network is organized using the Cytoscape

plugin Cerebral. Here, nodes are organized based on their intracellular localization and their level of

connectivity (PPI and expression correlation). (B) Dynamic visualization of network maps of pairwise

comparisons. Nodes in the network maps are colored with a red-to-green gradient according to their

expression values, along all the analyzed pairwise comparisons. Two different patterns (A and B) of gene

expression behaviors emerge by moving between the different network panels (x, y, z). This can be greatly

facilitated by generating a animation from these network panels. (C) Detected patterns can suggest

biological interpretations and new hypothesis.
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Figure 2 Visualization of the pairwise comparisons of the microarray data by a dynamic graph.

Genes showing significant fold change in their expression levels in at least one pairwise comparison of all

the experimental conditions were linked and grouped according to their coexpression levels along the

experiments, their interactions at the protein levels (relatively few in this particular dataset) and their

cellular localization. (A) Nodes represent genes (and gene products). These nodes are colored with a red-

to-green gradient according to their expression/fold change values, where red and green represent up-

regulation and down-regulation, respectively (see inset for color gradient). For dynamic visualization, these

graphs were converted into an animation. (B) The TF enrichment analysis of genes that are up-regulated

upon Hsp90 inhibition showed that most of the red nodes correspond to genes that are potentially

regulated by STREs (highlighted red nodes). (C) The repeated observation of the dynamic graph

(animation), allows the identification of groups of nodes sharing the same color patterns because of their

particular expression levels across all experiments. The regions highlighted with pastel colors indicate the

positions in the graph where a majority of the nodes defining each pattern were identified.
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Finding biologically relevant co-regulation patterns

To identify patterns of coregulation, graphs can be analyzed one experiment at a time

(pairwise comparisons) or “dynamically” (all experiments together) (Figure 1B). Per-

forming a GO analysis on the results of single pairwise comparisons of the expression

data, notably the ones for wild-type cells treated or not with radicicol, we found that

there are a significant number of genes related to the stress response (highlighted in

Additional File 1 Table S1). A TF site analysis of the promoters of genes showing sig-

nificant changes in expression upon inhibition of Hsp90 with radicicol revealed that

they are considerably enriched in stress response elements (STREs) (Additional File 2

Table S2). Furthermore, the genes with STREs in their promoters (genes marked “yes”

in the column STRE of Additional File 1 Table S1) all belong to the ones that are up-

regulated upon pharmacological inhibition of Hsp90, indicating that they might be

implicated in the same biological processes (Figure 2B, highlighted red nodes, and

Additional File 1 Table S1). The enrichment of STREs in promoters of many genes

up-regulated by Hsp90 inhibition suggested that inhibition of Hsp90 may lead to a

stress response by signaling through these regulatory elements. To evaluate this

hypothesis experimentally, we examined the expression of a STRE reporter gene fol-

lowing Hsp90 inhibition by radicicol and found that inhibition of Hsp90 indeed up-

regulates it (Figure 3). These results support this hypothesis, which was based on a

standard pairwise comparison and TF analysis.

Whereas the more or less multidimensional dependency graphs generated by these

binary comparisons are useful and yield interesting results, some patterns might only

become apparent by investigating the data of all performed experiments simultaneously

as highlighted in Figure 1. Specifically, looking at all experiments at once may facilitate

the detection of genes or sets of genes with similar or particular expression patterns

across the different genetic and pharmacological conditions (Figure 1B). To this end, all

the networks generated from the different pairwise comparisons were superimposed on

each other as a stack and converted into a dynamic graph or animation (Additional File

3 Movie S1). This animation then served as a discovery tool to extract novel patterns of

behavior. By visualizing the recurring patterns of colors (red or green according to their

expression values), genes could be assigned to different clusters (Figure 1B), which are

coordinately or simultaneously regulated by Hsp90 and p23 (Figure 2C and Additional

File 3 Movie S1). In Figure 2C and Additional File 3 Movie S1, highlighted regions indi-

cate the positions in the graph where most of the nodes belonging to each pattern were

visually identified. For example, by watching the animation (Additional File 3 Movie S1),

one can observe the following pattern of node color changes in the central/upper left

region of the graph: red, green, green and red (arbitrarily referred to as pattern A). Simi-

larly, there is another pattern in the central/upper right region: green, red, red and green

(pattern B). The classification of all genes in our study according to these patterns is

given in column “Pattern” of the Additional File 1 Table S1.

Thus, it is the visual impression of animated color changes of clusters of nodes,

which allows one to identify potential regulatory patterns. The order of the color

changes for a given node is determined by the order of the graphs used to generate

the animation. Whereas the order is irrelevant for our particular data set, we do not

exclude that it may be important in others (for example, in time course experiments).

Amongst all of the genes represented in the full data set, it is of course particularly
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those whose expression changes substantially (indicated by the red and green nodes)

across all pairwise comparisons that define patterns (see Figure 4 and Additional File 4

Table S3). However, considering that this is a relatively small subset of genes, notably

in our data set, it is important to realize that the detection of patterns is crucially

aided by many more genes (nodes) that change substantially in only a subset of pair-

wise comparisons (and less or not at all in others).

The original biological set-up and rationale of the microarray experiments then serve

to interpret these novel patterns (Figures 1C and 5). For example, we can deduce that
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Figure 3 Pharmacological inhibition of Hsp90 induces a stress response in yeast. Expression of b-

galactosidase from the stress-inducible STRE reporter and the galactose-inducible control plasmids

(schematically shown at the top of the Figure) was assayed without (open columns) and with (grey

columns) treatment with 30 μM radicicol (Rd). Activities are expressed as % of the activities of the

respective untreated samples, arbitrarily set to 100%. The difference between treated and untreated

samples in the case of the STRE reporter are statistically significant with a p-value of < 0.05.
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pattern A corresponds to a set of genes simultaneously affected (directly or indirectly) by

Hsp90 and p23, positively by Hsp90 and negatively by p23 (referred to as Hsp90act and

p23rep, respectively, in Figures 4 and 5). Doing the same analysis for pattern B, it could

be inferred that these genes would be affected negatively by Hsp90 and positively by p23

(Figure 5). Furthermore, there is a pattern (pattern C) in which genes are up-regulated

in all experiments: all nodes are red in all comparisons (central region of the graph, Fig-

ure 2C and Additional File 3 Movie S1) implying that both Hsp90 and p23 negatively

affect genes in this pattern. Pattern D is defined by genes that are down-regulated in all

experiments: all nodes are green in all comparisons (left lower region), indicating that all

the genes in this pattern might be positively affected by Hsp90 and p23 (Figure 5). Not

unexpectedly, there were several genes (group E) that did not have any defined pattern

of expression among all the pairwise comparisons (Additional File 1 Table S1). Although

Hsp90 and p23 regulate these genes, no clear insight emerges with this type of analysis

for their concurrent/simultaneous regulation by both of these proteins.

Inference of functions for patterns differentially regulated by Hsp90 and p23

Following the identification of different patterns by this animation, we extracted the

genes corresponding to each pattern (Additional File 1 Table S1). Full GO data for
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Figure 4 Genes that change significantly in all pairwise comparisons define the four regulatory

patterns. Genes whose expression changed significantly in all pairwise comparisons (Additional File 4

Table S3) are organized in a graph according to their level of coexpression (grey lines connecting nodes;

edge width is representative of the extent of coexpression) and similar cellular localization of the

respective proteins (grey dashed lines). Note that for this particular set of genes, there are no known PPIs.

The changes in the color-coded expression values of these genes (see color gradient on the right) across

the four pairwise comparisons define the patterns A to D. The terms Hsp90act, Hsp90rep, p23act and p23rep

refer to the hypothesized gene regulatory activities of Hsp90 and p23 as direct or indirect activators or

repressors. Some of the cellular functions (GO terms) for the same set of genes are indicated at the

bottom.
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genes belonging to each pattern were retrieved to address the potential functions of

these groups. Genes from pattern A (Hsp90act, p23rep) showed enrichment in func-

tional terms associated with iron and ion homeostasis, whereas functions of those

belonging to pattern B (Hsp90rep, p23act) fell into a mitochondrial function (respira-

tion), kinase activity dependent on cyclins and progression through the cell cycle.

Genes from pattern C (Hsp90rep, p23rep) exhibit GO terms related with conjugation

processes, catabolism of nitrogen sources and response to stress. The concomitant

absence of Hsp90 and p23 induces the expression of stress-related proteins like Ssa4

(encoding one of the cytosolic Hsp70 isoforms), Hsp26, Hsp31, Ddr2. Interestingly,

both chaperones might have a positive influence on the expression of genes (pattern

D) related with mitochondrial protein import and carbon source metabolism (TOM70,

OAC1, MDH2 and DIC1), a phosphatase that positively regulates the Hsp90 chaperone

machinery (Ppt1) [33], or chromatin remodelers like Nhp6 and Imd2. Furthermore, the

genes lacking any particular pattern (group E), do not show significant enrichment for

any functional annotations. Interestingly, the genes for Hsp90 (HSP82 encoding one of

the two cytosolic isoforms) and for its co-chaperones Aha1, Cpr6 and Sti1 belong to

Pattern A

Hsp90act, p23rep

Pattern B

Hsp90rep, p23act

Pattern C

Hsp90rep, p23rep

Pattern D

Hsp90act, p23act

Hsp90act

Hsp90act

Hsp90rep Hsp90rep

Hsp90rep Hsp90rep

Hsp90act

Hsp90act

p23rep p23act p23actp23rep

Hsp90

p23 p23

Hsp90

WT <–> hsp90i

Hsp90

p23

p23 Hsp90

∆p23 <–> hsp90i, ∆p23 

Pairwise comparisons

p23

Hsp90

p23 Hsp90

hsp90i <–> ∆p23

Hsp90Hsp90

p23

p23

WT <–> ∆p23 p23rep p23act p23actp23rep

Figure 5 Biological interpretation of color patterns identified in the animation-assisted network

analysis. The left side shows the biological interpretation of the assayed conditions, where Hsp90 was

inhibited (or not) in wild-type or p23 -deficient yeast strains. Genes showing significant fold change under

these conditions are genes affected (directly or indirectly, positively or negatively) by Hsp90 and p23. On

the right, the bar graphs illustrate the expected expression levels of any given gene in each condition of

the pairwise comparisons, according to the observed final fold change (red or green colors). In the

animation-assisted analysis (visualizing all four pairwise comparisons in a animation), there are genes which

follow a defined behavior along all four comparisons, that is these genes display a defined pattern of red/

green colors (according to their expression values). If a gene in the first two comparisons is first green and

then red it means that the inhibition of Hsp90 leads to a decrease in its expression levels but the

disruption of p23 results in an increase, which would be in accordance with a gene positively regulated by

Hsp90 and negatively by p23. A similar reasoning can be applied to all other patterns.
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this group of genes, thus implying that their regulation is not affected by the interplay

between Hsp90 and p23.

Discussion

Here we have presented a novel approach to integrate experimental gene expression

profiles with already available data. We were able to combine our own data from

microarray experiments and data from public databases of PPIs, TF, and GO in a

rational manner to address the global biological functions of Hsp90 and p23 both indi-

vidually and, perhaps more interestingly, concomitantly.

Several key features of our working pipeline (Figure 1) allowed us to process and to

understand certain aspects of our data. First, we worked with genes showing a significant

fold change in at least one, often several pairwise comparisons that were analyzed (Figure

1A). Second, we organized them into a graph establishing connections between nodes

according to their co-expression levels and their ability to interact at the protein level (Fig-

ure 1A). Third, we organized the nodes in the graph according to their annotated intracel-

lular localization. Using the Cerebral layout, highly interconnected nodes with the same

intracellular localization get grouped in the final individual graphs [27] (Figure 1A). And

finally, a novel and essential feature of the analysis was to convert all the generated graphs

into an animation to facilitate the visualization of similar expression patterns of genes

topologically grouped in the individual graphs (Figures 1B and 2A, and Additional File 3

Movie S1). It is important to emphasize that this pattern detection was only possible by

this method and that we failed to detect these patterns with more standard clustering

algorithms (data not shown). The latter may have discarded or “undervalued” nodes with

only marginal changes in gene expression whereas a human subject’s pattern recognition

would have incorporated some of these as well. While small fold changes may not have

any significant value by themselves, as part of a larger animated pattern, they attract the

attention of a human observer and they may become corroborative. The interpretation of

these patterns matched the information contained in the pairwise comparisons of the

microarray data (Figure 5), which finally allowed us to uncover the genes that are regu-

lated by both Hsp90 and p23. Thus, the use of an animation to visualize patterns was a

key tool to connect the data of the different microarray experiments.

Once the networks had been built, we were able to perform two kinds of analyses, sin-

gle pairwise ones and an animation-assisted one that takes advantage of all pairwise

comparisons. With the single analysis we found that 114 genes were up-regulated upon

pharmacological Hsp90 inhibition (Figure 2B, red nodes and Additional File 1 Table S1,

genes boxed in blue). Of these, 26 presented an enrichment of GO terms related with

stress response (Additional File 1 Table S1, genes highlighted in orange), in accordance

with the finding that these genes contained an increased occurrence of STREs in their

promoters. The stress response in yeast is regulated by the TFs Hsf1 and Msn2/Msn4,

which bind to promoters containing heat-shock response elements and STREs, respec-

tively [34,35]. Some of these promoters could also contain both elements [36,37]. From

our study, it appears that the sole inhibition of Hsp90 is sufficient to up-regulate stress-

related genes with STREs in their promoters. This would indicate that Hsp90 influences

the Msn2/Msn4 system. Analyzing the yeast PPI networks extracted from public reposi-

tories and the literature, we can infer that Hsp90 (and co-chaperones) interacts with

kinases known to repress the Msn2/Msn4 system (and the stress response) [38-41]
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(Additional File 5 Table S4). Since many kinases are known Hsp90 clients (see regularly

updated list at http://www.picard.ch/downloads/downloads.htm), we can speculate that

Hsp90 and its co-chaperones maintain kinases responsible for Msn2/Msn4 repression in

a functional state thereby regulating the stress-response (Additional File 6 Figure S1).

Interestingly, with animation-assisted analysis, we noticed that not all stress-related

genes belong to the same expression pattern. Most of these genes belong to patterns B

and C, indicating that they are at the same time affected by Hsp90 and p23 (Additional

File 3 Movie S1). It is also clear that Hsp90 and other co-chaperones (Sti1, Aha1, Cpr6)

are up-regulated upon pharmacological Hsp90 inhibition, and yet they do not show any

particular pattern. Hsf1 is the only stress-inducible transcriptional regulator of Hsp90

protein expression in yeast [42,43]. Conversely, Hsp90 represses gene expression from

Hsf1-dependent promoters [44], establishing a negative feedback loop for its own

expression. Conceivably, the genes for Hsp90 and at least some of its co-chaperones are

regulated only by Hsf1, while the other stress-related genes exhibit a more complex reg-

ulation involving the concurrent action of Hsp90 and p23, potentially through the

Msn2/Msn4 system.

Conclusions

The animation-assisted analysis involving the visualization of complex connection

maps with an animation uniquely allowed us to integrate the information from all the

pairwise comparisons that were possible with the microarray data obtained in this

study. We were able to address the potential actions of Hsp90 and p23 for the expres-

sion of a large list of genes. Moreover, we could gain insights about groups of genes

that are regulated together or individually by these two proteins. Even though Hsp90

and p23 seem to be essential partners for most of their functions, it is becoming clear

that they can exert both coordinated as well as opposite influences on some of their

clients, as previously described for example for the regulation of the telomerase com-

plex or for recycling of nuclear receptors at chromatin targets [[45,46], and reviewed in

ref. [47]]. Independent or even opposite influences are suggested by gene expression

patterns A and B. It is conceivable, for example, that Hsp90, in association with other

co-chaperones, is required to assist a particular transcription factor or complex at a set

of target genes while the primary role of p23 for the same set of genes might be to dis-

rupt transcription factor complexes. Taking into account indirect pathways, many

more schemes are possible as well. At this point, we can only speculate about the

underlying mechanisms. It will be both challenging and interesting to dissect them

experimentally both in yeast and in other organisms.

Our new approach might be appropriate to process a variety of microarray data.

Following enrichment with biological annotations from several other sources such as

PPI, TF, GO and localization databases, the dynamic visualization represents an

additional powerful discovery tool. It remains to be tested to what extent it can be

more generally applied, notably to even larger sets of genes or different experimental

conditions. Although it may ultimately be possible to replace the reiterated visual

inspection of the animation with an algorithm that would automatically identify pat-

terns in multiple dependency graphs, we contend that the human eye and brain are

currently simpler clustering tools that are also more accessible to a wide range of

wet bench scientists.
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