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Abstract. Comparative genomic in situ hybridization (CGH) 
provides a new possibility for searching genomes for imbal- 
anced genetic material. Labeled genomic test DNA, prepared 

from clinical or tumor specimens, is mixed with differently 
labeled control DNA prepared from cells with normal chro- 
mosome complements. The mixed probe is used for chromo- 

somal in situ suppression (CISS) hybridization to normal 
metaphase spreads (CGH-metaphase spreads). Hybridized 
test and control DNA sequences are detected via different 
fluorochromes, e.g., fluorescein isothiocyanate (FITC) and 
tetraethylrhodamine isothiocyanate (TRITC). The ratios of 
FITC/TRITC fluorescence intensities for each chromosome 

or chromosome segment should then reflect its relative copy 
number in the test genome compared with the control 
genome, e.g., 0.5 for monosomies, 1 for disomies, 1.5 for tri- 

somies, etc. Initially, model experiments were designed to 
test the accuracy of fluorescence ratio measurements on sin- 
gle chromosomes. DNAs from up to five human chromo- 
some-specific plasmid libraries were labeled with biotin and 
digoxigenin in different hapten proportions. Probe mixtures 
were used for CISS hybridization to normal human 
metaphase spreads and detected with FITC and TRITC. An 

epifluorescence microscope equipped with a cooled charge 
coupled device (CCD) camera was used for image acquisi- 
tion. Procedures for fluorescence ratio measurements were 
developed on the basis of commercial image analysis soft- 
ware. For hapten ratios 4/1, 1/1 and 1/4, fluorescence ratio 
values measured for individual chromosomes could be used 
as a single reliable parameter for chromosome identification. 
Our findings indicate (1) a tight correlation of fluorescence 
ratio values with hapten ratios, and (2) the potential of fluo- 
rescence ratio measurements for multiple color chromosome 
painting. Subsequently, genomic test DNAs, prepared from a 
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patient with Down syndrome, from blood of a patient with T- 
cell prolymphocytic leukemia, and from cultured cells of a 
renal papillary carcinoma cell line, were applied in CGH ex- 
periments. As expected, significant differences in the fluores- 

cence ratios could be measured for chromosome types pre- 
sent in different copy numbers in these test genomes, includ- 
ing a trisomy of chromosome 21, the smallest autosome of 
the human complement. In addition, chromosome material 
involved in partial gains and losses of the different tumors 
could be mapped to their normal chromosome counterparts in 

CGH-metaphase spreads. An alternative and simpler evalua- 
tion procedure based on visual inspection of CCD images of 
CGH-metaphase spreads also yielded consistent results from 
several independent observers. Pitfalls, methodological im- 

provements, and potential applications of CGH analyses are 
discussed. 

Introduction 

Gains and losses of whole chromosomes or chromosomal 
segments have been observed in many malignant tumors. 

They also constitute a major cause of mental retardation and 
malformation syndromes. The possibilities of detecting and 
precisely defining such genetic imbalances are still limited in 
spite of the important advances of classical and molecular cy- 
togenetics. The development of  chromosome banding some 
25 years ago (Caspersson et al. 1968) has provided an effi- 
cient tool for the comprehensive analysis of chromosome 
complements, but has often been hampered by difficulties in 
preparing high quality metaphase chromosome spreads from 
clinical and tumor cell samples, particularly in the case of 
solid tumors. Even with optimally banded chromosomes, cy- 
togeneticists may not be able to determine the origin of 



marker chromosomes in complex rearrangements. With an 

incomplete karyotype to hand, it is impossible to decide, with 

confidence, which chromosome segments are genetically 

balanced and which are not. 
The rapid development of non-isotopic in situ hybridiza- 

tion techniques and the generation of numerous chromo- 
some-specific DNA probes have provided new possibilities 

for complementing chromosome banding techniques (for a 
review, see Lichter et al. 1991). Interphase cytogenetics has 

allowed the assessment of numerical and structural chromo- 
some aberrations directly in the cell nucleus (for reviews, see 
Lichter et al. 1991; Poddighe et al. 1992). Recently, multiple 
color fluorescence in situ hybridization (FISH) has further 

enhanced our capacity for identifying chromosome aberra- 
tions with speed and accuracy (Nederlof et al. 1990; Nederlof 
1991; Ried et al. 1992). However, in order to select DNA 
probes useful for the detailed analysis of a clinical or tumor 
cell sample, previous knowledge of the types of expected 

aberrations is required. 
Molecular genetics has provided additional powerful tools 

for use in the search for genetic imbalances in genomic DNA. 
The consistent loss of maternally or paternally derived chro- 

mosome segments in a tumor cell population can be detected 
by concomitant losses of heterozygosity of alleles of DNA 
markers (Bishop 1987). This approach requires large num- 
bers of polymorphic DNA markers informative for the pa- 

tient in question. Although amplifications of specific DNA 
sequences can easily be detected, e.g., in Southern blots from 
tumor DNA, it might be a problem to choose the appropriate 
probes. It is even more difficult to distinguish between two 
and three copies of a DNA segment. The global analysis of 

genomic DNA from tumor samples for chromosomal gains 
and losses by presently available methods of molecular ge- 
netics therefore remains too laborious to be implemented in 
routine diagnostic schemes. 

The limitations of the methods mentioned above have 
caused an urgent need for new methods to allow the rapid 
and comprehensive assessment of cells for genetic imbal- 
ances in cases where genomic DNA is the only material 

available. In this study, we describe and test a new approach, 
termed comparative genomic in situ hybridization (CGH). 
The first experimental demonstration of CGH was presented 
by Kallionieni et al. (1992). For CGH, genomic test DNA 
prepared from clinical or tumor specimens (further referred 
to as test genomes) is chemically modified with certain 

haptens (e.g., with biotin). Genomic control DNA prepared 
from cells with normal chromosome complements (further 

referred to as control genomes) is labeled with a different 
hapten (e.g., digoxigenin). Test and control DNAs are then 
mixed in defined proportions, e.g., 1 : 1, and used as a probe 
for chromosomal in situ suppression (CISS) hybridization 

(Lichter et al. 1988; Pinkel et al. 1988) on metaphase spreads 
with normal chromosome complements (46,XY or 46,XX; 
further referred to as CGH-metaphase spreads). In such an 
experiment, homologous chromosome-specific DNA se- 
quences, present in both test and control genomic DNAs, 
compete for the same target chromosomes. Hybridized test 
and control DNA sequences are detected by different fluoro- 
chromes, e.g., fluorescein isothiocyanate (FITC) and tetra- 
ethylrhodamine isothiocyanate (TRITC), respectively. The 
resulting ratios of FITCfrRITC fluorescence intensities for 
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each chromosome should reflect the relative copy numbers 

of the homologous sequences contained in the two genomic 

DNAs. The fluorescence ratio obtained for chromosomes 

disomic in the test and the control genome should decrease 

by a factor of 0.5 for monosomies, and become zero for nul- 
losomies. It should increase by a factor of 1.5 for trisomies, 

by a factor of 2 for tetrasomies, 2.5 for pentasomies, and so 
forth. Whereas an intemal standard provided by the simul- 
taneous CISS hybridization of control DNA is preferable for 

detecting small differences of copy numbers between test 
and control genomes, genomic tumor DNA is sufficient as a 
probe for CISS hybridization to normal metaphase chro- 
mosome spreads in order to map sequences present in large 

copy numbers in homogeneously stained regions or double 
minutes (see Jots et al. 1992). 

In order to implement and test such a strategy, we have 

tried to answer the following questions. Firstly, is it possible 
to measure fluorescence ratio (FR) values for individual 
chromosomes with the accuracy demanded for successful 

CGH experiments? To answer this question, a series of indi- 
vidual chromosomes was painted with two fluorochromes in 
different proportions. These experiments were also designed 

to determine whether individual chromosomes could be iden- 
tified solely on the basis of FR measurements. Secondly, is it 

possible to identify gains and losses of large, medium, and 
small-sized chromosomes by CGH, and can such a diagnosis 
be reliably obtained, even in cases where numerous numeri- 
cal abnormalities have occurred in certain tumor genomes? 
Thirdly, is it also possible to identify partial chromosomal 
gains and losses by CGH and, if so, can one define the break- 
points for marker chromosomes containing unbalanced chro- 
mosomal segments? 

Materials and methods 

Cells 

The cell line ACHN was established from a papillary renal cell carci- 
noma, and has been karyotyped previously (Kovacs et al. 1991). Periph- 
eral blood from an untreated patient with T-cell prolymphocytic 
leukemia (T-PLL) was obtained at the time of diagnosis. By im- 
munophenotyping, 85% of the leucocytes were CD4-positive and 88% 
CD7-positive, reflecting the high portion of T-cell prolymphocytes. 
Blood cells were cultivated in the presence of interleukin 2, and meta- 
phase spreads were prepared using standard procedures. 

CGH-metaphase spreads 

Metaphase spreads for CGH experiments were prepared from phyto- 
hemagglutinin (PHA)-stimulated lymphocytes of healthy male individ- 
uals (46,XY) using standard procedures of hypotonic treatment and 
methanol/acetic acid fixation (3 : 1, v/v). 

Labeling schemes for chromosome-specific DNA libraries 
with different hapten ratios (biotin/digoxigenin) 

DNA prepared from pBS-libraries constructed from flow-sorted human 
chromosomes 1, 4, 8, 13 and 16 (Collins et al. 1991), kindly provided by 
Joe Gray (University of California, San Francisco, CA), was nick-trans- 
lated using digoxigenin-11-dUTP (Boehringer Mannheim) and/or bi- 
otin- 11-dUTP (Sigma) as haptens (Lichter and Cremer 1992). Modified 
nucleotides were incorporated in various proportions into library DNAs 
by adding mixtures of digoxigenin-11-dUTP and biotin-11-dUTP to the 
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nick-translation assay (64/1, 16/I,4/I, I/I, 1/4, 1/16, 1/64). For each as- 
say, the final concentration of digoxigenin-I I-dUTP plus biot in-l l  
dUTP was adjusted to 0.04 raM. The final concentrations for other nu- 
cleotides were 0.05 mM dATP, 0.05 mM dCTP, 0.05 mM dGTP, 
0.01 mM dTTP. 

DNA probes and labeling procedures for  CGH experiments 

Control genomic DNAs were prepared from blood of a healthy male 
(46,XY) or fiom human placenta (46,XX). Test genomic DNAs were 
extracted from the cell line ACHN, from peripheral blood of a T PLL 
patient, and from peripheral bh)od of a child with Down syndrome 
(47,XX,+21). Using standard nick-translation procedures (see above), 
control DNA and test DNA were labeled with digoxigenin 1 I-dUTP or 
biotin I I-dUTP. The concentrations of control and test DNAs were 
measured, and I : I mixtures of  differently labeled test and control ge- 
nomic DNAs were prepared. 

CISS hybridization and probe detection 

CISS hybridization and probe detection were carried out as described in 
detail by Lichter and Cremer (1992) with the following modifications. 
In experiments with chromosome-specific DNA libraries and for each 
slide (area 18xl8 ram), a total of 300 ng labeled library DNA for each 
painted chromosome type, 30~tg Cotl fraction of hmnan DNA 
(BRL/Life Technologies) and 30gg sonicated sahnon testes DNA 
(Sigma) were combined, ethanol precipited and resuspended in 10lal hy- 
bridization mixture containing 50% formamide, 10c/c dextrau sulfate in 
2xSSC: 0.3 M NaCI, 30 mM Na citrate, pH 7.0. After CISS hybridiza- 
lion to CGH melaphase spreads and post-hybridization washes, the bi- 
otinylated probes were detected using avidin conjugated to TRlTC 
(Vector Laboratories). One round of signal amplification was performed 
as described by Piukcl el al. (1986). Digoxigenin-labeled probes were 
detected by indirect iummuofluorcscence using mouse anti-digoxin an- 
tibodies (Sigma) and FITC conjugated sheep anti-mouse antibodies 
(Signra). In other experiments, avidin conjugated to AMCA (amino- 
methyl-coumarin acetic acid, Vector Laboratories) or FITC (Vector 
Laboratories) was used in combination with TRITC-conjugated sheep 
anti-mouse antibodies. No counterstaining was applied. 

In CGH experiments, 2p.g of a I : 1 mixture of  differently labeled test 
DNAs and control DNAs was used per slide in combination with 
50 300lug unlabeled Cot] DNA.  CISS hybridization to CGH-  
metaphase spreads was carried out for 1 3 days. For control CGH ex- 
periments, a I : 1 mixture made from differently labeled aliquots of  con 
trol DNA (46,XY) was used. Post-hybridization washes were carried 
out to a stringency of 0.1 • at 60~ Biotin- and digoxigenin-labeled 
sequences were visualized as described above via F |TC and TRITC or 
vice versa. DAPI (4,6-diamidino 2 phenylindole 2HCI) was used as the 
only counterstain. The best results l.or DAPI banding were achieved 
when DAPI stock solution (Serva No. 18860) was diluted I: 20 000 in 
4• Tween and applied for 3 rain. Slides were mounted in flu- 
orescence-antifading buffer. 

Fluorescence microscol)y 

For epifluorescence microscopy, a Zeiss Axiophot microscope equipped 
with a 100 W lamp was used with the following filter sets: No. 10 (BP 
450-490,  FT 510, BP 515-565)  for FITC signals, No. 15 (BP 546, FT 
580. LP 590) for TRITC signals, No. 01 (BP 365, FT 395, LP 397) for 
DAPI fluorescence, and a new filter set (BP 365, FT 395, BP 450 490) 
for AMCA signals. Filter sets were specially aligned by the Carl Zeiss 
company to minimize image shifts. All images were taken via the Plan- 
NEOFLUAR 63x/I .25 oil immersion lens. Microphotographs were 
taken with Agfachrome 1000 RS color-slide fihns. Photographs from 
the screen were taken with 50 or 100 ASA fihns. 

camera image field. A selected area of 512 x 512 pixels was adjusted to 
the optical center of the microscope field and used for image recording. 
A gray level image was taken separately for each fluorochrome using 
the appropriate filter sets and the software package Nu200 2.0 (Photo- 
metrics) implemented on a Macintosh Quadra 900. Each image was 
stored under the TIFF-format. The optimal exposure time for each slide 
and filter set was chosen in order to avoid saturation values in all pixels, 
and to cover at least half the total dynamic range of the camera. Expo- 
sure times and all optical settings of the microscope were kept constant 
l.or a whole series of image acquisitions. Identification of chromosomes 
was made on the basis of  CCD images following DAPI staining. 

hnage processing 

Digital images were processed either by the SAMBA 2005 image ana- 
lyzer system (Alcatel TITN, Grenoble, France) or the TCL Image soft- 
ware (Multihouse, Amsterdam, The Netherlands). To COlTect for small 
geometric shifts, one chromosome was selected and segmented in all 
CCD images acquired from a given metaphase spread. The positions of 
the gravity centers of  the segmented masks obtained for this chromo- 
some were used to align the images recorded for the different fluo- 
rochromes (adapted from Waggoner  et al. 1989). 

FR measurements in CISS hybridization experiments with chromosome 
specific DNA libraries. CCD images were acquired for the two fluo- 
rochromes  applied in a g iven exper iment  (e.g., F ITC/TRITC,  
AMCA/TRITC or AMCA/FITC).  For each image, segmentation of the 
painted chromosomes was obtained by adaptative thresholding based on 
the gray level histogram (Usson et al. 1987). An "OR logical procedure'" 
was applied to the two segmentation mask images to obtain the final 
segmentation mask image containing the masks for all chromosomes 
painted with either one fluorochrome or both fluorochromes. For each 
painted ch romosome ,  two integrated f luorescence values, [e.g., 
IF(FITC) and IF(TRITC)], were obtained by summing the gray level 
values [or each pixel of  a given mask. These integrated fluorescence 
values were divided by the mask area to calculate the fluorescence in- 
tensity values F(FITC) and F(TRITC) for each painted chromosome. 
The background fluorescence intensity (Fb) was determined from a seg- 
mentation mask defined for all non-painted chromosomes.  The cor- 
rected fluorescence intensities Fcor(FITC) and Fcor(TRITC) for each 
painted chromosome were calculated by subtracting Fb(FITC) or 
Fb(TRITC) from the relevant F, i.e., Fcor = F - Fb. The FR for each 
painted chromosome was obtained by dividing the corrected fluores- 
cence intensities Fcor(FITC)/Fcor(TRITC). 

Finally, for each chromosome type, the means of the Fcor and FR 
values obtained fi)r individual chromosomes in a series of  metaphase 
spreads, Fcor and FR, were calculated. 

FR measurements in CGH experiments. Three CCD images were ac- 
quired using specific filter-sets for DAPI, FITC and TRITC. Image 
shifts were COlTected as described above. After a local contrast proce 
dure (TCL-lmage software, Multihouse), the three images were seg- 
mented separately to generate three "intermediate 1" segmentation 
mask images. An "AND logical procedure" was applied to the "inter- 
mediate 1'" segmentation mask image. This image combines the masks 
that are present in each of the three "intermediate 1" segmentation mask 
images. The final segmentation mask image was obtained after interac- 
tive separation of overlapping chromosomes in the "intermediate 2" 
segmentation mask image. F(FITC) and F(TRITC) values were deter- 
mined for each chromosome as described above. The background fluo 
rescence intensity (Fb) was defined for each CCD image as the fluores- 
cence intensity of the area outside individual chromosome masks in the 
"'intermediate 2" segmentation mask image. Fcor(FITC), Fcor(TRITC) 
and FR values for each individual chromosome, as well as Fcor(FITC), 
Fcor(FITC) aud FR values for a population of a given chromosome type 
(chromosome I, 2, etc.) evaluated in a series of  metaphase spreads, were 
determined as described above. 

Image acquisition 

Digital fluorescence images were recorded using a cooled CCD (charge 
coupled device) camera (Photometrics, Tucson, AZ, USA) with the Ko- 
dak KAF 1400 chip (1317 • 1035 pixels). The mercury lamp was care- 
fully cemered in order to achieve the best possible homogeneity of the 
illumination field. The field diaphragm was closed to the limit of  the 

Evaluation c~[" chromosome imbalances based on fluorescence ratio 
measurements in CGH experiments. In an attempt to define an empiri- 
cal threshold for the identification of chromosomal gains and losses in 
CGH experiments, control C1SS hybridization experiments were carried 
out using a 1 : 1 mixture of biotin and digoxigenin-labeled control 
DNA (46,XY) detected with FITC and TRITC, respectively. In three 
metaphase spreads, fuorescence  ratios were determined for each chro- 



mosome. For this chromosome population, the mean of the log(FR) val- 
ues and the 95% confidence interval was calculated (mean + 1.96 times 
the SDM). The limits of the log(FR) confidence interval were converted 
back to FR values. Note that using this procedure, the upper limit of the 
confidence interval is equal to reciprocal values of the lower limit 
(1/lower limit). In CGH experiments, chromosome types with an FR 
outside of this range were considered to be over- or under-represented in 
the test genome. 

FR images. The FITC image of a CGH-metaphase spread as recorded 
by CCD was divided (pixel by pixel) by the TRITC image as recorded 
by CCD, and normalized by multiplication with a factor A [A = 
IF(TRITC)/IF(FITC), where IF(FITC) and IF(TRITC) are defined as 
the integrated fluorescence values for the combined mask areas of the 
"intermediate 2" segmentation mask image, as given above]. The loga- 
rithm of the normalized value from each pixel was calculated to produce 
a log(ratio) image. For visualization, 256 gray levels were used, and the 
mean of the log(ratio) image values as determined inside the combined 
masks of the "intermediate 2" segmentation mask image was set to gray 
level 128. Using a three-color look-up table, pixels with a gray level 
above the upper threshold defined from control CGH experiments (see 
above) are presented in green, pixels with gray levels below the lower 
threshold are presented in red, and pixels with gray levels within the 
threshold-range are presented in blue. 

Evaluation of chromosome imbalances based on visual examination of 
CCD images from CGH-metaphase spreads. Several observers, who 
were not informed of the clinical and cytogenetic diagnoses of the two 
tumors studied by CGH, were instructed to perform a visual side-by- 
side comparison of FITC and TRITC images of CGH-metaphase 
spreads, as recorded by CCD, in the following way. (1) To examine the 
CCD image from the fluorochrome used for the detection of hybridized 
test DNA and to consider chromosomes that appear either considerably 
more intensely or considerably less intensely painted that the majority 
of the chromosomes, and therefore are considered to be suspicious for 
gains or losses in the test genome. (2) To examine the corresponding 
CCD image obtained from the hybridized control DNA and to mark as 
candidates for a gain or loss in the test genome only those of the suspi- 
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cious chromosomes considered above, showing a normal hybridization 
intensity in the control CCD image. Chromosomes presenting a corre- 
spondingly higher or lower fluorescence intensity in both CCD images 
should be considered as being balanced in the test genome. 

Care was taken that each observer performed the evaluation indepen- 
dently without any interference from the experimentors. Observers were 
allowed to change the brightness of the images to facilitate the evalua- 
tion of relative painting intensities of different chromosomes. DAPI im- 
ages were not available to them, to ensure that their evaluation proce- 
dure was based solely on the visual assessment of painting intensities. A 
threshold frequency for random assignments of marked chromosomes 
was calculated for each observer separately by dividing the total number 
of marked chromosomes by 24, the number of chromosome types con- 
tained in male CGH-metaphase spreads. In cases where the chromo- 
some arms were considered separately, the denominator was changed 
accordingly. Thresholds were calculated independently for chromosome 
gains and losses, since the evaluation of CGH-metaphase spreads in 
control experiments with differently labeled normal genomic DNA 
showed that observers more often indicated a possible gain than a possi- 
ble loss of a chromosome (see Results; Fig. 1 l, bottom). Chromosome 
types that were marked above threshold frequencies were considered as 
candidates for over-representation and under-representatioin, respec- 
tively, in the test genome. 

Results 

Identification o f  chromosomes painted 

with two f luorochromes by FR measurements 

A re l iab le  p rocedu re  for  the  iden t i f i ca t ion  o f  c h r o m o s o m e s  

based  on  two-co lo r  c h r o m o s o m e  pa in t ing  and  FR measu re -  

m e n t s  shou ld  h a v e  the  fo l l owing  charac ter i s t ics .  (1) Mix tu re s  

of  c h r o m o s o m e - s p e c i f i c  l ibrary  D N A s  wi th  d is t inc t ly  differ-  

en t  h a p t e n  rat ios  (e.g., b io t i n /d igox igen in )  h a v e  to be  pre-  

2. 

8 
c 

8 
0 

"= O' 

"10 

__o 

-2 

O / /  
1 1 4  

8 / 1 / 1  

log (Expected fluorecence ratio) 

Fig. 1. Measured versus expected FR of 
painted chromosomes. This experiment 
demonstrates a range of proportionality be- 
tween hapten ratios (biotin- 11-dUTP and 
digoxigenin-11-dUTP) applied in nick-trans- 
lation assays of chromosome-specific DNA 
libraries and the means of FITC/TRITC flu- 
orescence ratios (FR) measured for painted 
chromosome types. Chromosome-specific li- 
brary DNAs, labeled with biotin-11-dUTP 
and digoxigenin-11-dUTP in various propor- 
tions as indicated, were used to paint chro- 
mosomes 4, 8, 13 and 16 in normal human 
metaphase spreads (46,XY). FR values were 
determined for each chromosome type in 
four independent experiments. Each point 
represents the FR value from 30 chromo- 
somes. The logarithm of FR (ordinate) is 
compared with the logarithm of the mean 
fluorescence values expected on the basis of 
the hapten ratios. A proportionality between 
measured and expected log-values is found 
for hapten ratios from 1/4 to 4/1. Note that 
this proportionality was obtained in experi- 
ments using different batches of nucleotide 
mixtures and that different chromosome 
types labeled with the same hapten ratio 
show similar FR values./x Chromosome 4, 
�9 Chromosome 8, �9 Chromosome 13, 
O Chromosome 16 
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pared with high accuracy and reproducibility. (2) Chromo- 

some-specific library DNAs from different chromosomes la- 

beled with the same hapten ratio should yield the same FR 

values for each chromosome type (e.g., 1, 2 etc). (3) DNA 

probes for different chromosomes labeled with different hap- 

ten ratios should yield a range of FR values for individual 

chromosomes of each type evaluated in a series of metaphase 

spreads that does not overlap with the ranges obtained for the 

other chromosome types. 

In preliminary experiments, chromosome-specific library 

DNAs for chromosomes 4, 8, 13 and 16 were nick-translated 

separately with either biotin or digoxigenin, and mixed there- 

after in various proportions. The accuracy with which such 

mixtures could be produced for individual chromosomes in 

repeated experiments, however, was not satisfactory in our 

hands. To overcome this problem in further experiments, bi- 

otin- 1 I-dUTP and digoxigenin-I 1-dUTP were first mixed in 

various proportions (64/1, 16/1, 4/1 1/1, 1/4, 1/16, 1/64) and 

used in nick-translation assays to label chromosome-specific 

library DNAs for chromosomes 1,4, 8, 13 and 16 simultane- 

ously with the two haptens. Detection of biotin and digoxi- 

genin was achieved with TRITC and FITC, respectively. The 

latter procedure yielded highly reproducible FR values mea- 

sured with a cooled CCD camera in a series of CISS hy- 

bridization experiments including probes labeled with sev- 

eral independently produced batches of nucleotide mixtures 

(Fig. l). The observed FR values were directly proportional 

to the chosen hapten ratios of biotin- 11-dUTP/digoxigenin- 

1 1-dUTP at least within the range from 4/1 to 1/4, whereas 

FR values measured for hapten ratios chosen outside this 

range showed a considerable deviation from expected values. 

To test whether individual chromosomes can be discrimi- 

nated on the basis of FRs, a CISS hybridization experiment 

was carried out with chromosome specific libraries for chro- 

mosomes 1, 4, 8, 13 and 16. The following hapten ratios (bi- 

otin/digoxigenin) were chosen: chromosome 1 (4/1), chro- 

Fig. 2a, b. CISS-hybridization to normal human metaphase spreads 
(46,XY) performed with DNA libraries specific for chromosomes 1, 4, 
8, 13 and 16, labeled with various hapten proportions (biotin/digoxi 
genin) and detected with FITC/TRITC. a Micrograph of a typical 
metaphase obtained by sequential exposure of a color-slide film with 
FITC- and TRlTC-specific filter combinations. Note that all chromo- 
some types can be distinguished by natural fluorescence colors, b CCD 
image of another metaphase spread. A continnous pseudocolor look-up 
table was chosen to display the range of individual fluorescence ratio 
values obtained for painted chromosomes in 14 metaphase spreads 
(compare Fig. 3). Note that the color for each chromosome type is dif- 
ferent, whereas the two homologs of each chromosome type display the 
same color 

Fig. 4. FR image of a CGH-metaphase spread hybridized with 
(47,XX,+21)-test DNA detected with TRITC, and (46,XY)-control 
DNA detected with F1TC. A three-color look-up table was used for a 
pixel by pixel display of FR values obtained with FITC/TRITC. Blue in 
dicates a range of ratio values obtained for chromosomes represented in 
equal numbers in both the test and the control genome; red indicates ra- 
tios suggestive of chromosomes present in higher numbers in the test 
genome; green indicates ratios suggestive of lower numbers in the test 
genome. Scattered red and green spots along some of the chromosomes 
are methodological artefacts and show varying localization in different 
CGH-metaphase spread. The X chromosome and both chromosomes 2 I 
are consistently colored red in this and other CGEl-metaphase spreads. 
On the Y chromosome, the euchromatin part is consistently colored 
green indicating the presence of Y chromosome specific sequences in 
the conuol genome but not in the test genome (except for X-Y homolog 
sequences). Painting of the heterochromatic part of the Y was sup 
pressed by Cotl DNA. Red dots seen on this heterochromatic region are 
artefacts 
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Fig. 3. FITC fluorescence intensities versus TRITC fluorescence inten- 
sities of painted chromosomes [Fcor(FITC) vs Fcor(TRITC)]. Chromo- 
somes 1, 4, 8, 13 and 16 were painted with various proportions of FITC 
and TRITC. Each point represents the fluorescence intensity measured 
for an individual chromosome mask obtained in 14 metaphase spreads. 
The number of masks obtained for some chromosomes is greater than 
28 since, because of the lack of painting of centromeric or paracen- 
tromeric heterochromatin (compare Fig. 2), separate masks were some- 
times obtained for each chromosome arm. Note that the ranges of 
Fcor(FITC) and Fcor(TRITC) values obtained for each chromosome 
type show considerable overlap; this is not the case for the range of FR 
values (FR = Fcor(FITC)/Fcor(TRITC)). Accordingly, each individual 
painted chromosome can be identified by this criterion (compare Fig. 
2b). �9 chromosome 1, �9 chromosome 4, [] chromosome 8, [] chromo- 
some 13, 4), chromosome 16 

mosome 4 (1/4), chromosome 8 (1/1), chromosome 13 (bi- 

otin only), chromosome 16 (digoxigenin only). Figure 2a 
shows a color microphotograph from a typical metaphase 

chromosome spread with five pairs of  differently colored 

chromosome types after double exposure of TRITC and 

FITC fluorescence. Fourteen metaphase spreads with various 
condensation state of  the chromosome complements were an- 

alyzed in detail by FR measurements. The range of  FR values 

observed in this data set for each painted chromosome type 

did not overlap with the range of FR ratios obtained for any 

other painted chromosome type (Fig. 3). Accordingly,  a con- 

tinuous pseudocolor look-up table could be chosen to identify 

unequivocally a given chromosome type by color (Fig. 2b). 
The above results demonstrate that individual FR values 

can be used as a single reliable parameter to identify chromo- 

somes independently of  their condensation states. From the 

data presented in Fig. 3, we predict that in CGH experiments 

the range of FRs (test DNA/control  DNA) obtained for chro- 

mosome monosomy (expected value 0.5), disomy (expected 

value 1), tr isomy (expected value 1.5) and tetrasomy (ex- 

pected value 2) should show considerable overlap. 

Detection of  differences in sex chromosome constitution 

and of  trisomy 21 by CGH with (47,XX+21) test DNA 

and (46,XY) control DNA 

To test whether the differences in the numbers of  X and Y 
chromosomes present in female and male genomes, and the 
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Table 1. Evaluation of 18 CGH-metapbase spreads (46,XY) subjected 
to CGH with (47,XX,+21) genomic test DNA (TRITC-detection) and 
(46,XY) control DNA (FITC-detection) 

Mean of fluorescence ratio values (FR) 
TRITC/FITC 

Measured 
(lower and upper 95% 
confidence interval) 

Expected 

X 1.85 (1.49; 2.43) 2 
Y 0.19 (0.12; 0.63) ~ 0 
21 1.78 (l.61; 2.0) 1.5 
All other autosomes 0.99 (0.82; 1.23) 1.0 

difference between genomes with trisomy 21 and disomy 21, 
could be reliably detected by CGH experiments, digoxi- 
genin-labeled genomic test DNA from a Down syndrome pa- 
tient (47,XX,+21) was mixed (1 : l) with biotin-labeled ge- 

nomic control DNA from a male individual (46,XY). After 
CISS hybridization to CGH-metaphase spreads (46,XY) and 
detection of the test and control DNA with TRITC and FITC, 
respectively, FRs for FITC/TRITC were measured in 18 

metaphase spreads for chromosomes 21, X, Y and a control 
group consisting of all other autosomes. Chromosome identi- 

fication was performed by DAPI banding (not shown). Fig- 
ure 4 presents a typical FR image of  a CGH-metaphase chro- 

mosome spread. The results are summarized in Table 1 and 
compared with the theoretically expected values. The FR ob- 
tained for the chromosomes X, Y and 21 were significantly 
(P< 0.001; Student t-test) different from the FR obtained for 
all other autosomes. These results demonstrate that differ- 
ences between test and control genomes regarding the copy 
numbers of  the sex chromosomes and of chromosome 21, the 

smallest chromosome of the human complement, can be de- 
tected by CGH. 

Detection of complete and partial chromosome gains 

and losses in tumor DNA samples by CGH 

For a rigorous test of the CGH approach, experiments were 
performed using two tumor DNA samples. The DNA sam- 

ples were prepared from the cell line ACHN established from 
a papillary renal cell carcinoma and from peripheral blood 
cells of a patient with T-PLL. Cytogenetic analyses were per- 
formed in the laboratories of G. K. and H. D., whereas CGH 
analyses were carried out in the laboratories ofT.  C. and P. L. 
Information on the karyotypes of  the two tumors was only 

shared between the laboratories after the full CGH analyses 
were completed and had yielded a fully independent proposi- 
tion on chromosome gains and losses in the two tumor sam- 

ples. 

Chromosome imbalances detected by conventional banding 

and CGH in the papillary renal carcinoma cell line ACHN 

The karyotype obtained for cell line ACHN by GTG-banding 

analysis was: 53,X,-Y,+der(1)t(1;10) (pl 3.1 ;ql 1.2),+2,+7, 
+7,+12,+12,+16,+17 [10] (Fig. 5). CGH-metaphase spreads 
(46,XY) were hybridized with a 1 : 1 mixture of biotinylated 
ACHN tumor DNA (detected with FITC) and digoxigenin- 
labeled control DNA prepared from blood of  a healthy male 

(46,XY) (detected with TRITC). Figure 6 shows CCD im- 
ages from a typical metaphase chromosome spread stained 

with TRITC (Fig. 6a), FITC (Fig 6b) and DAPI (Fig. 6c). A 
brief inspection of the chromosomes painted with the test 
DNA (Fig. 6b) shows that some of the autosomes are clearly 
more intensely painted than others. Such differences are not 
obvious for autosomes painted with control DNA (Fig. 6a). 

Fig. 5. G-banded karyotype of the cell line 
ACHN established from a papillary renal 
carcinoma. 53,X,-Y,+der(l )t(1 ; I 0) 
(p13.1 ;ql 1.2),+2,+7, +7,+12,+12,+16,+17. 
Arrow indicates the der(l)t(1 ;10) marker 
chromosome 
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Fig. 6a-d .  CGH-metaphase hybridized with renal carcinoma ACHN- 
test DNA detected with FITC, and (46,XY)-control DNA detected with 
TRITC. CCD images were acquired with filter blocks specific for a 
TRITC, b FITC, c DAPI. For better visualization of DAPI banding, the 
gray level image was inverted. Autosomes (nos. 1, 2, 7, 10, 12, 16, 17) 
for which complete or partial over-representation in the ACHN-test 
genome could be confirmed by both conventional chromosome banding 
analysis (Fig. 5) and evaluation of a series of CGH-metaphase spreads 
(see Figs. 7-11) are indicated in c. Notably, in both a and b, the X chro- 

mosome is weakly painted. The euchromatic part of the Y chromosome 
is painted in a, but not in b. d FR image of the same metaphase repre- 
senting a pixel by pixel display of FR values obtained with FITC/ 
TRITC. Blue suggests a balanced state of chromosome material; green 

suggests over-representation in the test genome; red under-representa- 
tion. Whereas some chromosomes are homogeneously colored blue, 

green or red (e.g., Y), a predominant color is less obvious for others 
(compare Fig. 7) 
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Fig. 7. FR images of five karyotyped CGH-metaphase spreads hy- 
bridized with renal carcinoma ACHN-test DNA and (46,XY)-control 
DNA. A comparison of ratio images of homologous chromosome types 
from these CGH-metaphase spreads demonstrates variable and consis- 

tent features (see text). The karyotypes were arranged according to 
DAPI banding (including the metaphase chromosome spread shown in 
Fig. 6). For definition of colors, see legend to Fig. 6. Asterisks Chromo- 
somes with green color restricted to long arm 
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Fig. 8a, b. Means of FITC (a) and TRITC (b) fluo- 
rescence intensities [Fcor(FITC);Fcor(TRITC)] in 
9 CGH-metaphase spreads hybridized with renal 
carcinoma ACHN-test DNA and (46,XY)-control 
DNA 

For the Y chromosome, painting of the euchromatic part is 
demonstrated in Fig. 6a (test DNA), whereas no painting is 
seen in Fig. 6b (control DNA), indicating the absence of the 
Y chromosome from the tumor genome. In Fig. 6a, b, the X 
chromosome is apparently less intensely painted than most 
autosomes, suggesting the under-representation of the X 
chromosome in both genomes (see also below). A weaker 
painting of tandemly repetitive DNA sequences contained in 
the constitutive heterochromatic regions is noted in numer- 
ous chromosomes for both test and control DNA. This obser- 
vation can be explained as an effect of signal suppression 
with Cotl DNA (compare Fig. 13). A fluorescence ratio im- 
age of this metaphase is shown in Fig. 6d. 

For a comparison, Fig. 7 shows karyotypes from 5 CGH- 
metaphase spreads. Instead of the conventional banding pat- 
tern, the pixel by pixel image ratio is presented for each chro- 
mosome. A comparison of the image ratios for individual 
chromosomes demonstrates the profound variability of rela- 
tive FITC and TRITC fluorescence intensities detectable not 
only between different chromosome types but even between 
some homologs. Numerous chromosomes are preferentially 
colored blue, indicating their balanced representation in the 
ACHN test genome. Other chromosomes, such as chromo- 
somes 7, 12, 16 and 17 are consistently colored green, indi- 
cating their over-representation. Chromosomes 1, 2, 10 are 
also preferentially, but less consistently, colored green, with 
several chromosomes 1 and 10 showing the green color re- 
stricted to the long arm (marked by asterisks). The X chro- 
mosomes are preferentially colored red, suggesting some un- 
der-representation. 

In order to decide which chromosome or chromosome arm 
might be truly over-represented or underrepresented in the 
ACHN test genome, chromosomes from 9 CGH-metaphase 
spreads were evaluated in detail by two procedures. One 
evaluation procedure was based on FR measured for each 
chromosome type and the definition of thresholds established 
from control CGH experiments. The second was based on 
the classification of chromosomes in the same series of meta- 
phase spreads by visual comparison of FITC and TRITC 
images, as seen by CCD, into three categories (balanced, 
over-represented and under-represented chromosomes), fol- 
lowed by statistical analyses of the observed frequencies 
compared with expected frequencies in cases of random as- 
signments. 

Diagnosis o f  chromosomal imbalances in the A C H N  test 

genome based on FR measurements. The means of the FITC 
and TRITC fluorescence intensities obtained for each chro- 
mosome type are shown in Fig. 8. As expected, the range of 
the FITC values (representing the tumor DNA) was much 
larger than the range of the TRITC values (representing the 
control DNA). The highest FITC value was found for chro- 
mosome 7, the lowest for the Y chromosome. In contrast, the 
TRITC value for chromosome 7 was not significantly differ- 
ent from other C-group chromosomes, and the decrease of 
the TRITC value obtained for the Y chromosome was much 
less pronounced. 

The FR calculated for each individual chromosome is pre- 
sented in Fig. 9. Since FR images and visual inspection of 
CCD images had suggested a possible difference of FITC in- 
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Fig. 9. FR values measured for chromosomes of nine CGH-metaphase 
spreads hybridized with renal carcinoma ACHN-test DNA and 
(46,XY)-control DNA (upper part). Each point represents the FR of an 
individual chromosome; arrowheads represent the FR for each chromo- 
some type. For chromosomes 1 and 10, inspection of ratio images sug- 
gest a difference in the representation of the short and long arm (com- 
pare Fig. 7). Therefore, FR values were determined separately for both 
arms of these chromosomes. The bottom line presents FR values of 
chromosomes from three control CGH-metaphase spreads hybridized 
with differently labeled control genomic DNA(46,XY) (see Methods). 

3 4 

The two vertical lines indicate the lower and upper thresholds described 
in detail in the text (compare also Fig. 10). The columns on the right 
represent the following. (a) Number of chromosomes or chromosome 
arms used for FR measurements (for details, see legend to Fig. 3). Devi- 
ations from the expected numbers for each chromosome type arise be- 
cause, in some cases, two masks were created for an individual chromo- 
some (compare legend to Fig. 3), whereas in other cases, chromosomes 
were excluded because of chromosomal overlap. (b) Percentage of chro- 
mosomes with FR values above the upper threshold. (c) Percentage of 
chromosomes with FR values below the lower threshold 

tensities between lp  and lq, and between 10p and 10q, the 

FRs were calculated separately for these chromosome arms. 

For an interpretation of these results, we defined a lower and 

upper threshold for FR. For this purpose, a control CISS hy- 

bridization experiment was carried out using a 1 : 1 mixture 

made from biotin-labeled and digoxigenin-labeled control 

genomic DNA (46,XY) detected with FITC and TRITC, re- 

spectively. In three metaphase spreads, FR values were deter- 

mined for all chromosomes. (Fig. 9, bottom). FR was calcu- 

lated for this control chromosome population, and the limits 

of the 95% confidence interval were used as the lower and 

upper threshold (indicated as vertical lines in Fig. 9). Chro- 

mosome types for which FR was beyond the threshold were 

considered to be under-represented or over-represented in the 

tumor. The FR obtained for these chromosomes were com- 

pared with the theoretically expected FR values (2 for tetra- 

somy, 1.5 for trisomy, 1 for disomy, 0.5 for monosomy, 0 for 

nullosomy). The possible degree of over-representation or 

under-representation for a given chromosome type was as- 

sumed to be reflected by the nearest theoretical value 

(Fig. 10). Using these criteria, the following diagnosis was 

proposed for the representation of autosomes in the ACHN 

genome: tetrasomy 7, trisomies 2, 12, 16 and 17, partial tri- 

somies lq and 10q. This diagnosis is in complete agreement 

with the diagnosis independently obtained by conventional 

chromosome banding analysis with one exception: a trisomy 
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Fig. 10. Diagnosis of chromosomal imbalances in the ACHN test 10o 
genome based on FR measurements. FR determined for each chromo- 
some type in CGH-metaphase spreads hybridized with renal carcinoma 
ACHN test DNA and (46,XY)-control DNA (upper part) are presented 8o 
together with the upper and lower thresholds determined from control 
CGH experiments (for details, see Fig. 9 and text). Chromosome types 70 
with FR values within the threshold range were considered to be 8o 
balanced in the test genome. Chromosome types lq, 2, 7, 10q, 12, 16 
and 17 showed FR values above the upper threshold and were consid- % 50 
ered to be over-represented. The FR value of the Y chromosome indi- ,0 
cates the absence of this chromosome in the tumor genome 

was assumed for chromosome 12 by CGH, whereas a tetra- 

somy was found by conventional analysis. 

For the sex chromosomes, banding and CGH results indi- 

cated the lack of a Y chromosome in the ACHN cell line. 

However, since chromosome banding demonstrated the pres- 

ence of a single X in both the control and the test genome, the 

FR value obtained for the X chromosome provided a puzzle. 

Although an FR value for the X-chromosome close to 1 was 

expected, the value measured for the X chromosome was 

clearly below the lower threshold. Three reasons may be con- 

sidered: (1) an artefact of the CGH approach. (2) loss of the 

X chromosome in a major subpopulation of the ACHN cell 

line, not detected by banding analysis, and (3) a relatively 

more intense painting of the X chromosome by homolog se- 

quences of the Y chromosome contained in the control 

genome (46,XY), but not in the ACHN genome. Although re- 

cent findings indicate that homolog sequences are not re- 

stricted to the pseudoautosomal region (Koenig et al. 1985; 

Page et al. 1987), there is no evidence that such homologies 

would exist to an extent sufficient to explain the deviation in 

the measured FR. Indeed, chromosome painting using DNA 

from sorted Y chromosomes as a probe yields hybridization 

signals on Xp22.3 and Xql3,  but does not result in a uniform 

X chromosome painting (Jauch eta]. 1990). 

Diagnosis o f  chromosomal imbalances in the A C H N  test 

genome based on visual inspection o f  CGH images. Visual 

examination of CCD images from CGH-metaphase spreads 

by several investigators gave the impression that certain 
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Fig. 11. Top Diagnosis of chromosomal imbalances in the ACHN test 
genome based on visual inspection of CCD images of nine CGH- 
metaphase spreads. Abscissa Chromosome types evaluated in CGH- 
metaphase spreads. Ordinate Frequencies with which each chromosome 
type was marked as being suspicious for over-representation (gains) or 
under-representation (losses) of a given chromosome by two indepen- 
dent observers A (solid bars) and B (hatched bars). The observers con- 
sidered only whole chromosomes as objects and did not try to identify 
chromosome areas suspicious for partial gains and losses (e.g., lq, 10q; 
compare Fig. 10). The two horizontal lines A and B indicate the fre- 
quency of markings expected for each of the two observers in cases of a 
random assignment. Using these frequencies as thresholds, the data ob- 
tained by observer A indicate the over-representation of chromosomes 
1, 2, 7, 10, 12, 16 and 17. Data from observer B indicate over-represen- 
tation of the same chromosomes with the exception of chromosome t 6. 
None of the two observers detected the absence of the Y chromosome in 
the test genome. Bottom Visual inspection of CCD-images from ten 
control CGH-metaphase spreads. Control CGH-metaphase spreads were 
evaluated as above. Observer A marked 14 chromosomes of different 
sizes as being suspicious for a gain in the test genome, whereas no chro- 
mosomes were marked by observer B 
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Fig. 12. G-banded karyotype from clone 2 of the patient with T-PLL. 
45,XX,t(3; 17)(q24;q21), i (6p),i(8q),del(11) (q21),der(13;l 5)(ql0;ql0), 
add(14)(pll). Marker chromosomes are indicated by arrows. The 
t(3;17) was not observed in the second clone 2 metaphase spread and is 
therefore not considered as a clonal aberration by tumor cytogenetic 
conventions 

chromosomes considered suspicious for gains or losses in the 
ACHN genome might be identified by visual inspection of  
CCD images without the necessity of FR measurements. 
Since such an evaluation would be of  interest for laboratories 

that are equipped with a CCD camera but that have no exper- 
tise in quantitative image analysis, we tested its feasibility. 
Two observers A and B were asked independently to perform 
a visual side-by-side comparison of TRITC and FITC images 
obtained by CCD from the nine CGH-metaphase spreads pre- 
viously evaluated by FR measurements (see above), and 
from ten control CGH-metaphase spreads hybridized with a 

l : l  mixture of  differently labeled normal genomic DNA 
(46,XY). Pairs of FITC and TRITC images from the control 
and tumor CGH experiments were presented in random or- 

der. Observers were asked to compare each pair of FITC and 
TRITC images and mark chromosomes that they judged to 
present a higher or lower fluorescence intensity after painting 
with the test DNA (FITC) relative to the majority of the chro- 
mosomes (for further details see Methods). The results are 
summarized in Fig. 11 and compared with the threshold fre- 
quencies expected if the chromosomes chosen by each ob- 
server were marked at random. Using these criteria, the fol- 
lowing chromosomes were considered as candidates for 

X Y 

over-representation in the test genome: 1, 2, 7, 10, 12, 16 and 
17 (data obtained by observer A) and 1, 2, 7, 10, 12 and 17 
(data obtained by observer B). On questioning, both ob- 
servers had recognized the weaker painting of the X chromo- 
some in CCD images from test and control DNA, but follow- 
ing the instructions given to them (see Methods), they had 
not marked this chromosome. The loss of the Y chromosome 
in the ACHN genome was missed by both observers for two 

reasons. First, this chromosome was not painted by the test 
DNA and, secondly, in absence of a DAPI image, painting of  

the small euchromatic part of the Y chromosome by the con- 
trol DNA was overlooked or considered to be a background 

artefact. 
In the ten control CGH-metaphase spreads, observer B 

never marked a chromosome, whereas observer A marked 14 
chromosomes as being suspicious for over-representation in 
the test genome. Observer A also marked more chromosomes 
(73) than observer B (54) in the nine test CGH-metaphase 

spreads. These differences suggest that observer A consid- 
ered as suspicious smaller differences of painting intensities 
than observer B. Interestingly, the data obtained by observer 
A led to the identification of all chromosome over-repre- 
sented in the ACHN test genome, whereas the trisomy 16 
was nlissed by the evaluation of observer B. 

Chromosome imbalances detected by CGH in T-PLL cells 

To investigate further the potential of CGH, we also per- 
formed a study of primary tumor cells represented in high 
proportions in the blood of a female patient suffering from T- 
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Fig. 13a-d. CGH-metaphase hybridized with T-PLL-test DNA de- 
tected with FITC and (46,XX)-control DNA detected with TRITC. 
CCD-images acquired for a TRITC, b FITC, e DAPI. Visual inspection 
of b reveals weak staining of 6q, 8p, 1 lq21-qter and Y. Strong staining 
is found on 6p, 8q and 14q24~lter (arrows). An FR image of this 
metaphase is shown in d (for color code see legend to Fig. 6). Only one 
copy of chromosomes 2, 10 and 17 is present in this CGH-metaphase 
spread. Their blue color indicates the presence of two copies in the test 
genome. As expected for test and control DNA from female individuals, 
a very weak FITC and TRITC fluorescence was observed over the Y 
chromosome. With such weak staining, FR measurements become unre- 
liable. The red of the Y chromosome seen in d is therefore considered to 
be an artefact 

PLL. The results obtained by CGH were compared with the 

results of conventional karyotype analysis performed on 

short term cultured cells. As in the case of the papillary renal 

cell carcinoma described above, information on the clinical 

diagnosis and the karyotype was only revealed after a fully 

independent diagnosis was obtained by CGH. 

Giemsa-Wright banding of the chromosomes revealed two 

clonal aberrations. Clone 1: 45,XX,dic(6;15)(ql 1;pl 1),i(8q), 

del(11)(q21),-13,+mar [15]. This karyotype presents a mono- 

somy 13, partial monosomies 6q, 8p, 1 lq21-qter,  and a par- 

tial trisomy 8q. The origin of the additional small marker 
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chromosome could not be identified by banding. Clone 2: 
45,XX,i(6p),i(Sq),del(11)(q21),der(13; 15)(q 10;q 10),add(14) 
(pl 1) [2]. In addition to the partial monosomies 6q, 8p and 
1 lq21-qter, and the partial trisomy 8q already observed in 

clone 1, the karyotype of clone 2 shows a partial trisomy 6p 
and a derivative chromosome 14 with additional material on 
the short arm (Fig. 12). Moreover, clone 2 contains a Robert- 
sonian translocation t(13;15). A karyotype of one of the two 

metaphase spreads observed from clone 2 is presented in Fig. 
12. In routine clinical diagnostics, 10 out of 20 analyzed meta- 
phase spreads originally evaluated from this patient showed 
the clone 1 karyotype. One metaphase spread showed the 
clone 2 karyotype, but initially was not considered as a sepa- 

rate clone following the conventions of tumor cytogenetics 
(but see below). 

CGH was carried out using a 1:1 mixture of biotinylated 
genomic test DNA prepared from peripheral blood of the pa- 
tient and digoxigenin-labeled control DNA (46,XX). Detec- 
tion of the test DNA was performed with FITC (or Texas 
red), whereas detection of the control DNA was achieved 
with TRITC (or FITC). Independently of the combination of 
fluorochromes used for the detection, a number of chromoso- 

mal segments suspicious for gains or losses in the test 
genome was readily observed by conventional fluorescence 

microscopy. CCD images of CGH-metaphase spreads were 
acquired for TRITC (control DNA) (Fig. 13a), FITC (test 
DNA) (Fig. 13b) and DAPI (Fig. 13c) staining. Figure 13d 
presents the fluorescence image ratio of the metaphase 
spread presented in Fig. 13. 

Two observers (C and D) independently evaluated FITC 

and TRITC images obtained by CCD from 23 CGH- 
metaphase spreads by visual inspection (see Methods). Ob- 
servers in this experiments were requested to mark not only 
whole chromosomes, but also chromosome arms suspicious 
for over-representation or under-representation. The results 

are shown in Fig. 14 and compared with the threshold fre- 
quencies expected for random assignments (see Methods). 
Using these criteria, the data from both observers revealed 
over-representation of 6p, 8q and 14q, and under-representa- 
tion of 6q, 8p, distal 1 lq and 16q. In addition, over-represen- 
tation of 16p and 22 was found by observer D but not by ob- 
server C. The chromosomal breakpoints on 1 lq and 14 were 
further characterized by comparison of CCD images from 
chromosomes 11 and 14 in CGH-metaphase spreads painted 

with the tumor DNA and banded with DAPI (Fig. 15). This 
analysis identified the deleted region of chromosome 11 as 
del(11)(ql4or21-qter). The over-represented region of chro- 
mosome 14 was defined as 14q24-qter. 

Over-representation of 8q and under-representation of 6q, 
8p and the distal part of 1 lq were in agreement with the re- 
sults of banding analyses. In contrast, although chromosome 
arms 6p and 14q were marked with high frequencies by both 
observers as candidates for over-representation, these find- 
ings did not fit with the karyotype obtained for clone 1, the 
only clone originally detected. This prompted a more ex- 
tended evaluation of the banded metaphase spreads from the 
patient, resulting in the identification of clone 2. In total, 40 
metaphase spreads were analyzed, 15 showed the clone 1 
karyotype, 2 the clone 2 karyotype and 23 a normal karyo- 
type. The results of CGH analysis are in agreement with the 
karyotype of clone 2. It is known that the proportions of var- 

ious clones contained in the blood of patients and detected in 
short term cell cultures may differ largely. Thus, the possibil- 
ity has to be considered that clone 2 was predominant in the 
blood from which the test DNA was prepared, although it 
was detected only in a low proportion of the cells analyzed 

by conventional chromosome analysis after short term cul- 
ture. In this case, the results for chromosomes 6, 13 and 14 
obtained by banding analysis of clone 2 and CGH analysis 
could be fully reconciled. 

The CGH analysis of chromosome 14 would fit with the 
interpretation that the additional material detected on the 
short arm of the 14p+ chromosome in the two clone 2 

metaphase spreads represents the region 14q24-qter (Fig. 
15). Recurrent aberrations of chromosome 14, including in- 
versions and translocations with a breakpoint in 14q32.1, 
have been described in T-cell lymphocytic leukemia (Ma- 
tutes et al. 1991). 

Painting of chromosome 13 in tumor metaphase spreads 
(not shown) demonstrated the presence of chromosome 13 
material in the unidentified marker chromosome found in 
clone 1 in addition to the normal chromosome 13. Thus, 
chromosome 13 was balanced in clone 2 and at least partially 
balanced in clone 1. 

Three discrepancies between the results of CGH and G- 

banding analyses still remain. Data from both observers indi- 
cate an under-representation of 16q. In addition, the findings 
of observer D, but not of observer C, indicate the over-repre- 
sentation of chromosome arms 16p and chromosome 22. 
Since test genomic DNA was only available from the blood 

of the patient, but not from cultured tumor cells, we could not 
test whether a CGH analysis performed with the latter test 
DNA would be wholly compatible with the results of chro- 
mosome banding performed after short term culture. In addi- 
tion, it is not yet clear whether polymorphisms of normal ge- 
nomic DNAs obtained from other sources than the normal 
somatic cells of the patient may influence the results of a 
CGH analysis. 

Discuss ion  

CGH of test and control genomes was performed on normal 

metaphase chromosome spreads (46,XX or 46,XY) (CGH- 
metaphase spreads). Genetically imbalanced chromosomes 
in several test genomes could be rapidly detected, and chro- 
mosome segments could be mapped to their normal chromo- 
some counterparts in CGH-metaphase spreads. Genomic test 

y 

Fig. 14. Diagnosis of chromosomal imbalances in the T-PLL test 
genome based on visual inspection of CCD images of 23 CGH- 
metaphase spreads. Abscissa Chromosome types evaluated in the CGH- 
metaphase spreads. Chromosome arms are listed separately in cases 
where observers detected significant differences in painting intensities 
over the two arms hybridized with test DNA. Ordinate Frequencies with 
which chromosome types were marked as suspicious for over-represen- 
tation (gains) or under-representation (losses) by two independent ob- 
servers C (solid bars) and D (hatched bars). For further explanation of 
thresholds, see legend to Fig. 11. The data obtained by observer C indi- 
cate the over-representation of 6p, 8q and 14, and under-representation 
of 6q, 8p, l lq and 16q. The data obtained by observer D are consistent 
with these findings. In addition over-representation of 16p and 22 was 
found 
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DNAs were prepared from blood of a patient with trisomy 

21, from a renal papillary carcinoma cell line, and from blood 

of a patient with T-PLL. In the following discussion, we will 

consider: (1) major advantages and limitations of CGH- 

analyses; (2) possible pitfalls and improvements; (3) an inte- 

grated approach based on the combination of chromosome 

banding, CGH and FISH with chromosome-specific DNA 

probes; (4) perspectives for genome analysis of normal and 
pathological cell populations. 

Major advantages and limitations of  CGH 

CGH provides a new global approach for searching clinical 

and tumor specimens for genetic imbalances in a single CISS 

hybridization experiment. It avoids possible pitfalls of cell 

culture, can be performed in cases where genomic DNA from 

the suspected cells is the only material available for analysis, 

and is less time consuming than other molecular genetic ap- 

proaches presently used to search a genome for genetic im- 

balances (see Introduction). 

Several limitations of CGH compared with conventional 

banding analyses also need to be emphasized. Balanced chro- 

mosome rearrangements cannot be detected. CGH does not 

provide any information regarding the way in which chromo- 

some segments involved in gains and losses are arranged in 

marker chromosomes of the test genome. Finally, chromoso- 

mal imbalances can only be detected if they are present in 

most cells of the specimen. Thus, CGH cannot be applied to 

studying the clonal heterogeneity of the test specimens. On 

the other hand, in cases of tumors with instable karyotypes, 

the fact that random gains and losses of  chromosome mater- 

ial affecting only a few cells cannot be ascertained should 

help tremendously in distinguishing chromosomal imbal- 

ances occurring at random in only a few tumor cells from 

changes present in the majority of cells of a given tumor. 

CGH analyses performed with tumor DNAs prepared from a 

series of individual tumors representing a distinct tumor type 

should lead to the identification of those chromosomal imbal- 

ancies that are consistently involved, and should thus help to 

identify candidate chromosome segments for genes of major 

biological importance for the tumor type in question. 

Pitfalls and possible improvements of CGH 

and image analysis 

Possible pitfalls need to be carefully studied and the proce- 

dures validated with a large number of clinical cases before 

CGH analyses can be recommended for routine clinical pur- 

poses. The optimal use of the techniques described in this pa- 

per requires familiarity with both cytogenetics and image 
analysis. Since only a minority of readers may be equally 
knowledgeable in both fields, the following discussion has 

been written to point out some particularly important techni- 

cal aspects for the non-specialist in either field. The diagnosis 

of  chromosomal imbalances in test genomes requires a statis- 
tical approach based on the analysis of a number of CGH- 

metaphase spreads, since the range of individual FR values 
obtained for chromosome types present in normal and abnor- 

mal numbers in the test genome show considerable overlap. 
Technical improvements at various steps of the procedure 
can be implemented with the goal of  reducing the extent of 

Fig. 15. Comparison of breakpoints of chromosomes 11 and 14 in T- 
PLL cells identified by conventional G-banding analysis and CGH 
analysis. Column a G-banded normal and derivative chromosomes 11 
(clone 1) and 14 (clone 2) from metaphase spreads of the patient with T- 
PLL. Columns b 1-3 Chromosomes 11 (upper part) and 14 (lower part) 
from a CGH-metaphase spread (46,XX) hybridized with T-PLL test 
DNA and (46,XX)-control DNA. Column 1 CCD image of DAPI- 
banded chromosomes; column 2 the same CCD image with inverse rep- 
resentation of the gray values; column 3 CCD image of FITC labeled 
test DNA. Arrows indicate the site of an rapid change in fluorescence 
intensities along chromosomes 11 and chromosome 14. For chromo- 
some 11, banding and CGH analyses consistently indicate a deletion 
del(l l)(ql4or21-qter) with the breakpoint either in distal q14 or at the 
border of the bands q14 and q21. For chromosome 14, the ideogram in- 
dicates the putative origin of additonal material: on the left, a normal 
chromosome 14 is presented, on the right, the 14p+ is turned around to 
indicate better the suggested correspondence of the additional material 
in this derivative chromosome with 14q24-qter of the normal counter- 
part (arrows point to the centromeres). This assumption is in concor 
dance with the over-representation of 14q24 qter detected by the CGH 
experiment 

this overlap and of increasing the sensitivity of CGH analy- 

ses for the detection of partial gains and losses of chromo- 

somes. 

Quality tests of metaphase chromosome spreads used in 

CGH experiments. The quality of  CGH strongly depends on 
the quality of the chromosome preparations. To minimize in- 
ter-experimental variability in CGH experiments, we recom- 

mend that large stocks of  slides are prepared with high qual- 

ity metaphase spreads (for optimum storage conditions, see 

Lichter and Cremer 1992). Each stock should be carefully 
tested for its suitability in CGH experiments. Control CGH- 

experiments with 1 : 1 mixtures of differently labeled normal 
genomic DNA should yield a uniform intense painting of all 

chromosomes (except for constitutive heterochromatin 
where reduced painting often occurs in CISS hybridization 
experiments, see Results). Whereas metaphase chromosome 
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spreads with shorter and correspondingly thicker chromo- 
somes facilitate the creation of segmentation masks used for 
fluorescence measurements, longer chromosomes are prefer- 
able for the identification of breakpoints involved in partial 
chromosomal gains and losses. 

Optimization of CISS hybridization in CGH experiments. 
Careful adjustment of parameters, such as the size range of 
labeled DNA sequences, RNAse and protein digestion pre- 
treatment steps, can all help to minimize background prob- 
lems (for details, see Lichter and Cremer 1992). Cross-hy- 
bridization of interspersed repetitive DNA sequences con- 
tained in the labeled test and control DNAs diminishes the 
differences that can be expected between the FRs obtained 
for monosomic, disomic and trisomic chromosome segments 
in CGH experiments. For this reason, we have added exten- 
sive amounts of unlabeled Cotl fraction of human DNA to 
the hybridization mixture. Prehybridization of the chromo- 
some spreads with the Cotl fraction also provides an effec- 
tive reduction in the effects of cross-hybridization. We ex- 
pect that minor variations in the proportions of test and con- 
trol genomic DNA contained in the hybridization mixture 
should have little, if any, effect on the relative differences ex- 
pected between the FRs measured for monosomic, disomic, 
trisomic segments, etc., provided that the relative error of 
quantitative fluorescence measurements does not increase 
because of weak hybridization signals of test and/or control 
DNA. Detectable differences in fluorescence intensities be- 
tween balanced and unbalanced chromosome types of test 
genomes have also been noted in experiments where only test 
DNA was included in the hybridization mixture (see Joos et 
al. 1992). However, in the absence of control DNA, one 
should expect that the discrimination between chromosome 
types present in normal and abnormal numbers in the test 
genome requires optimally chosen hybridization times. As- 
suming (1) that the maximum hybridization efficiency possi- 
ble for each chromosome type is not limited by the rapid re- 
naturation of target DNAs, and (2) that an excess of labeled 
chromosome-specific sequences for all chromosomes is 
available in the hybridization mixture, extended hybridiza- 
tion times should lead to the complete coverage of the target 
sequences available on all chromosomes in CGH-test 
metaphase spreads with test DNA sequences, independent of 
whether these sequences are represented in a balanced or un- 
balanced state in the test genome. In contrast, the presence of 
differently labeled control DNA in addition to the test DNA 
ensures that an FR specific for the balanced or unbalanced 
state of each chromosome type in the test genome will build 
up during the complete time-course of the CISS hybridiza- 
tion. In the latter case, we would expect that saturation of the 
chromosomes with differently labeled sequences from both 
genomic DNAs should greatly facilitate the measurement of 
accurate ratio values. Instead of DNA probes labeled with 
different haptens, recent experiments have shown that it is 
also possible to use DNA probes directly conjugated to fluo- 
rochromes in various proportions for FR measurements (own 
unpublished data). 

Optimization of image acquisition. The quality of FR mea- 
surements depends on the uniformity with which CGH- 
metaphase chromosome spreads can be illuminated (e.g., by 

a mercury lamp) and the accuracy with which overlays of 
CCD images obtained with different filter sets can be pro- 

duced (Aikens et al. 1989). A single multi-bandpass dichroic 
mirror (Bright et al. 1989) optimally adapted for the fluo- 
rochromes used for FR measurements can help to avoid im- 
age shifts resulting from mirror changes when gray level 
CCD images are successively acquired for each fluoro- 
chrome. Sets of multi-bandpass filters (Hiraoka et al. 1991; 
Kaplan et al. 1992) in combination with a color CCD camera 
useful for the simultaneous quantitative assessment of sev- 
eral fluorochromes are presently being developed (de Lange 
etal .  1992) and should also help to avoid any pixel shifts. 
The simultaneous recording of the emission light from two 
or three fluorochromes using a laser scanning microscope 
equipped with two or three photomultipliers (Humbert et al. 
1992) may provide another possibility for performing ratio 
fluorescence measurements on a pixel by pixel basis. At the 
same time, contributions of out-of-focus fluorescence can be 
minimized by working in the confocal mode (Robert-Nicoud 
et al. 1989). 

Optimization of evaluation procedures. Two evaluation pro- 
cedures, based on FR measurements and visual inspection of 
CCD images, respectively, have been used in the present 
CGH experiments. 

The normal range of FR values, indicating a balanced state 
of a chromosome type in the test genome, was deduced from 
a control CGH experiment performed with a 1:1 mixture of 
differently labeled control genomic DNA. Alternatively, in- 
ternal standardization seems possible, considering the fact 
that, in all chromosome syndromes and in most tumors, ge- 
netic imbalances affect only a minority of the chromosome 
types. Accordingly, it seems reasonable to deduce the normal 
range of FR values empirically from a number of chromo- 
some types showing FR values close to the value expected 
for balanced chromosomes. 

Although an evaluation of CGH-metaphase spreads based 
on FR measurements provides the most objective and reliable 
method, evaluation by visual inspection of CCD images 
could help to introduce the CGH approach in laboratories 
that are not equipped at present to perform elaborate image 
analyses. The frequency of erroneous chromosomal assign- 
ments depends on numerous factors, varying from experi- 
ment to experiment and from one observer to another. The 
influence of such "noise" however can be largely eliminated 
by appropriate statistics based on a sufficient number of eval- 
uated CGH-metaphase spreads. According to our experience, 
chromosomal imbalances can even be detected by visual in- 
spection of color diapositives of CGH-metaphase spreads 
taken with a conventional fluorescence microscope. In the 
latter case, exposure times have to be chosen for optimal as- 
sessment of fluorescence intensities in individual chromo- 
somes. A cooled CCD camera, however, is highly advanta- 
geous, since simple thresholding procedures can be applied 
in order to introduce objective criteria for marking suspicious 
chromosomes. The following steps are recommended further 
to improve the assignment of chromosomes by visual exami- 
nation. (1) In a given CGH-metaphase spread, chromosomes 
that are obviously painted to a greater or to a lesser degree 
than the majority are designated by an observer. (2) A three- 
color look-up table is created choosing the threshold range 
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with the highest and the lowest possible thresholds that ex- 
clude all designated chromosomes. Application of this three- 
color look-up table may lead to the detection of additional 
chromosomes or chromosome segments that fall outside the 
chosen threshold range, but that have not yet been recognized 
by visual inspection. These additional chromosomes or seg- 
ments are included as candidates for gains or losses. (3) Steps 
I and 2 are repeated. The number of metaphase spreads that 
need to be evaluated for a reliable diagnosis has to be estab- 
lished empirically. (4) Specific chromosomes or segments 
that are selected in this way with frequencies significantly 
higher than expected for a random assignment are considered 
as being over-represented or under-represented in the test 
genome. Automation of FR measurements in CGH-meta- 
phase spreads provides a challenging task for future develop- 
ment, and could open the way for routine applications of 
CGH independent from any subjective interference. 

Specificity and sensitivity of diagnoses in CGH experiments. 
The sensitivity and specificity of the CGH diagnosis depends 
on the choice of thresholds used to separate balanced from 
unbalanced chromosomes in the test genome. A compromise 
has to be chosen between sensitivity and specificity depend- 
ing on the goals of the experiment and on the availability of 
independent methods to confirm the results (see below). Too 
restrictive thresholds, although increasing the specificity, 
may decrease the sensitivity of CGH diagnoses, enlarging the 
number of "false negatives", i.e., unbalanced chromosome 
types falsely classified as being balanced in the test genome. 
On the other hand, too permissive criteria could lead to a 
large number of "false" positives", i.e., chromosome types 
wrongly considered to be unbalanced in the test genome. 

To detect chromosomal imbalances present in subclones of 
decreasing representation in the test sample, a more permis- 
sive threshold has to be chosen. The presence of normal cells 
in tumor tissues will also impair the sensitivity of CGH, 
again suggesting the choice of a more permissive threshold. 
False positives could then be eliminated by independent tests 
with chromosome-specific DNA probes (see the integrated 
approach discussed below). On the other hand, if test DNA 
can be prepared after separation of tumor cells from normal 
cells, e.g., by flow sorting of suspended cells or by microdis- 
section of solid tumor tissues (see below), a more restrictive 
threshold may be preferable. 

The minimum size of chromosome material for which 
gains or losses can be detected by CGH is of major impor- 
tance, but cannot be assessed clearly at the present time. In 
our present experiments, unbalanced chromosomal material 
equal to or greater than 40 Mbp was unequivocally identi- 
fied. We expect, however, that much smaller segments can be 
detected after further optimization of CGH and image analy- 
sis procedures (D. Pinkel, personal discussion). 

An integrated approach for chromosome analyses 

The tools that are now at hand for chromosome analysis 
range from procedures useful for the global screening of 
chromosomal changes to the analysis of individual DNA se- 
quences. These tools need to be applied in a sequence that 
optimally fits the needs of each investigation. In such an inte- 
grated approach, the advantages of each method will comple- 

ment the limitations of the others. Wherever metaphase 
spreads from a clinical or tumor specimen are available, 
chromosome banding provides the method of choice for a 
comprehensive and rapid analysis of both balanced and un- 
balanced chromosome rearrangements at the single cell level. 
Its resolution, however, is limited and its results may not ad- 
equately reflect the clonal heterogeneity of the test specimen, 
particularly in cases where metaphase spreads are prepared 
after short or even long term culture. In cases where chromo- 
some banding is not applicable or provides insufficient re- 
sults, CGH can now be used as an additional global and rapid 
screening test to detect genetic imbalances predominant in a 
test specimen. FISH and molecular genetic approaches (see 
Introduction) provide the tools for confirming and studying 
specific chromosome aberrations suggested by the results of 
banding analyses and/or CGH with high resolution. A rapidly 
increasing number of chromosome-band-specific DNA 
probes can be chosen that optimally fit the needs of molecu- 
lar cytogenetics (Belland-Chantelot et al. 1992; Lengauer et 
al. 1992). Using interphase cytogenetics, representative sam- 
ples of nuclei from both the original tumor specimen and 
from the corresponding cell culture can be analyzed in order 
to distinguish culture-dependent changes in the proportions 
of various clones. Recent developments of multiple color 
FISH (Ried et al. 1992) have greatly enhanced the usefulness 
of FISH as a diagnostic tool. The present study demonstrates 
that probes labeled with various proportions of biotin and 
digoxigenin can be used to enhance further the number of 
chromosome targets that can be distinguished by color. The 
finding that three different ranges of fluorescence ratios can 
be distinguished without overlap for combinations of two flu- 
orochromes, suggests that four spectrally separable fluoro- 
chromes in various proportions may suffice to distinguish all 
chromosomes of the human chromosome complement by flu- 
orescence ratio measurements. 

Perspectives 

New diagnostic and research scenarios can be envisaged us- 
ing CGH. Some examples are briefly considered below to il- 
luminate this potential. 

(1) CGH can be applied to study differences between 
genomes of related species and also differences between in- 
dividuals of the same species. For example, chromosome- 
specific low-abundance repetitive sequences have been re- 
ported to occur over a significant portion of chromosome 16 
(Dauwerse et al. 1992; Stallings et al. 1992). Polymorphisms 
of such low abundance repeats might become detectable by 
CGH. Since, in the present experiments, tumor test DNA and 
control DNA were used from different individuals, a poly- 
morphism of such sequences may be considered as a possible 
explanation for the discrepancies concerning chromosome 16 
observed in the T-PLL case between the results of chromo- 
some banding and CGH analysis. 

(2) CGH should become of great importance in identifying 
genetic imbalances in patients considered suspicious for a 
chromosomal syndrome. Banding analyses have often tailed 
to identify the origin of small unbalanced segments of chro- 
mosomes, in particular in patients with de novo rearrange- 
ments. Candidate chromosome regions suspicious for a gain 
or loss of genetic material identified by CGH can be mapped 
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in detail using appropriate sets of  DNA probes in combina- 

tion with multiple color FISH to metaphase spreads from the 

patient (unpublished experiments).  Such a combined ap- 

proach could dramatically improve karyotype/phenotype 

comparisons. 

(3) Degenerate oligonucleotide primers (DOP) have re- 

cently been developed to amplify uniformly minute amounts 

of  DNA in PCR assays (Telenius et al. 1992). DOP-PCR am- 

plified test DNA has been successfully applied as a probe in 

CGH experiments (own unpublished observations). The de- 

mands on the structural integrity of  isolated DNA and the 

size of  amplification products are low, since the average 

length of  genomic DNA fragments required for CGH can be 

as small as 100 bp. DOP-PCR should become a highly useful 

technique for amplifying test DNA for CGH analyses from 

selected cell areas, microdissected from tissue sections. Con- 

sidering the high sensitivity of  this method previously re- 

ported for DNA amplification of  microdissected chromo- 

some materials (Meltzer et al. [992), it might become possi- 

ble to amplify DNA useful for CGH analyses even from sin- 

gle cells. We expect that CGH will open the way to studying 

chromosome imbalances in archived paraffin-embedded tis- 

sue sections from many solid tumors that were previously not 

available for cytogenetic analyses. CGH should facilitate the 

comparative analysis of chromosomal imbalances in histo- 

logically similar tumors from different patients, and compar- 

ative cytogenetic analyses of  tumors from human and ani- 

mals (e.g., mouse, rat). In cases where the genetic mecha- 

nisms involved in the development of  histologically similar 

tumor types occurring in different species are similar, one 

would expect that chromosome consensus regions consis- 

tently involved in gains and losses should be detected that 

contain homologous genes important for the tumor type in 

question. In contrast, involvement of  distinctly non-homolo- 

gous chromosome regions would indicate profound differ- 

ences in the genetic mechanisms. The general applicabili ty of  

such an approach depends on detailed genetic maps for the 
species in question. 

We expect that the new possibilities for a comprehensive 

and rapid mapping of genetic imbalances in tumor genomes 

(see also Joos et al. 1992) will help in the search for onco- 

genes and suppressor genes specifically involved in certain 

tumors (Weinberg 1991) and will improve classification 

schemes. Finally, it is hoped that a combination of  CGH and 

other tools of  molecular  genetics and cytogenetics will be- 

come useful in the future in rapidly identifying such genes in- 

volved in tumors from individual patients. Such improved di- 

agnostic schemes could pave the way for individually desig- 
nated therapies based on the suppression of  harmful gene ac- 

tions or the restoration of  those that are desired. 
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