
METHODOLOGY ARTICLE Open Access

Detection of copy number variation from array
intensity and sequencing read depth using a
stepwise Bayesian model
Zhengdong D Zhang1*, Mark B Gerstein2,3,4

Abstract

Background: Copy number variants (CNVs) have been demonstrated to occur at a high frequency and are now
widely believed to make a significant contribution to the phenotypic variation in human populations. Array-based
comparative genomic hybridization (array-CGH) and newly developed read-depth approach through ultrahigh
throughput genomic sequencing both provide rapid, robust, and comprehensive methods to identify CNVs on a
whole-genome scale.

Results: We developed a Bayesian statistical analysis algorithm for the detection of CNVs from both types of
genomic data. The algorithm can analyze such data obtained from PCR-based bacterial artificial chromosome
arrays, high-density oligonucleotide arrays, and more recently developed high-throughput DNA sequencing.
Treating parameters–e.g., the number of CNVs, the position of each CNV, and the data noise level–that define the
underlying data generating process as random variables, our approach derives the posterior distribution of the
genomic CNV structure given the observed data. Sampling from the posterior distribution using a Markov chain
Monte Carlo method, we get not only best estimates for these unknown parameters but also Bayesian credible
intervals for the estimates. We illustrate the characteristics of our algorithm by applying it to both synthetic and
experimental data sets in comparison to other segmentation algorithms.

Conclusions: In particular, the synthetic data comparison shows that our method is more sensitive than other
approaches at low false positive rates. Furthermore, given its Bayesian origin, our method can also be seen as a
technique to refine CNVs identified by fast point-estimate methods and also as a framework to integrate array-CGH
and sequencing data with other CNV-related biological knowledge, all through informative priors.

Background

Stable but not static, the DNA of human genome is sub-

ject to a variety of heritable changes of different types,

which significantly contribute to the phenotypic differ-

ences of individuals in human populations. In addition

to the single nucleotide polymorphisms (SNPs), these

genetic changes also include the chromosomal structural

variations, such as insertions, deletions, duplications,

inversions, and translocations, on various genomic

scales. Recent studies showed that insertions, deletions,

and duplications of DNA segments of 1 kb or longer in

the genome– collectively referred to as the copy number

variants (CNVs)–occur at a much higher frequency than

previously expected [1-4]. A recent global study of

CNVs in the human genome showed that the regions of

CNVs covered more nucleotide content per genome

than SNPs [1]. It is now widely believed that CNVs are

as important as SNPs and other small genomic changes

in their contribution to the phenotypic variation in

human populations.

Currently, unbalanced structural variants can be

experimentally identified by methods based on microar-

ray technology, polymerase chain reaction, or DNA

sequence comparison. Array-based method is a natural,

high-throughput extension of the comparative genomic

hybridization (CGH) analysis, which was originally

developed as a method to reveal any regions of allele

loss or aneuploidy by fluorescence microscopy [5].
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High-density oligonucleotide microarrays, which offer

high genomic resolution, have been used in several

recent array-CGH studies [4,6,7]. The last several years

have seen rapid advancement in the field of sequencing

technology. Novel methods [8-10] are being developed

to reduce the cost and increase the throughput by gen-

erating massive amounts of sequence that can be aligned

to the genomic reference. This development has made it

possible to resequence whole genomes from multiple

individuals.

Indeed, a major sequencing project, the 1000 Gen-

omes Project, has been launched to resequence the gen-

omes of at least a thousand people from around the

world using the new sequencing technologies to produce

the most detailed map of human genetic variation for

disease studies. As the technologies mature and their

uses spread, new sequencing-based methods to detect

structural variations have been developed to take advan-

tage of the massively parallel sequencing. In the read-

depth approach, after DNA fragments are sequenced

from one or both ends, the reads are mapped to the

genome and then counted in a non-overlapping sliding

window. Both methods provide a rapid, robust, and

comprehensive approach to identify CNVs on the

whole-genome scale.

Both array-CGH and read-depth sequencing generate

genomic copy number (GCN) data in a very similar for-

mat: they consist of genomic signal output indexed by

the genomic locations. The signals are log-ratios of nor-

malized intensities from the test sample to those from

the reference sample for array-CGH and sequence read

counts after mean subtraction for read-depth sequencing,

respectively. The goal of analyzing such data is to detect

CNVs by identifying regions with signals that are consis-

tently higher or lower than the normalized baseline.

Implicitly, there are two distinct and yet closely related

estimation problems: one is to estimate the number of

CNVs, and the other is to determine the boundaries and

the average signal strength of each of them. Many statis-

tical and computational methods have been developed to

identify CNVs in individual genomes. They include

approaches built on hidden Markov model [11-13] or in

a Bayesian framework [14-16]. Recently a method to

identify recurrent CNVs within a group of individuals

has also been proposed [17]. Based on their data analysis

approaches, algorithms that have been developed to ana-

lyze such data can be roughly grouped into three types:

some only smooth the raw log-ratio data and the regions

with log-ratios higher or lower than a preset threshold

are identified as CNVs [18,19], others estimate the num-

ber of CNVs and their boundaries directly using the ori-

ginal log-ratio data [20-23], and the rest use a combined

approach [24-27]. The relative performance of these algo-

rithms has been assessed [28].

Here we present a Bayesian statistical framework to

analyze both array-CGH and read-depth data. Treating

parameters that define the underlying genomic copy

number variation encoded in the data as random vari-

ables, our approach derives the posterior distribution of

those parameters given observed data. This statistical

method models the location of regional changes and

their corresponding associated copy number, and esti-

mates the overall noise level in the data at the same

time. Sampling from the posterior distribution using

Markov chain Monte Carlo (MCMC) simulation is able

to give both the best estimate and a corresponding

Bayesian credible interval for each parameter in the

model. We discuss how our model was derived and

implemented, and the empirical results from applying

our method to both microarray and sequencing data for

CNV discovery.

Statistical model

In the life sciences we are often faced with the task of

making inferences about some object of interest given

incomplete and noisy experimental data. In the case of

CNV study, we are primarily concerned with inferring

the number of the DNA copy number variations, their

locations, sizes, and corresponding copy numbers-asso-

ciated amplitude measurements, given the genomic copy

number data, which are log-ratios of sample and control

intensities measured on microarrays or read depths gen-

erated by shot-gun genomic sequencing. To demon-

strate the application of our method to the read-depth

data, we take a set of sequence reads from the 1000

Genomes Project and construct a ‘read-depth intensity

signal’ spectrum by first mapping the reads to the

human genome reference sequence and then counting

the number of reads in a sliding window, a procedure

that transforms sequencing data into array-like intensity

signal. We capture these unknown quantities in a prob-

ability model that relates them to the observed data.

Our model is Bayesian in essence as we assign prior dis-

tributions to parameters and use the posterior distribu-

tion function to estimate the underlying data generating

process. Given the posterior distribution, we then use

the Markov chain Monte Carlo method to fit the model.

By doing so, we get not only the best estimates for these

unknown parameters but also Bayesian credible intervals

for the estimations at the same time.

Given a set of genomic copy number data D = {gk, xk},

k = 1, 2, ..., M, in which gk is the sorted genomic loca-

tion of the kth data point, xk the signal at this location,

and M the number of data points, we try to infer the
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genomic ‘spectrum’ ℱ, which is the unknown function

defined by the CNVs encoded in the data set with the

same measurement unit as xk. Assuming that the mea-

surements of CNVs are all step functions, the spectrum

ℱ can be written as

f
a s g s w j N

k
j j k j j=

≤ < + = …



if

otherwise

( ), , , ,
,

1 2

0
(1)

where N is the number of ‘smoothed’ CNVs detectable

in the data set, and sj, wj, aj are the start genomic loca-

tion, the width, and the amplitude of the j-th CNV

respectively. Thus the ‘ideal’ data set corresponding to

D based on this model is F = {gk, fk}, k = 1, 2, ..., M. For

simplicity, we assume that X1, X2, ..., XM measured in D

are independent random variables each subjected to

additive Gaussian noise around ℱ with a standard devia-

tion s.

Given the aforementioned model (Figure 1), the set of

parameters to be inferred from D is θ = {N, (sj, wj, aj),

s2}, j = 1, 2, ..., N. Sometime for convenience, instead of

reporting the estimate of wj, we report the estimate of

ej, the end of the j-th CNV (ej = sj + wj - 1). The condi-

tional probability distribution function p(θ|D) sum-

marizes our inference about θ given the data and our

prior knowledge about the CGH spectrum ℱ.

Bayes’ theorem relates the posterior probability distri-

bution function p(θ|D) to the likelihood probability dis-

tribution function p(D|θ) that can be calculated from

the data and the prior probability distribution function

p(θ) that encodes the prior knowledge,

p
p p

p
p p( | )

( | ) ( )

( )
( | ) ( ),

 
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D
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where the normalization constant p(D) is omitted for

simplicity.

Likelihood. Given the simplifying normality assump-

tion stated above, the likelihood function takes the form

p
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Prior. Given the discrete nature of CNVs, it is reason-

able to assume a priori independence among all the

parameters in θ. We choose the following prior distribu-

tions:

▫ Uniform distributions for N, sj, and wj (j = 1, 2, ..., N):

• p(N) = 1/Nmax

• p(sj) = 1/(smax-smin) = 1/M

• p(wj) = 1/M

▫ Normal distribution for aj: p(aj) ~  (τj, �j
2)

▫ Inverse gamma distribution for

       2 2 2 1 2

: /( ) /p e( ) = ( )− + − Γ

Thus the prior probability distribution function is

assigned as
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After rearrangement and removal of the constant

Nmax, we have
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Figure 1 The graphical representation of the proposed

Bayesian model. All quantities are shown as nodes in this directed

graph. The parameter triplets sj, wj, and aj (j = 1, 2, ..., N) are
combined together. The solid arrows indicate the modeled data set

F is determined by a logical function with parameters sj, wj, and aj (j

= 1, 2, ..., N), and the dashed arrows signify the stochastic
dependence of the real data set D on both F and the overall data

noise level s.
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where a, b, τj and �j are the hyperparameters that

characterize the prior distribution. See the Implementa-

tion subsection below for their parameterization.

Posterior. Substituting the product of the likelihood

and the prior of equations (3) and (5) into equation (2),

we obtain

p

eN M N
j

j

N
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N
j

( | )
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For a given model {ℳ: θ Î Θ}, where N is known and

thus θ = {(sj, wj, aj), s
2}, j = 1, 2, ..., N, the posterior dis-

tribution of θ given the data D and the model ℳ can

be expressed as

p
eM aj

N
j j j

( | ) .
( ) / / ( , ) /
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Informative prior. If we have information on certain

parameters in θ, for example sj and wj, from an initial

scan of data D, such information can be coded in an

informative prior to simplify subsequent parameter esti-

mation. For example, suppose we know N = 1, the CNV

starts at a certain place between genomic position a and

b, and its length is between c and d bp long. We code

such prior information as following:

▫ Uniform distributions for s1 and w1:

•  
for

otherwise
p s b a
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Keeping priors on other parameters the same as

before, we have
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With this informative prior, the posterior is the same

as (7), but only none-zero for s1 Î[a, b] and w1 Î[c, d ].

This condition simplifies subsequent parameter estima-

tion, as s1 and w1 only need to be sampled in these two

intervals during MCMC simulation.

In some case, we only know the start and the length

of a particular CNV (similar to the case above) but still

have to estimate N and the parameters of the other

CNVs. This is a case that mixes the general and the

special ones presented above. It is easy to show the

informative prior is a mix of (7) and (8):
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When analyzing clean read-depth data, if the ampli-

tude of the j-th CNV, aj, occurs discretely at several dif-

ferent values (for example aj Î{-c, c, 2c}, where c is the

genome-wide average haploid read depth), the prior dis-

tribution p(aj) of aj can be modeled naturally by a mul-

tinomial distribution.

Algorithm and implementation

Parameter estimation by Markov chain Monte Carlo

simulation

Analytically summarizing the posterior distribution p(θ|

D) is difficult. For example, even though in theory the

posterior expectation of an arbitrary function of θ, g(θ),

can be computed as

E g g p d( ( ) | ) ( ) ( | ) ,   D D= ∫ (9)

the calculation is usually impracticable for two rea-

sons. Firstly, p(θ|D) is only known up to some multipli-

cative constant due to the proportionality form of

equation (8). Secondly, even if the exact form of p(θ|D)

is known, given the number of parameters in θ (at least

four in a non-trivial case), the high dimensional integral

required in equation (8) is very difficult to be carried

out in practice and soon becomes intractable as the

number of parameters increases. However, Markov

chain Monte Carlo (MCMC) provides an alternative

whereby the posterior can be directly sampled to obtain

sample estimates of the quantities of interest. Thus

using a random sequence of K draws θ
(1), θ(2), ..., θ(K)

from p(θ|D), E(g(θ)|D) can be approximated by simply

taking the average of these draws. Similar methods can

be used to compute the posterior standard deviation  ̂
or quantiles, probabilities that parameters take particular

values, and other quantities of interest.

The Gibbs sampling algorithm [29] was implemented

to sample from the target distribution {p(θ|D,ℳ): θ ÎΘ

⊆ ℝ
3N+1}. To do so, the Gibbs sampler first constructs

an aperiodic and irreducible Markov chain whose sta-

tionary distribution is p(θ|D,ℳ) in the state space Θ,

and then draws a sequence of random samples from

conditional distributions to characterize the joint target

distribution. More precisely, it was implemented by

(i) taking some initial values θ(0); (ii) repeating for each t

= 1, 2, ..., T, where T is the preset number of iterations,

generating θi
(t) from p(θi

(t)| θ1
(t), ..., θi-1

(t), θi+1
(t-1), ...,
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θ ||θ||
(t-1),D,ℳ) for i = 1, 2, ..., ||θ||; (iii) continuing the

previous step for T times after the estimated target dis-

tribution ˆ( | , )p  D  converges.

To calculate the conditional probabilities of sj and wj

required by the second step of the Gibbs sampling sta-

ted above, all possible s Î[g1, gM] and w Î[wmin, wmax]

are evaluated. Given the normality assumption about

the data, conjugate prior distributions of aj and s
2 can

be used to simplify the calculation of their conditional

probabilities. If the prior distribution of aj takes the con-

jugate from p(aj) ~  (τj, �j
2), the conditional distribu-

tion of aj given other parameters, the data D, and the

model ℳ is also a normal distribution as

 ([( / ) / ( / / )] [( / ) / ( / / )]1 1 12 2 2 2 2 2      j j j j j j j jw w w x+ + + ,

1 1 2 2/ ( / / )) j jw+ where x j is the average log-

ratios of probe intensities in the j-th CNV. Given

the conjugate prior distribution of s2, p(s2) ~ ℐnvmma

(a, b), the conditional distribution of s2

given other parameters, the data D, and the model

ℳ is also an inverse gamma distribution,

 nv amma( / , ( ) / ) + + −
=∑M x xji

M
2 22

1
.

Model selection using Bayes factor

Model selection is required to determine N, the number

of CNVs, as different N changes the model parameteri-

zation θ. Suppose that the data D have arisen under one

of the two models, {ℳ1: θ1 Î Θ1} and {ℳ2: θ2 Î Θ2},

according to a probability density p(D |ℳ1) or p(D |

ℳ2).

Given prior probabilities p(ℳ1) and p(ℳ2) = 1 - p

(ℳ1), the data produce posterior probabilities p(ℳ1|D)

and p(ℳ2|D) = 1- p(ℳ1|D). From Bayes’ theorem, we

obtain

p
p p
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For a given model {ℳ: θ Î Θ}, p(D |ℳ) can be

approximated by the sample harmonic mean likelihoods,

ˆ ( | )
( | , )

,
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based on K MCMC draws θ
(1), θ(2), ..., θ(K) from the

posterior distribution p(θ|D). The harmonic mean

estimator is consistent since ˆ ( | ) ( | )p p DHM D  →

as K ® + ∞. It may, however, have infinite variance

across simulations. To solve this problem, Newton and

Raftery [30] proposed an alternative estimator,

ˆ ( | )
/ ( ) ( | , ) / ˆ ( | ) ( ) | ,( ) ( )

p
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which does not display any of the instability of

ˆ ( | )pHM D  . We implemented ˆ ( | )p4 D  to calculate

the Bayes factor for model comparison

Implementation

Our method, including the Markov chain Monte Carlo

simulation and the model comparison, is currently

implemented in R [31]. To use non-informative priors

for our Bayesian inference, we set τj = 0 and �j = 100,

which effectively makes the prior distribution of aj flat

around 0. We also assign 1 to both a and b for the

inverse gamma distribution of s2. We tested various

values of the hyperparameters (τj, �j, a, and b), and the

simulation results showed that the parameter inference

was insensitive to the values assigned to these hyper-

parameters, which is expected given the large number of

data points. A 500-iteration MCMC simulation of the

posterior distribution (7) given a data set with M = 500

and N = 1 took 126 seconds of CPU time on a personal

computer with one 1400-Mhz x86 Intel processor and

500 MB RAM. To assess the convergence of the Markov

chain after 500 iterations, we started multiple chains

from different values of θ(0). The simulations showed

that after initial dozens of iterations all chains converged

to the same solution. Based on this observation, we con-

cluded that 500 iterations were sufficient for Bayesian

inference in this case. We used the same convergence

diagnostic for all inferences.

Because of great computational intensity of the

MCMC simulation, to process a large GCN data set, we

use a ‘divide and conquer’ strategy. We first sort array/

sequencing features from each chromosome according

to their genomic locations and then group 1000 conse-

cutive features into subsets for parallel processing on a

computer cluster.

Results

Simulated array-CGH data

We first used simulated array-CGH data sets to test our

Bayesian model and its implementation. To generate

such synthetic data, we first specified values for the

parameters in θ = {N, (sj, wj, aj), s
2}, j = 1, 2, ..., N, in

which N and (sj, wj, aj) define the artificial genomic

CNV structure encoded as a step function and s2
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determines the overall noise level in the data. The simu-

lated data were then generated by superimposing this

predefined step function with random Gaussian noise.

Typical simulated array data with one and multiple

CNVs are shown in Figures 2A and 3A respectively.

The simulated array data (M = 500) plotted in Figure

2A were generated with θ = {N = 1, (s1 = 200, w1 = 50, a1
= 1.5), s2 = 0.42}, which was to be estimated. Taking N =

1, we started the Markov chain at some random θ
(0) =

{(s1 = 100, w1 = 0, a1 = 0), s2 = 0.12} and ran it for 500

iterations. The sampling results are shown in Figure 2C-

F. As the parameter trace plots (Figure 2G-J) show, the

Markov chain quickly converged to stationarity after

approximately ten iterations (Figure 2B). To err on the

side of caution, we discarded the samples from the first

100 iterations as the ‘burn-in’ samples and estimated the

parameter values from the rest 400 samples, which gave

ˆ {(ˆ , ˆ , ˆ . ), ˆ . } = = = = =s w a1 1 1
2 2200 50 1 57 0 38 given

N = 1.

Remarkably, all these samples have the very similar s1
and w1, which are 200 and 50 respectively. Because of

this small variation in their estimation, the estimates of

s1 and w1 from the data are of extremely high confi-

dence. The distributions of a1 and s in the 400 samples

are approximately normal as  (1.57, 0.0572) and

 (0.38, 0.0122) respectively. Based on their normal dis-

tributions, we can easily calculate a Bayesian credible

interval for both a1 and s. For example, a 95% Bayesian

credible interval for a1 is [1.46, 1.68], which suggests

that, after observing the data, there is a 95% chance that

the average log-ratio of intensities in this CNV falls

between 1.46 and 1.68.
We also simulated array-CGH data (M = 1000) with

multiple CNVs (Figure 3A) using θ = {N = 4, (s1 = 100,

w1 = 30, a1 = 0.7), (s2 = 200, w2 = 20, a2 = -0.3), (s3 =

400, w3 = 80, a3 = 1.5), (s4 = 600, w4 = 90, a4 = -0.6), s2

= 0.12}. To identify the CNVs encoded in this data set,

first the model-specific parameters {(sj, wj, aj), s
2}, j = 1,

2, ..., N were estimated under different models with N =

0, 1, ..., 5. In Figure 3A, the scatter plot of the multi-

CNV array-CGH data are overlaid with the segmenta-

tion found by our algorithm using different models. The

figure shows that the most prominent CNV was identi-

fied first when the number of CNVs, N, was set to 1

and less prominent CNVs were progressively identified

as the model became more permissive (i.e., N was

increased). To select the most plausible model from

which the observed data were generated, each of the

models with N = 1, 2, 3, 4, 5 was then compared with

the basal, null model (N = 0). Quantification of these

comparisons by the logarithm of the Bayes factor, which

gives 691.02, 926.94, 1091.13, 1556.23, and 1173.67

respectively, clearly indicates that the model with N = 4

is the best model among the ones tested (Figure 3B). It

is noteworthy that since the numbers aforementioned

are the logarithms of the Bayes factor the actual increase

in the marginal evidence p(D|M) between neighboring

models is very substantial. For example, the increase in

the marginal evidence from N = 3 to N = 4 is e1556.23-

1091.13 = e465.11 ≈ 9.86 × 10201 fold.

Lai et al. [28] examined the performance of 11 array-

CGH data analysis methods: CGHseg, quantreg,

CLAC, GLAD, CBS, HMM, wavelet, lowess,

ChARM, GA, and ACE. To assess the performance of

our algorithm in conjunction with these methods, we

used the same simulated data as Lai et al. used for the

assessment in their study to calculate the true positive

rates (TPR) and the false positive rates (FPR) as the

threshold for determining a CNV is varied. See Lai at al.

for the definitions of TPR and FPR and the details of

the simulated data sets. We calculated the receiver

operation characteristic (ROC) curve of our algorithm

using the most noisy (thus the lowest signal-to-noise

ratio, SNR = 1) data set with the CNV width of 40

probes. This ROC curve, together with the ROC curves

of other array-CGH methods based on the same data

set, was plotted in Figure 4. These curves show that our

Bayesian algorithm is appreciably more sensitive than all

other methods at low (< 10%) false positive rates. We

need to point out that the comparison was conducted in

a fair manner, if not to the disadvantage of our method:

all the results from Lai et al. were used directly without

modification and our method has no free parameters to

tune.

Glioblastoma Multiforme array-CGH data

Lai et al. [28] compared 11 different array-CGH data

analysis algorithms that are based on diverse statistical

or computational techniques. In addition to testing

those methods using simulated data, they also character-

ized their performance on chromosomal regions of

interest in real data sets obtained from patients with

Glioblastoma Multiforme (GBM) [32]. These cDNA

microarray-based data sets were generated by CGH-pro-

filing copy number alterations across 42,000 mapped

human cDNA clones, in a series of 54 gliomas of vary-

ing histogenesis and tumor grade.

It was observed that the GBM data contain a mixture

of larger CNV regions with low amplitude and smaller

ones with high amplitude. These two types of array-

CGH data are nicely represented by data sets GBM31

and GBM29 respectively (Figure 5A-B). In sample

GBM31, a large region on chromosome 13 was lost, and

the overall magnitude of this loss is very low due to the

low penetrance of this genetic variation in tumor cells

in this sample. In sample GBM29, on the other hand,

there are three high-amplitude small duplications. To
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Figure 2 Parameter estimation by MCMC simulation for a simulated array-CGH data set. (A) The log-ratio vs. probe genomic index plot of

a simulated one-CNV array-CGH data set. The data D (M = 500) were generated with θ = {N = 1, (s1 = 200, w1 = 50, a1 = 1.5), s2 = 0.42}. (B) The

logarithm of the posterior probability (calculated up to some multiplicative constant) at consecutive 500 MCMC sampling iterations. In the

stationary phase, the posterior probability of the MCMC-sampled parameter values given data D, p( | ) D , fluctuates closely beneath the
maximum value p(θ|D). (C-F) Histograms of the 500 estimates of s1, w1, a1, and s respectively. (G-J) Traces of the estimates of s1, w1, a1, and s
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evaluate our Bayesian approach in a comparable way, we

also used these two GBM data sets processed and uti-

lized by Lai et al. to test our method.

Figures 5A and 5B show the array-CGH profiles of

chromosomes 13 and 22 in Glioblastoma

Multiforme samples GBM31 and GBM29, respectively,

overlaid with the segmentation found by our

algorithm. As seen in Figure 5A, our algorithm detected

the single broad proximal deletion of part of chromo-

some 13 in GBM31, spanning from the 59th to the

542nd probe with a log-ration intensity at -0.30

( {( , , . ), . } = = = = − =s e a1 1 1
2 259 542 0 30 0 38

with corresponding standard deviations,

     ˆ ˆ ˆ ˆˆ{( . , . , . ), . }= = = = − =s e a1 1 1
22 40 3 19 0 02 0 01 , for calculat-

ing each Bayesian credible interval). The breakpoint ê1

at the probe genomic index 542 was also identified by

all the programs that detected this deletion in the test

conducted by Lai et al. The other breakpoint â1 at 59

was again found by CLAC and ACE evaluated in the

same test [28]. The small sample standard deviations in

 ̂ connote the reliability of the parameter estimation

despite a rather low signal to noise ratio of the GBM31

data. Our algorithm also detected all three high-ampli-

tude amplifications of parts of chromosome 22 in

GBM29 (Figure 5B). Even though there are only four

probes separating the first two amplifications, our

method still segmented them clearly. Moreover, our

method also pinpointed the six breakpoints of these

three CNVs (their sample standard deviations are all

zeros), which makes these predictions highly reliable.

b-globin high-density array-CGH data

One recent significant development in the microarray

technology is the emergence of the tiling array technol-

ogy, which can be used to cover large genomic regions

or even an entire genome on one or several microarrays

in an unbiased fashion by using oligonucleotides (a.k.a.

tiles) uniformly sampled from presented genomic

sequences. The current trend is to migrate from PCR-

based arrays to tiling arrays for a much higher resolu-

tion and a comprehensive genomic coverage.

In a recent study [7], in order to test the resolution

limits of tiling arrays when they are used with CGH for

CNV discovery, Urban et al. designed microarrays that

tile through 100 kb of the b-globin locus with overlap-

ping isothermal oligonucleotides spaced 9 bp apart

alone the tiling path. They compared the test DNA

from a patient with a known heterozygous deletion of

622 bp in the b-globin locus and the reference DNA

pooled from seven individuals without this chromoso-

mal aberration. Figure 5C shows the array-CGH profile

of the b-globin locus of the patient overlaid with the

segmentation ( {( , , . ), . }) = = = = − =s e a48 88 0 36 0 252 2

found by our algorithm. This deletion in the b-globin

locus was detected, and the estimate of its length, ŵ ,

corresponding to 641 bp in the genomic coordinate sys-

tem, is highly accurate in comparison with the actual

length of the deletion (622 bp).

Read-depth genome resequencing data

The genome of a Utah resident with Northern and Wes-

tern European ancestry from the CEPH collection
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Figure 4 The ROC curves of array-CGH data analysis methods.

(A) The complete plot. All curves were calculated using the same
data set. They show that our Bayesian algorithm (black line) is

appreciably more sensitive than all other methods (gray lines) at

low (< 10%) false positive rates. (B) Details of the ROC curves in the

low FPR region of (A) inside the box with dashed border. See Lai et
al. [28] for the identities of the gray ROC curves. TPR, the true

positive rate; FPR, the false positive rate.
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(NA12878) has been sequenced by the 1000 Genomes

Project using both the 454 paired-end and the Illumina

shot-gun sequencing technologies, which produced long

(120-bp) sequence reads with low coverage (0.5×) and

short (50-bp) ones with high coverage (40×),

respectively.

After using these two sequence sets to generate the

‘known’ genomic deletions in and the read-depth data

from this individual, we apply our method to the read-

depth data and compare the finding with the ‘known’

genomic deletions. Despite a very low sequencing depth,

we are able to use 454 reads to detect several large

genomic deletions in this individual based on the

gapped (i.e., ‘split’) alignment of some of these long

reads. These deletions are taken as known, and we use a

2653-bp deletion on chromosome 6 from 32,669,938 to

32,672,591 to illustrate the application of our read-depth

method. After mapping approximately 2.4-billion 50-bp

Illumina reads to the human reference genome, we

count the number of reads in a 200-bp non-overlapping

sliding window to produce the read-depth data. Figure

6A shows the read distribution profile based on the Illu-

mina short reads surrounding the 2653-bp deletion

locus.

Our method detected this deletion in the read-depth

data and estimated its parameters to be

ˆ {( ˆ , ˆ , ˆ . ), ˆ . } = = = = − =s e a32670400 32672500 51 20 27 732 2 .

To investigate how the sequencing depth affects the

estimation of the start and the end positions of a CNV,

we simulate a series of sequencing depths by randomly

sampling (without replacement) different numbers of

mapped Illumina reads and then apply our method to

the simulated data. The standard deviation in the esti-

mates of the start and the end positions, s and e, reflects

how well these two parameters can be estimated from

the read-depth data. In figure 6B we plot the averaged

standard deviation in the estimates of the s and e at

different sequencing depths. It is clear as the sequencing

depth decreases from the original depth (37×) the

estimates of the terminal positions become less accurate.

In fact, when the coverage is below 1×, it becomes very

difficult to find the deletion at all.

Discussion and Conclusion

The Metropolis-Hastings and the Gibbs sampling algo-

rithms, two Markov chain Monte Carlo simulation

methods, have been widely used for Bayesian inference.

Developed by Metropolis et al. [33] and subsequently

generalized by Hastings [34], the Metropolis-Hastings

algorithm generates, based on the current state and a

pre-selected proposal density, candidate states that are

accepted (or rejected) stochastically with a certain

acceptance probability but then retains the current value
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Figure 5 CNV profiles of three experimental array-CGH data

sets. Probe segmentation of (A) GBM31, (B) GBM29, and (C) b-
globin small deletion array-CGH data. In all cases, the MCMC

sampler was run for 1000 iterations. The first 100 samples were

discarded as the ‘burn-in’ samples, and the mean and the standard

deviation of each parameter were estimated from the rest 900
samples. The estimated means are plotted as a step function (the

black line), and the estimated standard deviations are indicated as

yellow boxes, each defined by mean ± 1.96 × standard deviation,
which corresponds to a 95% credible interval.
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when rejection takes place. Gibbs sampling [29] draws a

sequence of random samples from conditional distribu-

tions of unknown parameters to characterize their joint

target distribution. In fact, the Gibbs sampling can be

regarded as a special case of the Metropolis-Hastings

algorithm as the acceptance probability is always one–

i.e., every proposal is automatically accepted.

For our Bayesian analysis of genomic copy number

data, we implemented both the random walk Metropo-

lis-Hastings (RWMH) and the Gibbs sampling algo-

rithms and observed that in this application Gibbs

sampling is much more suitable for parameter inference.

RWMH worked well for one-CNV data. However, if the

data contain two widely separated CNVs, it can only

identify one of them but not both. To investigate this

limitation, we plotted the landscape of the posterior

probability distribution in a two-dimensional parameter

space. A two-CNV data set D (M = 700) with θ = {N =

2, (s1 = 100, w1 = 20, a1 = 2), (s2 = 600, w2 = 20, a2 =

2), s2 = 0.42} was first simulated, and then the posterior

probability was evaluated with various combinations of

s1 and s2 while all other parameters were kept fixed at

their true values.

The surface plot in Figure 7A shows a global maxi-

mum peak located at s1 = 100 and s2 = 600 as expected

and an overall very rugged posterior distribution ‘ter-

rain’: the landscape is full of local maxima with, espe-

cially, two prominent ‘ridges’ of local maxima at s1 =

100 and s2 = 600, respectively. It is clear from Figures

7A and 7B that if the Markov chain of RWMH gets to a

local maximum on the ridge at s1 = 100 or s2 = 600 but

fortuitously far from the global maximum, it will be

trapped on the ridge and practically cannot reach the

global peak if the random update interval is small

(which is almost always the case). Based on these obser-

vations, we chose the Gibbs sampling algorithm for our

Bayesian analysis of the genomic copy number data as

the Gibbs sampler is well suitable to explore this ‘ridged’

terrain by using full conditionals to scan the landscape

along ridges to find the global maximum.

As the ROC curves in Figure 4 show, our Bayesian

algorithm is the most sensitive method at low (< 10%)

false positive rates. This means that at a given low FPR

our method can identify more true positive probes

inside CNVs than other methods. When the FPR is

higher, it is less sensitive than several methods, most of

which find CNVs through data smoothing. However,

this is hardly a disadvantage, as at high false positive

rates the list of identified CNVs is awash with false posi-

tives, rendering the whole list practically unusable.

In addition to the improved sensitivity, our method

also has several distinct advantages innate to its Baye-

sian approach. The confidence on an estimated para-

meter value can be assessed through its Bayesian

credible interval. Akin to a confidence interval but with

an intuitive probabilistic interpretation, a Bayesian cred-

ible interval is a range of values that contains the true

parameter value with a certain probability. Through sto-

chastic simulation, it is straightforward to summarize

the otherwise analytically intractable joint posterior dis-

tribution of the unknown parameters and compute both
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Figure 6 Identification of CNV in the read-depth data. (A) CNV

profile of a deletion locus in a read-depth data set. Short reads
generated for a CEPH individual were mapped to the human

reference genome and then counted in a 100-bp non-overlapping

sliding window to produce the read-depth data. The counts are

centered to their mean. The MCMC sampler was set up in a similar
fashion as in the previous cases. The estimated means are plotted

as a step function, and the 95% credible intervals as yellow boxes.

The 2653-bp deletion, which is found by long sequence reads that

encompass this deletion locus and thus split around it when
aligned to the reference sequence, is taken as known and shown as

the thin green line on a lower track. (B) The averaged standard

deviation in the estimates of the start and the end positions (s and

e) at different sequencing depths. The S.D. unit is the window size,
which is 200 bp in this case.
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the best estimate and a corresponding Bayesian credible

interval for each parameter in the model. The availabil-

ity of the intervals for sj, ej, and aj–the start and the end

genomic locations and the copy number of each CNV–

is unique to our Bayesian method, and these credible

intervals can be especially useful.

Recent years have seen fast development of methodol-

ogies in different frameworks to detect CNVs in array-

CGH data. For example, to detect CNV breakpoints,

Shah et al. used a modified hidden Markov model

(HMM) that is robust to outlier probes [13], while

Rueda and D’az-Uriarte used a nonhomogeneous HMM

fitted via reversible jump MCMC [12]. Pique-Regi et al.

used piecewise constant (PWC) vectors to represent

genome copy numbers and sparse Bayesian learning to

detect CNV breakpoints [16]. Other methods for seg-

menting array-CGH data have also been implemented,

including using Bayesian change point analysis [15], a

spatially correlated mixture model [14], a Bayes regres-

sion model [35], and wavelet decomposition and thresh-

olding [36].

Due to the computational intensiveness of its MCMC

simulation, the method that we present here can be

most advantageously used to refine CNVs detected by

fast point-estimate methods. It could also be seen as a

basic genomic copy number data analysis framework,

amenable for several possible extensions. Firstly, due to

the nature of the genomic sequence duplications and

deletions, the signal measurements of CNVs will aggre-

gate to certain expected values. Such information could

be incorporated into the model for better signal detec-

tion from background noise. Secondly, more compli-

cated likelihood function, such as a truncated Gaussian,

could be used to handle outliers in genomic copy num-

ber data. Thirdly, informative priors could be used for

better CNV detection. The formation of CNVs in a gen-

ome is potentially affected by many local genomic fea-

tures, such as conservation and repeat content on the

sequence level. Compared with the aforementioned

methods for array-CGH data, our Bayesian approach

has the advantage to readily incorporate such sequence

information through the prior distributions, as it treats

the start and the width of CNVs as parameters and thus

directly models the genomic CNV state. For this initial

Bayesian analysis of genomic copy number data, we

used flat priors for both the CNV start site and width.

However, instead of using such noninformative prior,

we can assign a prior for the start site inversely propor-

tional to the conservation level of the probe sequence.

(This incorporates our belief that the more conserved a

sequence is the less likely it is to be duplicated or

deleted.) For the width, we can assign the width distri-

bution of known CNVs in the database as a prior. The

incorporation of such knowledge through the priors

does not need to be done only once: it can be sequential

(order-insensitive) as more relevant information
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becomes available. Using such informative priors, our

method can be seen as a framework that enables inte-

gration of genomic copy number data and the CNV-

related biological knowledge.
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