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Abstract

The properties of acoustic speech have previously been investigated as possible cues for

depression in adults. However, these studies were restricted to small populations of patients and

the speech recordings were made during patients’ clinical interviews or fixed-text reading

sessions. Symptoms of depression often first appear during adolescence at a time when the voice

is changing, in both males and females, suggesting that specific studies of these phenomena in

adolescent populations are warranted. This study investigated acoustic correlates of depression in

a large sample of 139 adolescents (68 clinically depressed and 71 controls). Speech recordings

were made during naturalistic interactions between adolescents and their parents. Prosodic,

cepstral, spectral, and glottal features, as well as features derived from the Teager energy operator

(TEO), were tested within a binary classification framework. Strong gender differences in

classification accuracy were observed. The TEO-based features clearly outperformed all other

features and feature combinations, providing classification accuracy ranging between 81%–87%

for males and 72%–79% for females. Close, but slightly less accurate, results were obtained by

combining glottal features with prosodic and spectral features (67%–69% for males and 70%–75%

for females). These findings indicate the importance of nonlinear mechanisms associated with the

glottal flow formation as cues for clinical depression.
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I. Introduction

THE increase in the prevalence of clinical depression in adolescents (i.e., those aged 13–20

years) has been linked to a range of serious outcomes, particularly an increase in the number
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of suicide attempts and deaths, making it a public health concern [30], [54]. Therefore, the

early detection of depression in adolescence is of primary importance given the fact that

there has been a dramatic increase in the incidence of depressive symptoms and disorders in

adolescents in recent years [35]. Clinical depression belongs to the group of affective

(mood) disorders in which emotional disturbances consist of prolonged periods of excessive

sadness marked by reduced emotional expression and physical drive [9]. From a

psychological point of view, one of the tell-tale signs of a person being depressed is the way

emotions are expressed in his/her speech. This is based on the assumption that the emotional

state of a person suffering from a depressive disorder affects the acoustic qualities of their

speech, and therefore, depression could be detected through an analysis of perceived

changes in the acoustical properties of speech. Due to the significant differences between

adult and adolescent speech [20], this study presents an initial attempt to investigate the

acoustic correlates of depression in speech of adolescents. An acoustic analysis of speech

will provide clinicians with an additional quantitative measure to compliment and strengthen

the current diagnostic techniques. Specifically, an automatic, computer-based analysis of

speech, indicating the probability of depression that can be used as a mass-screening device,

followed by more detailed (and more resource intensive) interview-based clinical diagnosis

of depression.

The remaining part of this paper is organized as follows. Section II contains a brief review

of existing methods. Section III describes the database formulation and annotation. In

Section IV, the detailed description of our methods can be found. The experiments and

results are described in Section V followed by the discussion and conclusions in Section VI.

II. Previous Work

The physiological rational for our research is based on a number of studies [48], [49] that

gathered a considerable amount of evidence that emotional arousal produces changes in the

respiratory, phonatory, and articulatory processes of speech production. Since depression

and suicidality manifest themselves through significant emotional changes, these studies are

closely related to the studies of emotion recognition in speech. Depressed speech has been

consistently characterized by clinicians as dull, monotone, monoloud, lifeless, and

“metallic” [43]. Utilizing a subjective assessment, Darby and Hollien [13] conducted a pilot

study of severely depressed patients and found that listeners could perceive noticeable

differences in prosodic characteristics of speech, such as pitch, loudness, speaking rate, and

articulation in depressed patients before and after treatment. Thus, this observation led to

numerous studies of objective measurements using speech parameters that reflect these

prosodic characteristics, which included fundamental frequency (F0), formants, jitter,

shimmer, intensity of the speech signal, and speech rate. Other commonly used speech

parameters have been cepstral features [i.e., mel frequency cepstral coefficients (MFCCs)],

spectral features [i.e., power spectral density (PSD)], and glottal features. Most of these

acoustic speech parameters have already been identified as possible cues to depression [5],

[13], [16], [18], [32], [41], [44], [46] in adults and possibly between other life stages.

Another useful feature for stress recognition is the Teager energy operator (TEO), which

measures the number of additional harmonics due to the nonlinear air flow in the vocal tract

that produces the speech signal. However, the complex relationship between emotional

stress and clinical depression still remains somewhat unclear [33].

The level of correlation built to recognize complex relationships between speech parameters

and depression has customarily been assessed using multivariate analyses [18], [41], [46].

Ozdas et al. [46] trained a multivariate maximum-likelihood classifier with combined

features calculated from vocal jitter and glottal spectral slope in voice samples of 30 subjects

and achieved an overall classification accuracy of 90% between depressed and control
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patients. Moore et al. [41] with a sample data size of 33 subjects, adopted a feature selection

strategy by adding one feature at a time to find the highest classification accuracy through

quadratic discriminant analysis and concluded that the influence of glottal features were

important discriminating factors in improving the detection of clinical depression.

Early studies of acoustic correlates in speech were limited to small databases (very few

participants and short audio recordings). To make issues more complicated, there have been

discrepancies in the results presented from one study to another. Therefore, further research

validating the proposed measures with larger sample sizes is necessary. Furthermore, no

specific studies addressing acoustic parameters of speech as indicators of depression in

adolescents have been published.

The main focus of our study was to determine the most important acoustic features that can

distinguish the speech of nondepressed from the speech of clinically depressed adolescents

in a naturalistic environment (i.e., interactions between adolescents and their parents) rather

than speech from interviews or a standard reading task. Apart from using traditional features

described in many previous studies, additional features derived from the TEO, which have

been reported to be successful in stress and emotion recognition [56] were also tested. We

also wanted to examine the role of some previously reported phenomena in our data, such as

the well-established gender differences in depressive symptoms during early adolescence

[45], and the importance of glottal features in the detection of clinical depression [41].

Additionally, we wanted to determine the optimal duration of the speech samples to be

analyzed, due to the fact that in past research, there have been variations in the duration, i.e.,

20 s in [18] and 30 s in [46].

III. Speech Database Formulation and Annotation

The database obtained from the Oregon Research Institute (ORI), consisted of video and

audio recordings of 139 adolescents (93 females and 46 males), with their respective parents

participating in three different types of family interactions. It should be noted that no

siblings were included in the family interactions. Each of the three interactions was

conducted for 20 min, resulting in a total of 60 min of observational data (video recordings)

for each family. A brief description of these interactions is provided in the following and a

more detailed description can be found in [21] and [22].

1. Event-planning interaction (EPI): The family plans a vacation together and

reminisces about a fun time they spent together in the past.

2. Problem-solving interaction (PSI): The family tries to resolve two topics of

disagreement, identified based on a questionnaire completed by the adolescent and

parents.

3. Family consensus interaction (FCI): This family discussion involves planning the

writing of book chapters on the experience of growing up/raising a child that

reflects the shared perspective of both the adolescents and their parents.

Adolescents were excluded from this study if they evidenced any substance dependence or

conduct disorders or if they were taking any medications that affect the cardiac system.

These exclusion criteria were relevant to the collection of cardio-vascular data that is not

used in the current report. Based on adolescent interview data [51], ORI research staff

determined that 68 adolescents (49 females and 19 males) met the Diagnostic and Statistical

Manual of Mental Disorders version IV (DSM-IV) [1] criteria for a current episode of major

depressive disorder (MDD). The remaining 71 participants (44 females and 27 males) were

healthy, nondepressed (control) adolescents, who did not meet diagnostic criteria for any

current psychiatric disorders and had no history of mental health treatment. The adolescents
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were between 14 and 18 years. For the purposes of the larger study, from which data for this

report were derived, it was important to ensure similarity on demographic measures. As

such, healthy participants were matched to depressed participants on adolescent age, gender,

ethnicity, and the socioeconomic characteristics of their schools [51]. In summary, although

the two samples were well matched on many demographic variables, the depressed

participants came from households with somewhat lower socioeconomic status, and had

mothers with higher levels of depressive symptoms. These differences are not surprising,

and reflect well-established associations between adolescent depression, low socioeconomic

status, and maternal depression [31].

The interactions were conducted in a quiet laboratory room at ORI. Family members were

seated a few feet apart as would be typical for a discussion between familiars. Lapel wireless

microphones (model: Audio Technica ATW-831-w-a300) were placed on the participants

shirts at the chest level. Although participants were also outfitted with other sensors

measuring physiological signals, such as ECG, impedance cardiogram, skin conductance,

respiratory, and blood pressure, they did not impede speech behavior. The full 20 min were

always used and the order of interactions was fixed: EPI, PSI, and FCI.

The recordings were coded by trained observers using the living-in-family-environments

(LIFE) coding system [21]. The LIFE is a behavioral coding system designed to describe the

specific timeline of various emotions (called affect codes) and verbal content (called content

codes) displayed by the participants during the course of the interaction. The LIFE code is

composed of 27 content codes and 10 affect codes. The speech was recorded using two

channels and only the audio recordings from the channel belonging to the adolescents’

microphone were analyzed. The speech of the adolescents was then segmented from the

recordings based on the time annotations containing these emotions and verbal content that

were LIFE coded by expert observers. The coding results were positively assessed for an

interobserver agreement [22]. The average number of utterances for each adolescent was

approximately 278, 251, and 240 for EPI, PSI, and FCI, respectively. The ratio of the

adolescents’ to parents’ speech duration was 0.73, 0.71, and 0.67 for EPI, PSI, and FCI,

respectively. The average duration of the speech segments was around 2 to 3 s long, and the

sampling rate was 11 kHz.

IV. Methodology

The proposed framework in the modeling and classification of the depressed and control

adolescents’ speech is illustrated in Fig. 1.

For both the training and testing phases, detection of voiced frames using the linear

predictive (LP) technique described in [11] was implemented by first segmenting the

normalized speech signal into 25 ms with 50% overlap frames using a rectangular window.

From these voiced frames, acoustic features were extracted and normalized within each

subject. Statistical analyses were then carried out to discard any acoustic features that were

statistically nonsignificant in distinguishing the speech of depressed adolescents from that of

control adolescents. Finally, using two different machine-learning techniques of Gaussian

mixture model (GMM) and the support vector machine (SVM), the selected extracted

acoustic features were modeled into their respective classes (depressed and control class).

In the following Section IV-A–C, the extracted acoustic features, statistical analyses, and

modeling techniques are described.
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A. Acoustic Features and Feature Grouping

Similar to the procedure in [41], we also proposed the grouping of acoustic features into

categories and subcategories that are closely related to the human speech production model.

In our study, the acoustic features were grouped into five main feature categories that

represented TEO-based, cepstral (C), prosodic (P), spectral (S), and glottal (G) features.

Acoustic features grouped into these categories are closely related to the physiological and

perceptual components that characterize speech in the human speech production model. The

physiological components are related to the feature categories of TEO, prosodic (P), spectral

(S), and glottal (G). The TEO feature category is derived from the nonlinear speech

production model and measures the nonlinear airflow in the vocal tract, whereas, the feature

categories of prosodic (P), spectral (S), and glottal (G) are derived from the linear speech

production model of sound propagation along the vocal tract. The feature category of

cepstral (C) which is also derived from the linear speech production model, relates to the

perceptual aspect.

The acoustic features and their associated categories and subcategories are denoted in the

first and second columns in Table II, respectively. The acoustic features are briefly

discussed in the following sections.

1) TEO-based features—TEO-based features have shown good performances in stress

recognition [56]. In the emotional states of anger or stress, fast air flow causes vortices

located near the false vocal folds, which provide additional excitation signals other than

pitch [53]. To model this time-varying vortex flow, Teager [52] proposed a nonlinear energy

operator called the TEO, which computes an energy profile (also known as the TEO profile).

The TEO in a discrete form [26] is defined in (1), where ト[.] is the TEO and x(n) is the nth

speech sample point

(1)

.

Several TEO-based features have been proposed in the literature and we computed the TEO-

critical-band-based autocorrelation envelope (TEO-CB-Auto-Env) feature that is based on

the method discussed in [56]. Fig. 2(a) depicts the computation of the TEO-CB-Auto-Env

feature coefficients. In our implementation, 512-point Gabor bandpass filters for the 15 CBs

were used. We followed approximately the same frequency range for our 15 CBs as in [56].

Fig. 2(b) shows an example of the TEO profile waveform and the autocorrelation envelope

for an utterance calculated within the 9th critical band (CB-9).

2) Cepstral feature—The MFCC was considered [14] because it has been effectively

used in speech content characterization [50]. Optimization of the parameters in the MFCC

was carried out to maximize the depressed and control classification accuracy. Based on our

previous study [36], the optimized parameters selected were 30 triangular filters in the filter

bank to calculate 12 original coefficients in the MFCC.

3) Prosodic features

a) Fundamental frequency (F0) and log energy (LogE): A small-scaled test was

conducted on a subset of the data in which three approaches in the F0 extraction was

evaluated (i.e., autocorrelation, cepstrum, and average magnitude difference function) using

the Roger Jang’s audio toolbox [24]. All three approaches yielded comparable results and

the autocorrelation method was chosen for the full dataset. The values of F0 were

determined on a frame-by-frame basis by finding the maximum values of the autocorrelation
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function within 40 to 1000 Hz range. The LogE [14] of the speech time waveform was

calculated for each frame to determine the changes in speaking behavior in response to

factors relating to stress, intonation, and emotions.

b) Formants (FMTS) and formant bandwidths (FBWS): A 13th-order LP filter was

employed to calculate the formant frequencies. Only values of the first three formants

(FMT1–FMT3) and formant bandwidths (FBW1–FBW3) below its Nyquist frequency were

taken. The lower formants have been known to model spoken content [50].

c) Jitter and shimmer: Frequency perturbation also called jitter refers to the short-term

(cycle-to-cycle) fluctuations in pitch. It is obtained by measuring the fundamental frequency

(F0) of each cycle of vibration, subtracting it from the previous F0 values, and dividing it by

the average F0. Shimmer, on the other hand, is calculated in similar fashion; however, the

period-to-period variability of the signal peak-to-peak amplitude is calculated instead. In

clinical treatment, jitter and shimmer have been widely used to describe the pathological

characteristics of voice [42].

4) Spectral features

a) Spectral centroid: Spectral centroid (SC) indicates the center of a signal’s spectrum

power distribution. It is the calculated weighted mean of frequencies present in the signal,

with their magnitudes as weights

(2)

where X(n) represents the magnitude of frequency bin number n, f(n) represents the center

frequency bin, and M is the total number of frequency bins.

b) Spectral flux: Spectral flux (SF) is a measure of how quickly the power spectrum of a

signal is changing, calculated by comparing the power spectrum for one frame against the

previous frame.

c) Spectral entropy: Spectral entropy (SE) is the means of measuring the amount of

information based on Shannon’s information theory and it has been applied to emotion

recognition in speech [34].

d) Spectral roll-off: Spectral roll-off (SR) is the point, where the frequency that is below

some percentage (set as 80% for our experiments) of the power spectrum resides. The

equation for SR is as follows:

(3)

where n is the frequency bin index, M is the total number of frequency bins, X(n) is the

amplitude of the corresponding frequency bin, and K is the spectral roll-off number.

e) Power spectral density: The one-sided PSD was computed based on the Welch spectral

estimator method using a 4096-point fast Fourier transform with a 5-ms nonoverlapping

hamming window size. The total power spectral for frequency 0– 2000 Hz, its subbands

PSD1 (0–500 Hz), PSD2 (500–1000 Hz), PSD3 (1000–1500 Hz), PSD4 (1500–2000 Hz),
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and the ratio of power from each spectral subband to the total power were calculated. The

PSD have been effectively used to discriminate between speech of control and depressed

adults [18].

5) Glottal features

The glottal pulse and shape have been documented to play an important role in the analysis

of speech in clinical depression [41], [46]. For our study, the glottal flow extraction used the

TTK Aparat glottal inverse filtering toolbox [2]. The glottal inverse filtering method

implemented here was based on an iterative adaptive inverse filtering algorithm (IAIF) [3].

Instead of using a LP filter, a discrete all-pole modeling (DAP) was implemented to model

the vocal tract as it is less sensitive to the biasing of formants caused by nearby harmonic

peaks. Like for the LPC, the number of formants (or resonances) to model the vocal tract in

the DAP was set to 13 (Fs/1000 + 2). This was done to ensure that there was at least one

formant within every kilohertz band of the vocal tract transfer function. Once the glottal

flow was estimated, quantitative analysis of the glottal flow pulses was performed in the

time and frequency domains. It should be noted that glottal waveform extraction is still a

matter of study and accurate representations are still difficult to determine and verify. In this

study, the glottal timing (GLT) and the glottal frequency (GLF) were used to represent the

glottal flow parameters in the time and in the frequency domains, respectively.

The glottal flow can be divided into a few phases that are illustrated from the glottal flow

pulse in Fig. 3(b). This is shown by the mark boundaries from the dotted lines indicating the

GLT interval for the opening phase (OP), closing phase (CP), and closed phased (C) that

describes the glottal pulse shape. It has been suggested that the glottal OP can be subdivided

into two timing instances referred to as the primary opening (▴) and secondary opening (●)

[47]. The duration of the primary and secondary openings of OP is denoted by To1 and To2,

respectively. The duration of CP is denoted by Tc and the period of the glottal cycle is

denoted by T. Once these instances are acquired, several timing and frequency parameters

can be easily calculated. In GLT, the timing parameters used is the open quotients (OQ1 and

OQ2), approximation of the open quotient (OQa), quasi-open quotient (QOQ), speed

quotients (SQ1 and SQ2), closing quotient (CIQ), amplitude quotient (AQ), and normalized

amplitude quotient (NAQ). For the GLF, the frequency parameters used are the difference of

the first and second harmonics [labeled H1 and H2 in Fig. 3(d)] in decibels of the glottal

flow power spectrum (DH12), harmonic richness factor (HRF), and the parabolic spectral

parameter (PSP). Table I shows a brief summary of their parameters and an in-depth

description of them can be found in [2].

6) Delta (Δ) and Delta–delta (Δ-Δ) coefficients

The inclusion of the first- and second-order derivatives (delta and delta–delta), which can

capture the temporal information among neighboring frames are calculated as follows:

(4)

where dt is a delta coefficient at time t and it is computed in terms of the corresponding

static coefficients from ct–Θ to ct+Θ. The window size is set Θ = 9 to obtain both delta and

delta–delta coefficients. The same formula (4) is applied to the delta coefficients to obtain

the delta–delta coefficients. The delta and delta–delta were incorporated in all the acoustic

features.
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B. Statistical Analysis and Feature Selection

Table II presents the extracted acoustic features grouped into categories and subcategories

for both male and female subjects from each interaction. A total of 14 acoustic features

comprising of 186 feature coefficients, which included their delta and delta–delta

coefficients, were statistically examined for significance in characterizing speech of

depressed and control adolescents. This was done as a preliminary step to ensure that feature

coefficients that gave a statistically nonsignificant result were removed in the modeling of

depressed and control speech. Assumptions of parametric testing were examined for each

feature coefficient to check if they were normally distributed within each of the depressed

and control classes. The Kolmogorov–Smirnov (KS) test [17] indicated that the entire

feature coefficients were normally distributed (p > 0.05). In order to identify relationships

that might exist between the feature coefficients, a multivariate analysis of variance

(MANOVA) procedure was conducted on pairwise comparison of the depressed and control

classes. Instead of combining all the feature coefficients in MANOVA, which is considered

a suboptimal approach, unless there is a good theoretical basis for doing so [17], individual

subcategories representing the acoustic features along with their delta and delta–delta

coefficients were examined with MANOVA. The reason behind this approach was that

incorporation of delta and delta–delta coefficients in previous work [36], [37] has shown to

result in an increase in classification results, and therefore, correlations should exists

between the feature coefficients in each subcategorical feature in MANOVA. In MANOVA,

multivariate group tests were performed on each subcategorical feature using Wilks’s
lambda. Features in the subcategory that met a significance level of p < 0.05 were retained.

Otherwise, the feature was then followed up with a one-way analysis of variance (ANOVA)

on each feature coefficient. Each feature coefficient that also met a significance level of p <

0.05 for ANOVA were kept in that subcategory. Otherwise, if all the feature coefficients in

the subcategorical feature were still nonsignificant, the subcategorical feature was discarded.

Selected acoustic features in the subcategories and the number of coefficients are listed in

Table II The plus sign indicates that the subcategorical feature produced a statistically

significant result and the minus sign indicates that the result was statistically nonsignificant.

We found that all the features (in the subcategory) were statistically different between

depressed and control speech of female adolescents in all three interactions. However, for

speech in the male adolescents, a few features were not significant, as indicated by a minus

sign in Table II.

C. Modeling and Classification

1. Gaussian mixture model: GMM has been effectively used in speech information

modeling tasks, such as speaker recognition and spoken language identification [7].

We used the HTK toolbox [55] for GMM-based depressed and control content

modeling. In the implementation, expectation-maximization (EM) algorithm was

used for estimating parameters of mean, covariance, and mixture weight of each

Gaussian component in the GMMs. For computational efficiency, diagonal

covariance matrices were used in the Gaussian component instead of full

covariance.

2. Optimized parallel SVM: In recent years, SVM has also been widely used in speech

content analysis [8]. To increase the computational efficiency when working with

large training vectors, we followed a similar approach to that described in [12],

where a single SVM was replaced by a parallel configuration of SVMs. The

training of each SVM involves tuning the parameter of the kernel γ and the penalty

error C [10]. The aim is to achieve the best (γ, C) pair in obtaining the optimal

classification accuracy in predicting unknown data from the testing set. The

Low et al. Page 8

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2013 May 13.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



optimized parallel SVM (OPSVM) was implemented using the LIBSVM toolbox

[10]. In our implementation, we first divided the training data of each class into

random subsets. Each subset was then scaled to be [0, 1]. We then empirically

modeled each training data subset using a SVM with radial-based function in the

kernel. Searching for the most appropriate (γ, C) pair was performed through a grid

search using fivefold cross validation on the training dataset.

In the classification, a hyperbolic tangent of a weighted sum of outputs from each individual

SVM was taken. Instead of the neural network approach proposed in [12], a global

optimization algorithm based on simulated annealing [39] was used to determine the weight

associated with each SVM.

V. Experiments and Results

Experiments with the framework outlined in Section IV were carried out using the database

described in Section III. Data from approximately 50% of the adolescents, including 33

depressed (23 females and 10 males) and 34 control subjects (21 females and 13 males)

were used for testing, and the remaining data were used to train the depressed and control

models. A series of experiments are briefly explained in the following (EXP1 to EXP 6).

The results of these experiments are discussed in the following sections. The main objective

was to correctly classify the test adolescents (alternatively called subjects) as either

depressed or control. The subject-based correct classification accuracy (SBCCA) was

calculated as described in the following equation:

(5)

To determine the number of correctly classified subjects in (5), the utterance-based correct

classification accuracy (UBCCA) was first calculated using the following formula:

(6)

If UBCCA for a given subject was greater than 50% for the depressed class, then the subject

was classified as depressed. Since, the predicted classes of the test subjects were known; the

total number of correctly classified subjects could therefore be calculated and used in (5) to

determine the SBCCA values. In addition, the correct classification of depressed and control

subjects were measured in terms of sensitivity, specificity, and the overall accuracy defined

as follows: True positive (TP) = Number of depressed subjects classified as depressed False

negative (FN) = Number of depressed subjects classified as control True negative (TN) =

Number of control subjects classified as control False positive (FP) = Number of control

subjects classified as depressed
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(7)

(8)

.

In general, the objective was to achieve the highest overall classification accuracy by

obtaining an optimal sensitivity to specificity ratio (ideally > 1), and at the same time,

keeping the ratio between sensitivity and specificity at a reasonable margin (to avoid class

skews). However, in some cases, it was not possible to achieve reasonably high accuracy

without making the sensitivity to specificity ratio <1.

1. EXP1: Using two feature categories, i.e., TEO and cepstral (C), the effectiveness of

gender-independent (GIM) and gender-dependent modeling (GDM) techniques for

depressed and control adolescent classification was first examined.

2. EXP2: Next, testing on different lengths of utterances from the testing set was

examined.

3. EXP3: Using the best gender modeling strategy and optimal test utterance length

found in EXP1 and EXP2, the effectiveness of other feature categories of prosodic

(P), spectral (S), glottal (G), and their category combinations for depressed and

control adolescent classification was investigated.

4. EXP4: From our database described in Section III, the study of feature categories

proposed in recent published work by others was carried out.

5. EXP5: Next, the top feature category out of the TEO and C categories that yielded

the highest classification accuracy was selected based on their performances in

EXP1 and combined with the other feature categories (P, S, and G) as described in

EXP3.

6. EXP6: Due to high performance in modeling speech contents, GMM was employed

for modeling speech of depressed and control adolescents in EXP1–EXP5. In the

final experiment, the best feature category combination obtained in EXP5 was

compared with the SVM classifier because of the advantageous properties of its

generalization capabilities for solving two-class problems.

All classification results were cross validated based on four turns using different training and

testing sets.

A. Effectiveness of GIM and GDM (EXP1)

As noted in Section III, although participants were matched on a range of demographic

variables, we only considered gender in our analyses because the development of gender
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differences in depressive symptoms has been documented to occur during early adolescence

[45]. Accordingly, the examination of how gender differences might affect classification

accuracies in clinical depression was analyzed. For the purpose of this experiment, two

feature categories (see Table II) of TEO and cepstral (C) were selected as a starting point for

the analysis. These two types of features have been previously reported as effective

discriminators of stress and emotion in speech [56] and also in speaker and language

detection [50]. Since the depression is often characterized as an affect (emotion) regulation

[51] disorder, it was expected that the cepstral and TEO-based features could also provide

good results in the depression detection in speech. The GDM, depressed, and control class

models were generated separately from the feature vectors of male and female subjects using

the GMM-based training procedure. The GIM depressed and control class models on the

other hand, were trained by combining together feature vectors from both male and female

subjects. Similar testing length as in [46] of 0.5 min for each utterance was achieved by

concatenating only the voiced sections from the utterances belonging to each adolescent.

Depressed and control classification using GDMs were carried out assuming that the gender

of the test adolescent is known.

Fig. 4 shows the overall classification performances based on SBCCAs for both GDMs and

GIMs. In all the interactions, as can be observed in Fig. 4, GDMs outperformed the GIMs. It

was also observed in Fig. 4 that the TEO-based features consistently outperformed the

cepstral and cepstral + TEO combination in both GDMs and GIMs. Compared to TEO with

GIMs, TEO with GDMs improved the SBCCA by 3.8%, 9.3%, and 2.9% for EPI, PSI, and

FCI, respectively.

Table III shows the sensitivity and specificity of the SBCCA with feature category TEO for

GIM and GDM. From the sensitivity results in the table, it can be observed that GDMs

performed better than GIMs in detecting depressed subjects when both males and females

are modeled separately in all interaction contexts. GDMs for the males resulted in an

accuracy improvement in sensitivity of 1.8%, 30.2%, and 8.8% for EPI, PSI, and FCI,

respectively, compared to GIMs. For the females, GDMs also resulted in an accuracy

improvement in sensitivity of 2.4%, 33.5%, and 22.2% for EPI, PSI, and FCI, respectively,

compared to GIMs.

B. Optimization of the Test Utterance Length (EXP2)

In previous research, test utterances of 20 s [18] and 0.5 min [46] in length have been used

for depressed and control subject classification. To determine the optimal duration of speech

samples to be analyzed, we carried out EXP2 to examine SBCCA with different duration

(i.e., 0.5, 1, 2, and 3 min) of concatenated voiced utterances. In these experiments, we used

the feature category of TEO with the GDMs because this setting outperformed the others in

previous experiments in EXP1. Experimental results are shown in Fig. 5. With reference to

the accuracies using 1 min utterances, we noticed around 7.1%, 5.1%, and 7.0% average

SBCCA drops (of all interactions) for the male subjects and 2.6%, 5.6%, and 6.6% SBCCA

drops for the female subjects using 0.5, 2, and 3 min utterance durations, respectively. It can

be observed in Fig. 5 that the SBCCA measure was consistently achieving the highest value

for utterance length of 1 min; this length of the test utterances was, therefore, chosen as a

length to be used in our subsequent experiments.

C. Effectiveness of Prosodic, Spectral, and Glottal Feature Categories, and Their
Combinations (EXP3)

Further analyses were conducted on the other different feature categories representing

prosodic (P), spectral (S), and glottal (G) (see Table II) using the GDMs. Table IV presents

overall accuracy results based on SBCCA for feature categories P, S, G, and their different
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combinations for male and female subjects in all the interactions (EPI, PSI, and FCI). From

the table, a few key findings can be observed.

First, for the males, the influence of G on individual categories P and S (i.e., P + G and S +

G) improved classification accuracy compared to P and S alone. Compared to P alone, P + G

increased SBCCA 0.8%, 15.1%, and 6% in the EPI, PSI, and FCI, respectively. Also for

males, compared to S alone, S + G increased accuracy by 1.4%, 2.6%, and 6.7% for the EPI,

PSI, and FCI, respectively.

Second, for the females, combining G with other feature categories also improved

classification rates in the EPI and FCI. In the EPI and FCI for females, P + G showed a 2.6%

and 6.3% improvement over P alone. In the EPI, PSI, and FCI, S + G showed a 6.7%, 8.6%,

and 0.6% improvement over S alone. However, in PSI, a slight decrease of 1.8% was shown

for P + G when compared to P alone.

Third, for both males and females, combining G with P + S also improved the classification

accuracy for all the interactions. In the case for males, P + S + G improved accuracy over P

+ S by 4.6%, 8.9%, and 11.2% for EPI, PSI, and FCI, respectively. For the females, P + S +

G also improved accuracy over P + S by 2.8%, 7%, and 4.4% for EPI, PSI, and FCI,

respectively.

Fourth, for the EPI and FCI, P, S, G, and their different combinations were better

discriminators in the female than the male samples. A similar trend emerged for the PSI,

with the exception that G and P + G for females showed a decreased in SBCCA rates over

the males of 11.8% and 0.4%, respectively.

Based on the aforementioned observations, it is more likely that feature category G and its

combination with P and S can improve SBCCA for both male and female subjects.

D. Study of Feature Category Combinations Proposed in [41] (EXP4)

The classification performances of the proposed feature categories of prosodic (Po), vocal

tract (Vo), and glottal (Go) defined in [41] was examined with our database. This

examination was aimed at determining if we could establish any similar trends or

performances in defining our own feature categories and subcategories with those proposed

in [41]. Results are presented in Table V. Note that although the same groupings of feature

categories as [41] were implemented, the subcategorical features were slightly different.

Also, in [41], the subcategorical features of formants and formant bandwidths were

partitioned to have another feature category that represented measurements of the vocal tract

shape and length (denoted Vo in Table V). However, for our grouping (see Table II), the

prosodic feature category contained the subcategorical feature of formants and formant

bandwidths. Therefore, it is not surprising that the results for Po + Vo and Po + Vo + Go in

Table V are the same as P and P + G in Table IV.

Similar to results based on the combinations of glottal features, an improvement in

classification rates is seen for Po + Go compared to Po alone for both male and female

adolescents (see Table V). Comparing Table IV and Table V, it is observed that using our

entire feature category combinations of P + S + G (see Table IV) yielded better

classification accuracies when compared to the grouping of Po + Vo + Go (see Table V) for

both male and female adolescents.

For the males, P + S + G gave a 5.9%, 1.2%, and 4.2% classification accuracy increase in

the EPI, PSI, and FCI, respectively, as compared to Po + Vo + Go. For the females, P + S +
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G gave a 3.2%, 9.7%, and 1.9% classification accuracy increase in EPI, PSI, and FCI,

respectively, as compared to Po + Vo + Go.

E. Performance Analysis by Combining TEO Category With Prosodic, Spectral, and Glottal
Categories (EXP5)

In EXP1, the TEO-based features showed the best overall performance, therefore, in the

next stage of our experiments, the effect of combining the TEO-based features with the P, S,

and G features was investigated. Table VI summarizes the influences in percentage increase

or decrease in accuracies when the feature category of TEO was added to P, S, and G,

compared with having P, S, and G and their different combinations alone, as shown in Table

IV. For the males, when TEO feature category was combined, a significant accuracy

increment was observed in all the interactions. To determine if these increments were

statistically significant, a McNemar’s test was conducted on paired feature categories (i.e., P

and P + TEO) between the fourfold cross-validation results of each category. As highlighted

in bold in Table VI, statistical significance in accuracy increments (p < 0.05) were obtained

for all the males (highlighted in bold) when TEO was added to the other feature categories.

Interestingly, in most cases, the TEO feature category itself, showed higher classification

accuracy for both male and female adolescents throughout all the interactions. This is shown

in Table VII, where the classification results are presented in terms of sensitivity, specificity,

and overall accuracy for the TEO feature category.

F. Comparison With SVM (EXP6)

The results that have been discussed so far were based on the GMM. To examine whether

the classification accuracies were biased with respect to GMM, the best results obtained

with GMM, i.e., TEO with GMM were compared with the results of TEO with SVM.

SVM was implemented in the form of OPSVM discussed in Section IV-C2. The number of

subsets in OPSVM to be trained was varied from 10 to 30 with a step size of 10. The

number of subsets (or SVMs) in OPSVM that gave the highest classification was chosen in

the model selection. The optimal number of subsets (or SVMs) in OPSVM, which

maximized the SBCCA with TEO was 20. Table VIII shows the results of equal weights and

optimal weights calculated from the global optimization algorithm in the OPSVM. In the

male sample, compared to using equal weights, the optimal weights in OPSVM increased

the SBCCA by approximately 5.4%, 10.3%, and 3.9% in the EPI, PSI, and FCI,

respectively. In the female sample, SBCCA increments in using optimal weights were

approximately 10.2%, 6.6%, and 8.9% in the EPI, PSI, and FCI, respectively. Although

OPSVM yielded very similar results as compared with the GMM modeling technique, the

computational time required in training the models of our dataset was less efficient

compared to the GMM.

VI. Discussion and Conclusion

Speech is known to contain important information regarding a person’s psychological state

[43]. Thus, a speech-based depression detection system could serve as a screening tool to

assist mental health professionals in identifying clinically depressed persons. As this system

is intended as the first stage of a diagnostic process and not a definitive identifier (i.e.,

detection via this type of system would normally be followed by full clinical evaluation of

these screened as potentially depressed), the objective was to identify more depressed

subjects (higher sensitivity) rather than to screen out negative cases (higher specificity).

Using speech recorded during interactions between adolescents and their parents, this paper

reports an investigation of five acoustic feature categories (i.e., the TEO, cepstral (C),
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prosodic (P), spectral (S), and glottal (G) features) for detecting clinical depression in

adolescents. Experiments were performed on speech recorded during three interaction tasks

that were designed to create different types of interactional contexts (see Section III). The

proposed acoustic feature categories were formed based on the physiological and perceptual

similarities of the speech production model. The TEO and C feature categories were selected

as our starting point, since they have been effectively employed in speaker, language, and

emotion content modeling [50], [56].

Previous psychological studies reported significant differences in depressive symptoms

between adolescent males and females [45]. Therefore, the influence of gender differences

in depression detection was first investigated using feature categories of TEO and C. (see

EXP1 in Section V-A). Experimental results in Fig. 4 indicated higher subject-based

detection rate (average of 5.3%) of depressed subjects with GDM than with GIM. This is

consistent with those previous psychological studies that have suggested significant

variations in depressive symptoms based on the gender [45].

In order to build an accurate screening system for clinically depressed subjects, it is

important to study how the test utterance length affects the overall performances of the

system. Our experiments based on the TEO feature category (EXP2 in Section V-B)

indicated that utterances with 1 min of speech content improved the subject-based

classification accuracy.

Experiments with feature categories P, S, and G (EXP3, Section V-C) yielded accuracy

improvements when G was combined with P, S, or P + S for the male subjects in all the

interactions (see Table IV). For the female subjects, this trend was similar except for the P +

G combination in the PSI, whereby there was a 1.8% average accuracy drop compared to P

alone.

In searching for a relatively independent reference point that would allow us to verify these

findings, feature categories similar to recent published research [41] were examined in our

database (EXP 4 of Section V-D). Consistent with past research [41], implementation of

both our proposed feature categories and feature categories from [41] demonstrated that the

critical role of the glottal feature category, which when added to the other stand-alone

feature categories, increased the overall discrimination between speech of depressed and

control classes. However, in EXP3 for females, the increase in accuracy for P + G was not

shown during the PSI. These findings could be due to the fact that the PSI is the interaction

that is most likely to elicit conflictual behavior, which in turn could contribute to an increase

in pitch during angry and loud speech in these stressful scenarios. The rapid motion of the

glottis caused by the increased in pitch does not always yield complete closure. Therefore,

increased pitch could yield difficulties in obtaining reliable information about the changes in

the glottal waveform. These difficulties are especially pronounced for females as they tend

to exhibit higher pitch [40].

Comparing Table IV and Table V, it can be observed that our final combinations of P + S +

G gave higher classification results compared to the combinations of proposed feature

categories of Po + Vo + Go in [41]. One possible reason for the increase is that in the spectral

(S) feature category, the acoustic subcategorical feature of PSD was included and it has been

noted in past research that PSD provides a superior discrimination between the speech of

control and depressed adults [18].

In EXP5 of Section V-E, it was found that by adding the TEO feature category to different

combinations of the P, S, and G features listed in Table VI, the classification accuracy

increased in all cases for the males and in some cases for the females. Most interestingly, the

TEO-based features, when used on their own, clearly outperformed all other features and
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their combinations. This pattern held for all three interactions across both genders. In Table

VII, it can be seen for the males that the TEO feature category yielded correct classification

scores of 81.36%, 82.96%, and 86.64%, respectively. For the females, the TEO feature

category yielded correct classification scores of 78.87%, 75.70%, and 72.01%, respectively.

Looking across the different interactions in Table VII, it can also be observed that although

the overall accuracy and the specificity measures did not provide consistent results, there is a

clear pattern within the sensitivity measure, which shows that the PSI provides consistently

higher results for both male and female subjects. This again can be attributed to the fact that

the PSI evokes situations most likely to elicit conflicting behavior, and therefore, produces

more pronounced changes in speech acoustics in identifying depression.

A. Why do TEO and Glottal Features Significantly Improve the Detection Accuracies of
Clinically Depressed Subjects?

It was observed that the glottal features boosted the accuracy of discrimination between

speech of depressed and control adolescents. TEO-based features also appear to be powerful

discriminants of depression in speech. Both observations maybe closely related to the

physical impact of depression on the speech production processes through the vocal folds

and tract (tube extending from vocal folds to the lips). In order to explore this further, it is

helpful to briefly discuss the main processes in speech production.

Assuming that speech is an amplitude and frequency (AM–FM) modulated signal, the TEO

parameter represents a measure of instantaneous energy calculated not only as a function of

signal amplitude but frequency as well [38], [56]. This indicates that the TEO values contain

information about spectral distribution of the signal energy and show sensitivity to the

presence of additional harmonics and cross harmonics in the speech signal [56].

The experimental studies of the vocal flow formation [6], [27]–[29], [52], on the other hand,

provide strong evidence that the glottal air flow has a nonlinear character with a laminar

flow component as well as additional turbulent components called vortices. In [27]–[29] two

types of vortices were identified; each occurring in a specific part of the vibration cycle, and

at a certain location relative to the glottis. During the early opening phase of the vocal folds,

when the glottis is convergent, supraglottal vortices occur above the vocal folds. During the

latter part of the vocal fold closing, when the glottis is divergent, intraglottal vortices are

formed between the vocal folds. The intraglottal vortices can alter the vibration of vocal

folds, whereas, the supraglottal vortices provide additional sound sources when hitting hard

surfaces of the vocal tract or interacting with each other. It was demonstrated in [28] that the

level of symmetry in the vocal fold vibration has a strong effect on the glottal energy

distribution across the frequency spectrum. It has been postulated that these additional sound

sources [25], [56] generate extra harmonics and cross harmonics in speech.

As indicated in [56], the number of supraglottal vortices is likely to be related to the level of

emotional stress. Moreover, the tension of laryngeal muscles responsible for the stiffness of

the vocal folds (and hence, the vortices) is controlled by the sympathetic nervous system.

Hence, it is likely that different patterns of the glottal wave formation reflect different

emotional or mental states of a speaker, and therefore, contain important cues for the

recognition of depression in speech.

Fig. 6 shows the average normalized area of the autocorrelation envelope for all the speech

frames in the TEO feature category in both the depressed (marked with “X”) and control

class (marked with “O”). The normalized area measurement was plotted for all the CBs in

the TEO feature category. The normalized area details the strengths of the produced

additional harmonics within the CB, which further indicates the turbulent air flow occurring

during the phonation process. This area parameter in TEO has also been documented to
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provide useful assessment in vocal fold pathology [19]. It is evident from Fig. 6 that the

average normalized areas of the CBs for the speeches of depressed subjects are higher than

the speeches of control subjects. This pattern indicates that higher additional harmonics are

generated in the depressed speech than in the control speech. Therefore, the result suggests

that more vortices appear in the air flow during the phonation process for the depressed

subjects than for the control subjects. How the glottal feature, TEO-based feature, and

dynamics of the air flow are linked to the regulatory psychophysiological processes

occurring during depression remains to be investigated. Though not conclusive, recent

studies [15], [23] have suggested that the speech production systems show physical

manifestations of the psychological difficulties of depressed persons (vocal folds and vocal

tract). In such cases, patterns (laminar and vortices) of air flow in the speech production

system of depressed subjects differ from the air flow of control subjects. For example,

clinical depression may have a significant effect on vocal fold dysfunction. This could

explain why the glottal features are effective in differentiating depressed from control

speech. The TEO-based feature detects the presence of the extra harmonics and cross

harmonics generated by the vortices, making it an effective feature for discrimination

between depressed and control speeches.

The plots of the area under the normalized autocorrelation envelope in Fig. 6 provided

clearer distinction between the depressed and control classes for the male subjects than for

the female subjects. This observation indicates that there is a higher variation in the number

of additional harmonics between the depressed and control male subjects than between the

depressed and control female subjects. Therefore, it appears that the effects of depression on

the voice characteristics of male subjects are more profound than the effects on the voice

characteristics of female subjects.

These observations are consistent with the results in Table VI showing that the addition of

TEO features to the other types of features provided statistically significant (McNemar’s

test, p < 0.05) improvement of the classification accuracy only in the case of male subjects.

The observed small increase of the classification accuracy for the female subjects was found

to be statistically insignificant. It is possible that these differences are related to the fact that

there are clear differences between types of depression most frequently exhibited in males

and females, however, further investigations are needed.

In summary, our study showed that clinical depression can be detected in adolescents using

naturalistic speech samples. The classification accuracy strongly depended on the gender

and on the type of acoustic features. The nonlinear approach of the TEO-based feature

category provided the highest correlation with depression in the speech of both male and

female adolescents. However, clinical depression detection still remains a challenging task

due to the large number of potential genetic, psychological, social, cultural, and

environmental factors that contribute to the development of this condition [51]. In addition,

a potential limitation of this study is that the speech may contain some features that are

specific to the family context, or that are primarily elicited by parental behavior. Therefore,

in future studies, we plan to verify our findings on a different database and also investigate

different nonlinear approaches for modeling depressive speech characteristics in order to

improve discrimination between depressed and control subjects.
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Fig. 1.

Block diagram in modeling speech of depressed and control adolescents.
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Fig 2.

TEO-CB-Auto-Env feature (a) Feature extraction implementation (b) Example of the TEO

profile and the autocorrelation envelope for an utterance within the CB-9.
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Fig 3.

Glottal inverse filtering (a) Speech frame of 25 ms (b) Glottal flow estimate (c) Glottal flow

derivative (d) Glottal flow spectrum.

Low et al. Page 22

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2013 May 13.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig 4.

SBCCA for the TEO and cepstral features using GIM and GDM.
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Fig 5.

Classification accuracies using different concatenated test utterances length for TEO feature

category.
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Fig 6.

Average frames (25 ms) normalized area under the autocorrelation envelope for the TEO

feature category for each of the 15 CBs in all adolescents within the depressed and control

classes.
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TABLE I

Glottal Features—Timing Parameters (GLT) and Frequency Parameters (GLF)

Feature
parameter

Symbo Description
Calculation

method

GLT

1 OQ1
The ratio of the primary opening phase to the length of
glottal cycle duration.

To1
+ Tc

T

2 OQ2
The ratio of the seconday opening phase to the length of
glottal cycle duration.

To2
+ Tc

T

3 OQa
Approximates the opening to OQ for an ideal
LF pulse.

Aac(
π

2Ad max
+

1

Ad min
) f o

4 QOQ
The time of the open phase duration that is 50% above the
peak to peak amplitude of the glottal flow.

Tqo(50)
T

5 SQ1
The ratio of timing duration of the primary opening phase to
the closing phase.

To1

Tc

6 SQ2
The ratio of timing duration of the secondary opening phase
to the closing phase.

To2

Tc

7 AQ
The ratio of timing duration of the closing phase to the
length of the glottal cycle.

Tc
T

8 CIQ
The ratio of the peak-to-peak amplitude of the glottal flow
to the minimum peak of the pulse derivative.

Aac
Ad min

9 NAQ
Normalized AQ by dividing it by the length of the glottal
cycle duration.

AQ
T

GLF

10 PSP
Fits a second-order polynomial to the glottal flow spectrum
on a logarithmic scale computed over a single glottal cycle.

Refer to [4]

11 DH12 Difference of the first and second harmonics in decibels. HI-H2

12 HRF
The ratio of the sum of harmonics magnitude above the first
harmonic (HI) to the magnitude of the first harmonic.

Σ
k>2

Hk
H

1
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TABLE II

MANOVA and ANOVA Analysis on the Subcategory Features for Both Male and Female Adolescents

Category Sub-category featuresa
No. of
feature
coeff.

Significance (male)

Significance (female) – In all interactions of EPI, PSI and
FCI, all the feature sub-categories are used; i.e. 186
coefficients from all the features for each interaction

EPI PSI FCI

TEO TEO-CB-Auto-Env 45 + + +

Cepstral (C) MFCC 36 + + +

Prosodies
(P)

F0 3 − + +

LogE 3 + + +

FMTS & FBWS 18 + + +

Jitter 3 − + −

Shimmer 3 + + +

Spectral (S)

Centroid 3 + − −

Flux 3 + + +

Entropy 3 + + +

Roll-off 3 + + +

PSD 27 + + +

Glottal (G)
GLT 27 + + +

GLF 9 + + +

Total 186 180 183 180

a
All features include their delta (Δ) and delta-delta (Δ-Δ)
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TABLE III

TEO Category Classification Performance Using SBCCA With 0.5 min Test Utterances on GIM and GDM—

Sensitivity and Specificity Results

Training & Testing feature: TEO

Modeling Strategy
EPI PSI FCI

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

GIM (Male & Female) 74.59 69.52 51.17 81.43 53.42 82.26

GDM
Male 76.39 82.97 81.39 71.57 62.22 84.89

Female 76.95 75.00 84.71 64.77 75.65 60.23
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TABLE IV

Classification Performance of Prosodic, Spectral, and Glottal Feature Categories Using SBCCA With 1 min

Test Utterances

Training/Testing Features

Overall Accuracy %

EPI PSI FCI

MALE FEMALE MALE FEMALE MALE FEMALE

P 59.83 66.60 50.87 67.33 58.87 62.28

S 61.26 64.96 51.64 58.08 51.07 69.38

G 59.59 71.91 74.56 62.77 66.03 73.46

P + s 61.95 69.61 58.31 68.22 57.91 65.99

P + G 60.65 69.19 65.96 65.56 64.90 68.55

s + G 62.65 71.67 54.21 66.69 57.77 70.01

P + s + G 66.50 72.40 67.18 75.25 69.10 70.41
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TABLE V

Classification Performance of Feature Categories Proposed in [41] Using SBCCA With 1 min Test Utterances

Training/Testing Features

Overall Accuracy %

EPI PSI FCI

MALE FEMALE MALE FEMALE MALE FEMALE

Po 57.44 68.79 58.02 61.70 61.61 64.71

Po + Vo 59.83 66.60 50.87 67.33 58.87 62.28

Po + Go 66.64 76.54 64.68 64.76 65.25 66.26

Po + Vo + Go 60.65 69.19 65.96 65.56 64.90 68.55
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TABLE VI

Influence of TEO Category in Percentage Accuracy Improvement and Their Statistical Significance

(Compared to Table IV) When Added to Prosodic, Spectral, and Glottal Categories

Training/Testing Features

Overall Accuracy increase (+) / decrease (−)

EPI PSI FCI

MALE FEMALE MALE FEMALE MALE FEMALE

P + TEO +21.60% +2.43% +31.35% −0.92% +25.13% +4.61%

S + TEO +17.32% +0.82% +27.83% +4.30% +29.29% −5.08%

G + TEO +22.41% +7.07% +6.80% +4.73% +13.37% −5.90%

P + S + TEO +15.67% +1.19% +11.35% −6.34% +19.17% −0.79%

P + G + TEO +19.00% −0.90% +17.68% +7.14% +15.75% +0.62%

S + G + TEO +16.93% −0.30% +24.83% +2.65% +19.99% −2.38%

P + S + G + TEO +13.75% −2.01% +14.47% −0.38% +10.59% −0.76%

*
Accuracies highlighted in bold indicate the McNemar’s test results for the statistically significant accuracy increments (p<0.05).
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TABLE VII

TEO Category Classification Performance Using SBCCA With 1 min Test Utterances—Sensitivity,

Specificity, and Overall Accuracy Results

Training/ Testing Features: TEO

Event Planning Interaction (EPI)

Male Female

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

81.67 81.04 81.36 80.64 77.27 78.87

Problem Solving Interaction (PSI)

Male Female

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

86.94 78.98 82.96 81.38 70.02 75.70

Family Consensus Interaction (FCI)

Male Female

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

80.83 92.45 86.64 72.08 71.94 72.01
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TABLE VIII

OPSVM Classification Results for TEO Feature Category BASED ON SBCCA

Event Planning Interaction (EPI)

SVM
weights

Male Female

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Equal 100 46.15 73.08 58.33 81.82 70.08

Optimal 83.50 73.36 78.43 78.75 81.82 80.29

Problem Solving Interaction (PSI)

SVM weights
Male Female

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Equal 93.88 30.77 62.33 54.17 81.82 68

Optimal 75.10 70.24 72.67 58.33 90.91 74.62

Family Consensus Interaction (FCI)

SVM weights
Male Female

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Equal 77.78 84.62 81.2 70.83 68.18 69.51

Optimal 77.78 92.31 85.05 75 81.82 78.41
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