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34
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We report the first detection of gravitational lensing due to galaxy clusters using only the polarization of

the cosmic microwave background (CMB). The lensing signal is obtained using a new estimator that

extracts the lensing dipole signature from stacked images formed by rotating the cluster-centered Stokes
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QU map cutouts along the direction of the locally measured background CMB polarization gradient. Using

data from the SPTpol 500 deg2 survey at the locations of roughly 18 000 clusters with richness λ ≥ 10 from

the Dark Energy Survey (DES) Year-3 full galaxy cluster catalog, we detect lensing at 4.8σ. The mean

stacked mass of the selected sample is found to be ð1.43� 0.40Þ × 1014M⊙ which is in good agreement

with optical weak lensing based estimates using DES data and CMB-lensing based estimates using SPTpol

temperature data. This measurement is a key first step for cluster cosmology with future low-noise CMB

surveys, like CMB-S4, for which CMB polarization will be the primary channel for cluster lensing

measurements.

DOI: 10.1103/PhysRevLett.123.181301

Introduction.—Galaxy clusters are the most massive
gravitationally bound structures in the Universe.
Measuring their abundance as a function of mass and
redshift can provide tight constraints on the cosmological
parameters that influence the geometry and growth of
structures in the Universe (see for a review [1]) that are
complementary to baryon acoustic oscillations (BAO) or
cosmic microwave background (CMB) datasets. The inde-
pendent measurements of cluster abundance, BAO, and
CMB, which have different parameter degeneracies, can be
combined to obtain even stronger constraints [2–12].
However, the cluster abundance measurements rely on
precise mass measurements, which are currently limited
by uncertainties in the conversion of the survey observable
to cluster mass [13]. Upcoming large surveys are forecasted
to detect tens of thousands of galaxy clusters, an order of
magnitude more than current surveys [14–16]. Of these,
CMB surveys, in which galaxy clusters are observed via
redshift-independent Sunyaev-Zel’dovich (SZ) effect, will
return ≳10 000 clusters above z ≥ 1 [16]. Given such an
enormous increase in the sample size compared to the
current surveys, it is crucial to develop robust methods to
measure cluster masses accurately.
In contrast to other cluster observables (optical richness,

SZ flux, and x-ray flux), gravitational lensing of galaxies or
the CMB offers an unbiased mass measurement since
lensing exactly traces the underlying matter distribution.
Weak lensing measurements of galaxies have high signal-
to-noise ratio (S=N) at low redshifts, but the S=N falls
steeply at high redshifts with the number of distant lensed
background galaxies observed with sufficiently high S=N
to facilitate lensing.
By contrast, since the CMB originates behind all of the

clusters, the lensing of the CMB by clusters is a highly
promising tool for measuringmasses of clusters above z ≥ 1

[17]. The CMB-cluster signal can be observed with both
temperature and polarization anisotropies of the CMB. As
the amplitude of the lensing signal is proportional to the local
CMB gradient, the lensing of the brighter CMB temperature
anisotropies yields a higher S=N compared to polarization.
A number of experiments have now detected the CMB-
cluster lensing signal in temperature [9,18–23], yielding
mass constraints at the 10% level [20]. However, CMB

temperature data are susceptible to foregrounds that set an
effective noise floor for future measurements. CMB polari-
zation, on the other hand, is robust to foregrounds as
contaminating signals from the galaxy cluster itself and
other foregrounds are much lower in polarization than
temperature (see Fig. 2 of [24]). As a result, polarized
CMB-cluster lensing will be crucial to the cluster mass
constraints from next generation low-noise surveys [24].
Several polarized CMB-cluster lensing estimators have

been proposed [17,25,26], however none have yet been
demonstrated on data. In this Letter we detect, for the first
time, the CMB-cluster lensing signal from polarization data
alone. We develop a new estimator that extracts the lensing
dipole signature from the CMB maps by rotating the
cluster-centered cutouts along the direction of the local
background CMB polarization gradient. The method is
easy to implement and computationally much less expen-
sive compared to the traditional maximum likelihood
estimator [17,19,24,27], which models the lensing signal
using a large suite of simulations. We apply this estimator

to the SPTpol 500 deg2 polarization StokesQU maps at the
location of clusters from the Dark Energy Survey (DES)
Year-3 catalog. We reject the null hypothesis of no lensing
at 4.8σ in the combinedQU maps. This result demonstrates
the viability of achieving subpercent level mass constraints
[24] from next-generation CMB surveys like CMB-S4 [16].
Throughout this work, we use the Planck 2015 best-fit

ΛCDM cosmology [28] with h ¼ 0.67, and assume the
absence of primordial B modes. The lensed CMB power
spectra were obtained using CAMB [29]. All the halo
quantities are defined with respect to a sphere within which
the average mass density is 200 times the mean density of
the Universe at the halo redshift.
Dataset I: The SPTpol 500 deg2 survey.—We use two

datasets in this work. The first is the 150 GHz Stokes QU

polarization maps of a 500 deg2 region (right ascention ¼
22 h to 2 h; declination ¼ −65 to −50°) from the SPTpol
survey. The South Pole Telescope (SPT) is a 10-m telescope
located at the Amundsen-Scott South Pole station [30,31]
and SPTpol was the second camera on the SPT. It has
1176 polarization-sensitive transition-edge-sensor bolome-
ters [32] and roughly a 1:02 FWHM beam at 150 GHz.
The white noise level of the polarization maps is
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ΔP ∼ 7 μKarcmin. The maps used in this analysis were
made in the Sanson-Flamsteed flat-sky projection with a
pixel resolution of 10. From these Stokes QU maps,
we remove an estimate of the temperature-to-polarization
leakage (T → P) as X ¼ X − ϵXT where X ∈ ½Q;U�,
ϵQ ¼ 1.65%, and ϵU ¼ 0.71%. Unaccounted for, T → P

would introduce temperature signal from the galaxy clusters,
such as the SZ effects [33,34] or emission from radio
galaxies and dusty galaxies, into the polarization maps.
More details about the map making procedure can be found
in Henning et al. [35].
Dataset II: DES cluster catalog.—The second data

product used in the analysis is a sample of optically
selected clusters from the DES, which is an optical to
near-infrared survey from the Atacama region in northern
Chile. In this work, we use a cluster catalog selected by the

redMaPPer (RM) algorithm [36] using DES Year-3 observa-

tions of ∼3000 deg2, specifically we use the full flux-
limited catalog version: y3_gold:v6.4.22+2. We select all
clusters with richness λ ≥ 10 within the SPTpol survey
area, where we exclude any cluster within 300 of the survey
boundary or within 100 of a source with S150 GHz >
6.4 mJy. In total we work with 17 661 clusters, of which
3868 have richness λ ≥ 20. The cluster redshifts are
estimated photometrically with uncertainties of σ̂z ¼
0.01ð1þ zÞ [37]. We neglect redshift uncertainties in this
work since the impact of photo-z errors on CMB-lensing
masses is negligible [24]. The redshifts span 0.1 ≤ z ≤ 0.95
with a median value of zmed ¼ 0.72.
The low-richness (λ < 20) haloes are included to

improve the lensing S=N as the goal here is only to make
the first measurement of the polarized CMB-cluster lensing
signal. Since these low mass objects are not well charac-
terized by the RM algorithm, we caution the reader when
using results from the low-richness objects in this Letter for
any cosmological analysis.
Lensing estimator.—On scales corresponding to the

angular size of a galaxy cluster, the primordial CMB
is exponentially damped [38] and the field can be well
approximated by a gradient. When a galaxy cluster lenses
this CMB gradient field, it produces a dipole-like pattern
[17,39] that is oriented along the direction of the gradient
(see Fig. 1 of [17]). This is the basis for the lensing
estimator developed here which uses the following steps to
extract the lensing dipole and constrain the cluster masses:
(1) extract 100 × 100 Nclus cluster-centered or Nrand random

cutouts d̃ from the Stokes QU maps. (2) Determine the

median value of the gradient direction θ∇ ¼ tan−1ð∇y=∇xÞ
in every QU cutout. (3) Rotate ith cluster cutout d̃i along
θ∇;i to obtain di. (4) Determine weights w (see below) for

each cutout and stack the mean-subtracted cutouts to obtain
the weighted stacked signal sc (sr) at the cluster (random)
locations. And (5) obtain the final lensing dipole signal
as s ¼ sc − sr.

The gradient direction determination in step 2 is limited
to a 60 × 60 region in each cutout and to reduce the noise
penalty in the gradient estimation, we apply a Wiener filter
of the form

Wl ¼
�

ClðCl þ NlÞ−1; l ≤ 2000

0; otherwise
ð1Þ

where Nl is the noise spectrum and Cl corresponds to

C
QQ
l

, CUU
l

calculated from CEE
l
, CBB

l
. Note that we use

Eq. (1) only for the gradient angle determination and the
stack is obtained from the unfiltered, rotated 100 × 100

cutouts. We observe no significant change in our results
when we replace Nl in Eq. (1) by the full 2D noise power
spectral density.
The weight wi ¼ wi;nwi;g assigned to cluster i while

stacking in step 4 can be decomposed into two pieces: one

based on the inverse noise variance σ2i at the location i; and

the other using the median value of the magnitude of the

local gradient
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∇2
yi
þ∇2

xi

q

. The latter serves to improve

the S=N since the lensing amplitude is proportional to the
gradient amplitude.
The stack sc from cluster locations, however, is domi-

nated by the mean large-scale CMB polarization gradient
that we call the background. We estimate and subtract
the background sr from a similar set of operations on
Nrand ¼ 50 000 random locations. The final rotated, back-
ground subtracted signal stack is constructed as

s≡ sc − sr ¼
PNclus

c wc½dc − hdci�
PNclus

c wc

−

PNrand
r wr½dr − hdri�

PNrand
r wr

;

ð2Þ

where d represents the QU cutout at a cluster location c
or a random location r. Along with the lensing dipole, s
includes contribution from other sources: foregrounds,
instrumental noise, and the residual large-scale CMB
gradient.
For visualization purposes, in Fig. 1 we show the

recovered lensing dipole signal QU stack for low-noise
(ΔP ¼ 0.1 μKarcmin) simulations. The stack contains
signal from Nclus ¼ 10 000 clusters with (M200m, z) fixed

at (2 × 1014 M⊙, 0.7). The presence of the dipole signal in
the stacked QU maps is the evidence for lensing. In the
absence of lensing, the stacks will be consistent with null
signals.
Using the signal stack s, we build a likelihood function

−2 lnLðMjsÞ ¼
X

pixels

ðs −mÞĈ−1ðs −mÞT : ð3Þ

wherem represents the model and the covariance matrix Ĉ
is estimated using a jackknife resampling technique by
dividing the survey region into N subfields
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Ĉ ¼ N − 1

N

X

N

j¼1

½sj − hsi�½sj − hsi�T ; ð4Þ

where sj is the stack of all the clusters in the jth subfield

and hsi is the ensemble average of all the subfields. Ĉ
properly captures all sources of noise since it is estimated
from the data itself.
Lensing dipole models.—For Eq. (3) we construct a

model stack, m≡mðMÞ, using the above steps, except at
step 1 we replace the data vector, d, with the no-noise
cluster-lensed simulations described below.
For each mass, M, in the parameter grid we generate

Nclus cluster-lensed realizations of the Stokes QU maps.
This is done by generating convergence profiles at each of
the measured DES cluster redshifts for each mass. We
follow steps 2–4 to obtain the stacked model mcðMÞ. The
mean background gradient CMB in this case simply
corresponds to mr ≡mcðM ¼ 0Þ and we remove that
from models calculated at all the other masses in the
parameter grid. We use a flat prior for mass in the range

M ∈ ½0; 4� × 1014M⊙ and divide the parameter grid linearly

in bins ΔM ¼ 0.1 × 1014M⊙. From the likelihood, we
measure the median mass and 1σ uncertainty, defined by
the 16 to 84% confidence range.
Note that the uncertainties δθ∇ in step 2 will be lower in

no-noise models compared to the data. These errors lead to
suboptimal stacking of the lensing dipole and will result in
a bias towards low mass if not accounted for in the model.
Subsequently, we add noise in the simulations similar to
that of the data only when determining θ∇. This ensures
that the uncertainties δθ∇ caused by instrumental noise in
the data are also replicated in the models.
Simulations.—The simulations used to create the lensing

dipoles and mock datasets follow our previous work [24].
Briefly, the Stokes QU simulations are created from
Gaussian realizations of the CMB E- and B-mode maps
using flat-sky approximations and span 2000 × 2000.

The convergence profile used to lens the E- and B-mode

maps includes contributions from κtotðM; zÞ ¼ κ1hðM; zÞþ
κ2hðM; zÞ. We use Navarro-Frenk-White (NFW) [40] pro-

file to model the one-halo term κ1hðM; zÞ [41] and follow
the prescription given in Oguri and Hamana [42] for the

lensing contribution from correlated structures κ2hðM; zÞ
[43,44]. We also correct κ1hðM; zÞ to account for uncer-
tainties in the cluster centroids as [45]

κ̃ðlÞ ¼ κðlÞ
�

ð1 − fmisÞ þ fmis exp

�

−
1

2
σ2sl

2

��

ð5Þ

We set the fraction of miscentered clusters to fmis ¼ 0.22
[46] and σs ¼ σR=DAðzÞ. The amount of miscentering σR,
which is a fraction of the cluster radius [Rλ ¼
ðλ=100Þ0.2h−1 Mpc] is modeled as a Rayleigh distribution
with σR ¼ cmisRλ where ln cmis ¼ −1.13� 0.22 [46].
DAðzÞ in the above equation is the angular diameter
distance at the cluster redshift z.
We smooth the QU maps using the measured beam

function for SPTpol [35] and account for the information
lost during the map-making process due to the filtering
applied to the data. We approximate the filtering as a 2D

transfer function [21,23] given as Fl̄ ¼ e−ðl1=lxÞ
6

e−ðlx=l2Þ
6

with l1 ¼ 300, and l2 ¼ 20 000. The two terms can be
understood as high-pass and low-pass filters in the scan
direction respectively. To generate mock datasets for
pipeline validation, we also add Gaussian realizations of
the instrumental noise at the desired level. The central
100 × 100 cutouts are extracted from the simulated maps
and passed through the rest of the pipeline steps described
earlier to obtain the model or the mock datasets for the
pipeline validation.
Pipeline validation.—We now validate the lensing pipe-

line and estimate the expected lensing S=N for the DES
clusters. To the lensed simulated QU maps we add
instrumental noise using the noise power Nl measured
from the SPTpol QU maps. The number of simulated
clusters and their redshifts and richnesses match the real
values in the DES redMaPPer Year-3 full sample. The
richnesses and redshifts are converted to cluster masses

using the M − λ relation: M ¼ Aðλ=30Þαð1þ z=1þ 0.5Þβ
where A is a normalization, and the exponents α and
β are richness and redshift evolution parameters, respec-
tively. We use the best-fit values for these parameters
obtained from DES weak-lensing analysis [47], namely

A ¼ 3.08 × 1014M⊙, α ¼ 1.36, and β ¼ −0.3. The mean

mass of the simulated sample is M200m ¼ 0.96 × 1014M⊙.
We note that the DES M − λ relation has been calibrated
only using clusters with λ ≥ 20 and the relation cannot be
fully trusted for lower richness objects. However, we
employ the relation here only to obtain a rough estimate
of the final lensing S=N.
Next we extract the lensing dipole from the simulated

maps by following the steps 1–5 described in the methods
section. We combine the data from Q, U into a single QU

FIG. 1. Example lensing dipole signal extracted from low-noise
simulated QU stacks. The stack includes contributions from 10
000 clusters. The background, estimated from random locations,
has been subtracted to remove the large-scale CMB gradient
signals from both the panels.
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map vector. The covariance in this case Ĉ≡ ĈQU also

includes the covariance between the Q and U cutouts. The
results for this QU estimator are presented in the top panel
of Fig. 2. Each light shaded curve represents one simulation
run for the DES cluster sample. The combined result from

25 runs, M200m ¼ 0.94� 0.07 × 1014M⊙, plotted as the
thicker black curve, is within 0.25σ of the input mass (red
dash-dotted line). We evaluate the likelihood of the null

hypothesis of no lensing using the statistic, S=N¼
ffiffiffiffiffiffiffiffi

Δχ2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½lnLðM200m¼MfitÞ−lnLðM200m¼0Þ�
p

and obtain an

average lensing S=N of 4.3σ from these simulations
translating to roughly 25% constraints in the stacked cluster
mass.
Systematics.—Systematics in our measurement arise

from the following sources: (1) assumption of a back-
ground cosmology for model generation, (2) incorrect
cluster profile, and (3) the uncertainties in the DES
miscentering model. The biases are quantified using the
mock datasets for 10× more clusters, but after including
the modifications described below. In all these cases, the
models remain fixed to the fiducial Planck 2015 cosmology
and the standard NFW profiles.

We quantify the bias due to the mismatch between the
underlying and the assumed cosmology by rerunning the
simulations using a different Cl within the 1σ errors of
the cosmological parameters obtained by Planck (ignoring
the correlations between the parameters). This change
modifies the power inQU and also the lensing convergence
profiles. To quantify the errors due to the assumption of a
NFW profile for DES clusters, we replace the NFW
profile in the mock dataset generation with an Einasto
profile [48]. Finally, to assess the effect of uncertainties in
miscentering, we create a new miscentering distribution
by increasing the values of fmis and ln cmis by their 1σ

uncertainties and use the result to calculate the smeared
convergence κ0

1h.

In all cases the shifts in the inferred lensing mass are
negligible compared to the 25% constraints on the masses
that we expect. Specifically we obtain the following biases:
1.5% (0.15σ), 0.5% (< 0.1σ), and 1.1% (0.12σ) for the
three cases with a combined error budget of 2% (0.22σ) for
a sample that contains 10× more clusters. Given that the
sample size in this work is much smaller than for the tests
considered here, we expect the effects of systematics to be
minimal and our results to be dominated by statistical
errors.
Polarization lensing measurement.—In this analysis, we

constrain the mass of a sample of clusters selected from the
DES Year-3 data set using the RM algorithm. The lensing
masses for two samples, λ ≥ 10 and λ ≥ 20, are given in
Table I. The table also contains the comparisons to the
weak-lensing measurements from DES [47] and SPTpol
temperature results [23] by converting the richness esti-
mates into mass using theM − λ scaling relation reported in
those works. The posterior distribution for the weighted
mean of the cluster masses is shown as the black solid curve
in the bottom panel of Fig. 2. The recovered cluster mass
from polarization is within 1.3–1.5σ of both the results.

Note that the contribution from κ2hðM; zÞ is included in the
model here. Ignoring the κ2hðM; zÞ term moves the lensing
mass higher, as expected, by 9%.
As a further systematics test, we test whether results are

dominated by either Q or U by obtaining mass estimates

from Q and U separately. We obtain ð1.30� 0.57Þ ×
1014M⊙ and ð1.56� 0.54Þ × 1014M⊙ for Q and U, respec-
tively, for the λ ≥ 10 sample. Furthermore,we perform a null
test with by differencing the signals fromQ andU to check if
it is consistent with random fluctuations. The lensing mass

FIG. 2. Lensing mass constraints of DES RM clusters using
polarization-only data from the SPTpol survey at the location of
17 661 clusters. In the top panel, the light shaded curves are for

25 individual simulations and their combined likelihood is the
thicker solid curve. The true mass from DES weak lensing
measurements is given as the red dash-dotted line. The result
from stacked SPTpol data (bottom panel) is in good agreement
with the weak lensing measurements from DES (red region) and
the SPTpol temperature result (yellow region). The (Q-U) null
test is shown as the dashed curve in the bottom panel.

TABLE I. Recovered lensing masses of the DES RM cluster
sample.

Lensing mass M200m × 1014M⊙

Sample This Letter DES SPTpol-T

λ ≥ 10 1.43� 0.40 0.96� 0.07 0.85� 0.16
λ ≥ 20 3.23� 1.01 2.06� 0.14 1.80� 0.33
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of ð−0.51� 0.57Þ × 1014M⊙ shown as the dashed curve in
the bottom panel of Fig. 2 confirms the null signal. Another
test performed by stacking 18 981 random locations, also

returns a lensing mass of ð0.15� 0.39Þ × 1014M⊙, consis-
tent with M200m ¼ 0.
For visual illustration, the rotated cluster stacks are

presented in Fig. 3. Since the noise levels of the SPTpol
maps are much higher than in Fig. 1, we apply additional
filtering to remove the small-scale noise in the figure. We
adopt a Wiener filter similar to Eq. (1) but after replacing
Cl by the power spectra of the QU lensing dipole signal
corresponding to the lensing mass obtained above, scaling

Nl by
ffiffiffiffiffiffiffiffiffiffi

Nclus

p
in the stack, and low-pass filtering the stack

below l ≤ 4000. This filter is not used in the actual
analysis.
Finally, we find that the no-lensing hypothesis is dis-

favored at 4.8σ (4.1σ) for the λ ≥ 10 (λ ≥ 20) sample which
is in good agreement with the expectations from simula-
tions. This represents the first detection of the CMB-cluster
lensing signal in polarization data.
Future prospects.—The estimator developed in this work

can also be applied to temperature data. When using the
temperature data, however, we must additionally fit for the
rotationally invariant thermal SZ signal in the stacked
cutouts and other possible sources of cluster correlated
foregrounds. Similarly, the performance of the estimator
must be compared to other lensing estimators [24–26] to
determine the optimal method of CMB-cluster lensing
reconstruction both in terms of the computational require-
ments and the sensitivity. We defer a detailed investigation
of these to a future work.
For future experiments, CMB polarization-based results

will be increasingly important for CMB-lensing based
cluster mass estimates. The systematics introduced by
astrophysical foregrounds, which are largely unpolarized,
is much reduced in CMB polarization compared to temper-
ature. For example, sources in CMB maps have been
measured to have a fractional polarization of ∼3% with

random polarization angles (recently, [49,50]). In
Raghunathan et al. [24], we showed that polarized point
sources cause negligible bias in CMB-cluster lensing even
at polarization fractions higher than this. The polarization
of the SZ effect should also have negligible impact, and is
expected to be two orders of magnitude smaller [51–53]
than the lensing signal expected from the clusters.
This measurement is the first step towards achieving

precise mass constraints [24] from next-generation CMB
surveys like CMB-S4 [16] and SPT-3G [54], and will be
important to maximize the cosmological constraining
power of future cluster surveys.
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