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)is paper aims to investigate the use of transfer learning architectures in the detection of COVID-19 from CT lung scans. )e
study evaluates the performances of various transfer learning architectures, as well as the effects of the standard Histogram
Equalization and Contrast Limited Adaptive Histogram Equalization. )e findings of this study suggest that transfer learning-
based frameworks are an alternative to the contemporary methods used to detect the presence of the virus in patients. )e highest
performing model, the VGG-19 implemented with the Contrast Limited Adaptive Histogram Equalization, on a SARS-CoV-2
dataset, achieved an accuracy and recall of 95.75% and 97.13%, respectively.

1. Introduction

)e COVID-19 pandemic has had a major impact on the
world, with over 55 326 907 confirmed cases and 1 333 742
confirmed deaths (according to the World Health Organi-
zation) as of the 19th of November 2020. Contraction of the
virus often results in a respiratory disease, in which common
symptoms include fever, coughing, sore throat, short
breathing, headache, and diarrhea. )ere are new vaccines,
some at trial and initial stages to cure the virus, and therefore
the use of social distancing and rapid mass testing has been
resorted to, in an attempt to minimize its impact.
One of the recently developed testing methods, the se-

rology test, has become the gold standard in testing and
shows impressive performances, with a recall of 70%–85%
between 5 and 10 days after infection, and 85%–90% be-
tween 10 and 14 days after infection. )is test, however, has
taken months to develop and replaces the previously used
RT-PCR test, which not only shows a poor recall of 71% [1]
but also has an added disadvantage of being a completely
manual and time-consuming process, with results taking up
to two days.
An alternative approach to detecting the virus can be

found in use of radiological images such as CT scans. )e

presence of features in the scans such as bilateral and pe-
ripheral predominant ground-glass opacities can indicate
early stage of infection, while air space consolidation often
correlates with the peak stage of infection. Advancements in
computer vision can also allow for the development of tools
to help create an automated process of diagnosing the
disease from these images and, in doing so, allow for another
line of testing, which could assist in the global fight against
this pandemic. In this paper, an investigation is conducted
on the use of transfer learning in the task of detecting
COVID-19 from lung scans. Transfer learning is a strategy
wherein the knowledge mined by a machine learning al-
gorithm from one set of data is transferred to solve a dif-
ferent but related task, involving new data, wherein the
volume of data available for the new task may be limited [2].
In this study, the knowledge gained by training a series of

different convolutional neural networks (CNN) on a large
scale, hierarchical dataset called ImageNet [3], is transferred
to the task of detecting COVID-19 from CT lung scans.
)e series of pretrained CNN’s are retrained on the

COVID-19 lung scan dataset, and the resulting models are
evaluated to determine the best model for the development
of a framework for COVID-19 detection. Given the reliance
of deep learning models on a large quantity of data for
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optimal training, the transfer of knowledge from a large-
scale generic dataset such as the ImageNet database to a
specific COVID-19 dataset can allow for the development of
high performing models that compensate for the limitations
in training data for the latter. )is approach is useful when
highly accurate models need to be developed to tackle “Black
Swan” events, such as the emergence of a new virus, and the
requirements of mass testing. )e use of deep convolutional
networks also allows the automatic mass feature extraction.
)e study evaluates and compares the performance of five
different transfer learning models, namely, the DenseNet-
201 [4], ResNet-101 [5], MobileNet-V2 [6], EfficientNet-B4
[7], and VGG-19 [8], which, according to the literature
[9–12], have shown to be amongst the best performing
architectures in detecting the presence of COVID-19 from
lung scans.
Furthermore, this study investigates the effect of stan-

dard Histogram Equalization (HE) and Contrast Limited
Adaptive Histogram Equalization (CLAHE) on the per-
formances of the transfer learning models. To the best of the
authors’ knowledge, there is no similar study that investi-
gates the use of the aforementioned Histogram Equalization
techniques on datasets that use transfer learning in this task.
)erefore, the main contributions of this study lie in the
investigation of the use of these Histogram Equalization
techniques when used on the original dataset.
In the following sections, an analysis of recent scholarly

work done in the domain of detecting COVID-19 from lung
scans is presented. )ereafter, a description of the meth-
odology used in the implementation of this study is pre-
sented. Finally, an evaluation of the performances derived
from the empirical experiments is discussed.

2. Related Work

)e use of computer aided detection of diseases in medical
images is a practice that dates back to the 1960s [13] and has
shown consistent progress ever since, with many papers
reporting highly accurate diagnosis of a range of conditions,
such as breast cancer [14], osteoporosis, and cardiac disease
[15]. )e detection frameworks usually make use of ultra-
sound scans, x-ray images, and CT scans.
While the higher availability and lower cost of ultra-

sound and x-ray machines allow for more accessibility to
patients, CT is generally considered to be the gold standard
of radiological imaging tools, due to the high resolution and
contrast images. )ese images can be improved through the
use of certain Histogram Equalization techniques [16].
Recent work done to create computer vision tools that are
able to detect COVID-19 from lung scans has oftenmade use
of deep learning tools. In this literature review, we present an
overview of recent related studies to this topic.
Jaiswal et al. [10] investigated the performance of a

DenseNet-201 architecture in detecting the presence of
COVID-19 from CT lung scans.)e use of a DenseNet-201
allows for the extraction of complex features for classifi-
cation due to the 201-layer depth of the network, while
avoiding the vanishing gradient problem. )is problem
occurs when the gradients from where the loss function is

calculated shrink to zero after several applications of the
chain rule. )is results in the weights never updating their
values and, therefore, no learning taking place. )e
DenseNet-201 solves this problem through the use of skip
connections from initial filter layers to the ones found
later. )ese skip connections allow for the gradients being
able to flow back directly from the deeper layers of the
convolutional base to the initial layers. In this paper, the
DenseNet-201 base is further combined with an artificial
neural network for classification, which consists of two
hidden layers, made up of made up of 128 and 64 nodes,
respectively, with ReLU activation functions, and a 2-node
softmax output layer. )e dataset used is the SARS-CoV-2
dataset. )e paper reports an accuracy of 97% from the
DenseNet-201, which slightly outperforms the VGG-16
and ResNet-152-V2, also used in the study, which show
accuracies of 96% and 95%, respectively.
A recently published article by Marques et al. [12] in-

vestigated the use of the EfficientNet-B4 architecture in
differentiating between x-ray lung scans that either have
COVID-19, have general community acquired pneumonia,
or are healthy.)e EfficientNet architecture uses a process of
uniformly scaling the networks width, depth, and resolution
with a set of fixed scaling coefficients. It uses a principled way
of scaling the width, depth, and resolution of the network to
increase the receptive field for the extraction of more
complex features from an image by maintaining a certain
ratio to which each of those components is scaled. )e
EfficientNet-B4 architecture is a relatively newly developed
architecture and, to the authors’ knowledge, has had very
little research done in evaluating its performance in this task,
including any comparative evaluations on it against other
transfer learning architectures. )e EfficientNet-B4 archi-
tecture was chosen over the other EfficientNet architectures
due to its 19 million parameters, which allowed for a degree
of computational feasibility in this task, according to the
authors. )e 19 million parameters are a great deal less than
the many of the other architectures investigated for this task
in other literature; however, this paper reports that the
EfficientNet-B4 shows impressive performances, with an
accuracy, precision, recall, and F1-score of 96.7%, 97.54%,
96.69%, and 99.62%, respectively. )is study was evaluated
using a 10-fold validation process, and the architecture was
not compared against other architectures. A three-hidden-
layer artificial neural network with a three-node softmax
output layer is attached to the convolutional base, and a 30%
dropout rate is used to avoid overfitting.
In a paper by Islam et al. [17], an ensemble CNN-RNN

architecture is proposed that investigates and compares the
use of a VGG-19, DenseNet121, InceptionV3, and Incep-
tionResNetV2 convolutional base, used for segmentation
and feature extraction in combination with a recurrent
neural network (RNN) classifier. )e study aimed to create a
framework that is capable of distinguishing between
COVID-19 lung scans, community acquired pneumonia
lung scans, and healthy lung scans. )e paper describes the
methodology of creating this ensemble model to be exactly
the same as the methodology used when using a standard
fully connected artificial neural network (ANN) for

2 Computational Intelligence and Neuroscience



classification, with the only difference being the use of the
RNN in place of an ANN for classification. In this study, a
dataset that combines x-ray images from seven different
sources, which include the Italian Society of Radiology, the
Radiopaedia, and the Figshare data repository is used. )e
use of images from different sources may suggest an attempt
in building a model that has a high degree of generalizability
and does not overfit on a specific dataset. )e combined
dataset contains a total of 6939 samples, 1850 of which are
COVID-19-positive lung scans, 1851 of which are com-
munity acquired pneumonia lung scans, and 1850 of which
are healthy lung scans, which can be considered an equally
distributed dataset. )e study shows that the VGG-19-RNN
architecture outperforms all other architectures, with 99.9
percent accuracy, 99.9% ROC-AUC, 99.8% recall, and 99.8%
F1-score. )is study represents one of the few ensemble
architecture studies that incorporate transfer learning and is
a definite potential avenue for future research, across newly
developed transfer learning models.
Makris et al. [11] evaluated the use of several transfer

learning frameworks for the differentiation between x-ray
images of COVID-19 infected lung scans, lung scans infected
with community acquired pneumonia, and healthy lung scans.
)e study compared the VGG-16, VGG-19, MobileNet-V2,
InceptionV3, XCeption, InceptionResNet-V2, DenseNet-201,
ResNet-152-V2, and NASNet-Large architectures and showed
the VGG-16 and VGG-19 architectures to be the highest
performing architectures, with overall accuracies of 95.88% and
95.03%, respectively, while the MobileNet-V2 and DenseNet-
201 showed the lowest accuracies of 40% and 38%, respectively.
)e VGG-16 and VGG-19 also showed the highest recalls of
96% and 92%, respectively, while the MobileNet-V2 and
DenseNet-201 showed the lowest recalls of 12% and 5%, re-
spectively. )e low performances of the MobileNet-V2 and
DenseNet-201 models do not seem to reflect findings in other
papers, which may be attributed to the use of different con-
ditions under which the experiments were conducted, such as
the use of 35 epochs to train the models, a number of epochs
significantly lower than what is seen in other literature. )e
study uses a publicly available dataset, created by Dr. Joseph
Cohen [18]. )e paper does mention that while the DenseNet-
201 and MobileNet-V2 architectures show lower accuracies
than the highest performing models, the VGG-16 and VGG-
19, they both outperformed the VGG-16 and VGG-19 in terms
of precision and specificity.)is may suggest that the use of the
formermodels, which show lower accuracies, actually aremore
capable models if the goal of the task was to ensure that
confirmed negative patients are accurately identified as neg-
ative.)esemetrics however are not themost important one. A
higher importance to the recall metric is more valid in this task
as a framework that has a greater capability of classifying a
confirmed COVID-19-positive lung scan as COVID-19 pos-
itive would be more beneficial than a framework that is more
capable of classifying a confirmed COVID-19-negative lung
scan as negative. )is is due to the fact that the recall or
sensitivity of a test being higher means that, after testing, there
is a lower chance of COVID-19-positive patients being rein-
troduced into society, having being tested as negative, and
spreading the virus further.

3. Methods and Techniques

)e proposed methodology follows a standard image pro-
cessing pipeline of data acquisition, preprocessing, seg-
mentation, feature extraction, and classification. )e
flowchart in Figure 1 gives an overview of the proposed
model.
)e initial step acquires the original dataset and two

more copies, then using Histogram Equalization (HE) on
one copy, and Contrast Limited Adaptive Histogram
Equalization (CLAHE) on another, thereby creating 3
datasets.
From this point, each dataset is split into a training,

validation, and testing set with the ratio 60 : 20 : 20. )is
stage also uses of data augmentation on the training sets,
which creates dummy data, and allows for the training of
models which are less prone to a phenomenon known as
overfitting.
Segmentation and feature extraction are automatic

processes, done in the following stage, by the convolutional
bases of our transfer learning models, while the classification
stage is carried out using a fully connected artificial neural
network, which consists of a single 256-node hidden layer
using the ReLU activation function, and a two-node softmax
output layer.)e entire process is discussed in more detail in
the following sections.

3.1. Data Acquisition. )e dataset used for in this study is
the SARS-CoV-2 CT scan dataset [19]. It consists of 2482
images obtained from patients located in São Paulo Brazil
and is split into 1252 COVID-19-positive and 1230
COVID-19-negative images. )e images found in this
dataset show a relatively high degree of consistency and
quality, with all images having the same dimensions and
orientations, and no presence of Moire patterns or clinical
markings, which are often found in images from other
datasets. )e dataset was specifically created with the
intention of encouraging research into artificial intelli-
gence methods that would be able to detect the presence or
absence of the virus within an individual through an
analysis of their CTscans. Some of the images found in the
dataset may be seen in Figures 2–5.

3.2. Histogram Equalization and Contrast Limited Adaptive
Histogram Equalization. After the acquisition stage, the
original dataset is subjected to two different forms of His-
togram Equalization, namely, the standard global version,
which will be referred to as Histogram Equalization (HE), as
well as an adaptive version, which will be referred to as
Contrast Limited Adaptive Histogram Equalization
(CLAHE). )e purpose of Histogram Equalization is to
effectively spread out the most frequent intensity values, i.e.,
stretch out the intensity range of the image, and in doing so
create images of increased contrast. )e increase in contrast
allows for the presence of certain features to be enhanced
and subsequently improve the performance in feature
extraction.
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Figure 1: Proposed model for COVID-19 detection.
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Standard Histogram Equalization (HE) uses the same
transformation derived from the image histogram to
transform all pixels. )is global equalization performs op-
timally when the distribution of pixel values is similar
throughout the image. However, when the image contains

regions that are significantly lighter or darker than most of
the image, the contrast in those regions will not be suffi-
ciently enhanced.
)is problem is compensated for by Contrast Limited

Adaptive Histogram Equalization (CLAHE). CLAHE
transforms each pixel using a transformation function de-
rived from a neighborhood region. Each pixel is transformed
based on the histogram of a square, subregion of the image
surrounding the pixel. )is local equalization uses the exact
same transformation function as the ‘global equalization’
used in standard Histogram Equalization; however, it is
done iteratively across distinct subsections of the image. )e
contrast limitation principle in CLAHE also prevents the
overamplification of noise in relatively homogeneous re-
gions of an image. )is separates it from the standard
Adaptive Histogram Equalization technique that does not
use contrast limitation, which often sees the over-
amplification of noise in homogeneous regions.
)e illustrations of the use of both Histogram Equal-

ization techniques on the lung scans are shown in
Figures 6–11, with the images’ corresponding histograms.
)e figures show a large increase in finer details when

standard Histogram Equalization is applied to the original
image, however, a slight decrease in the area of larger ar-
tifacts within the original image, as well as what can be
considered as an enhancement of background noise. )e use
of Contrast Limited Adaptive Histogram Equalization shows
a great enhancement to the finer details of the image, while
still preserving the area and brightness of larger artifacts.)e
number of distinct artifacts visible is less than the image that
uses standard Histogram Equalization; however, there is also
less degree of background noise than the image that uses
standard Histogram Equalization.

3.3.DataAugmentation. CNNmodels have been proven to
perform extremely well on many computer vision tasks;
however, they require a large amount of training data to
avoid overfitting [20, 21]. Overfitting refers to the phe-
nomenon where a machine learning model learns a
function with a high degree of variance, such that the
model perfectly models the training data, but has a low
degree of generalizability. Unfortunately, in many cases,
the ability to access large amounts of data for the optimal
training of a CNN is not possible. An example can be seen
when a new disease emerges, and we initially have a small
amount of radiological images to train a model. Data
augmentation comprises a variety of techniques that
enhance the size and quality of training datasets, such that
better deep learning models can be built using them. )e
use of these techniques creates “dummy data” which differ
from the original data, in that it has been subjected to
various rotations, width shifts, height shifts, and zooming.
)e use of these augmentation techniques also allows for
the training of models that are more invariant to the range
of orientations and configurations that different radiol-
ogists may use when inputting images to be classified. )is
study performs data augmentation by using the Python
Image Data Generator library, to create images that see a

Figure 2: High quality COVID-19 negative slice.

Figure 3: Obfuscated COVID-19 negative slice.

Figure 4: High quality COVID-19 positive slice.

Figure 5: Obfuscated COVID-19 positive slice.
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rotation change of within a range of −40 to 40 degrees to
the original images, a width shift, height shift, shear range,
and zoom range of within 20 percent of the original image,
and images that are flipped over the horizontal axis.
Examples of the augmented images can be seen in
Figures 12–14.
In the large scale application of a COVID-19 detection

framework, the base machine learning model used for
classification needs to be able to handle inputs that differ
from the original training set, due to the fact that different
radiologist inputting these images may decide to input
images that do not perfectly match the orientations of the
training set images. With this considered, a model that has a

significant degree of generalizability is necessary, and it is
key that a model used for this task performs data aug-
mentation on its training data.

3.4. Experimental Setup. )e architectures considered for
this experiment are the ResNet-101, VGG-19, DenseNet-
201, EfficientNet-B4, andMobileNet-V2 architectures.)ese
architectures are reported to be amongst the best performing
architectures in literature revolving around this topic [9–12],
and the consideration of them in this experiment made sense
due the high probability of them being able to produce a high
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Figure 9: HE lung scan histogram.

Figure 10: CLAHE lung scan.
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Figure 11: CLAHE lung scan histogram.
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Figure 7: Unprocessed lung scan histogram.

Figure 8: HE lung scan.

Figure 6: Unprocessed lung scan.
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performing framework for this task. )e experiments across
models are performed using the original, pretrained bases of
the transfer learning models, to which a single, fully con-
nected hidden layer, made up of 256 ReLU activated neurons
is attached to the flattening layer of the convolutional base.
)is hidden layer is attached to a two-node softmax output
layer, which gives a probabilistic output of a lung scan
belonging to the COVID-19 positive or negative class. )e
convolutional bases perform automatic feature extraction,
through the process of extracting feature maps from the
original images, using the convolutional layers, and then
converting these feature maps into a latent representation
for classification by the fully connected artificial neural
network.

)e training process involves the learning of newweights
for the convolutional base and artificial neural network
classifier over time. )is learning process allows for the
convolutional base to extract features from the input image
more optimally and allows for those features to be processed
and classified more accurately by the artificial neural net-
work.)e training process uses the categorical cross entropy
loss function and RMSprop optimizer to iteratively update
the weights over time. )e updating of the weights ideally
reduces the loss over time. )is decrease in loss correlates to
a model that produces a small number of misclassified in-
stances, which is ideal for a classification problem.
Each model is trained over 200 epochs, and uses a

learning rate of 2x10− 5.
)e decision to use these hyperparameters was arrived at

through a process of manual hyperparameter tuning, which
started with the use of 50 epochs and a learning rate of 0.001
[22, 23], and increased from that point, until a point where
the models showed a peak performance. Each model was
trained using a training and validation batch size of 20, and
tested using a batch size of 15. Figure 15 shows the average
training accuracy and loss calculated over all 15 experiments
done. )e graph shows an increase in training accuracy over
time, which directly correlates with the decrease in loss over
time.
)e experiments are conducted on 64-bit Windows 10

desktop machine, which comprises a 16GB DDR4 RAM and
Intel i-7-7700 processor, running at 3.60GHz. )e study is
conducted in a Jupyter Notebook environment and uses the
Python language. A significant portion of the codemakes use
of the TensorFlow and sklearn libraries, which assist in
model development, training, and evaluation.

3.5. Results and Discussion. )e performances of all ex-
periments are evaluated by using a series of confusion
matrix-based performance metrics. )ese values reflect the
performances of the trained model on the testing set. )e
metrics evaluated are accuracy, precision, recall, F1-score,
specificity, and ROC-AUC. )e confusion matrices used to
evaluate the classifiers are shown in Figures 16–30, with true
positives (TP) representing the COVID-19-positive lung
scans that are correctly classified as positive, true negatives
(TN) representing COVID-19-negative lung scans that are
correctly classified as negative, false positives (FP) repre-
senting COVID-19-negative lung scans that are incorrectly
classified as positive, and false negatives (FN) representing
COVID-19-positive lung scans being incorrectly classified as
negative. )ese metrics are explained in greater detail in
Sections 3.5.1 to 3.5.6.

3.5.1. Accuracy. It is a measure that indicates the ratio of all
the correctly recognized cases to the overall number of cases.
While this metric generally gives a decent reflection of the
classifier, it may not reflect a classifier’s true performance in
a scenario where there is an uneven class distribution.
Accuracy can be computed using the following formula:

Figure 12: Horizontally flipped lung scan.

Figure 13: Negatively rotated lung scan.

Figure 14: Positively rotated lung scan.
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accuracy �
TP + TN

TP + TN + FP + FN
. (1)

3.5.2. Precision. It is the ratio of all correctly classified
positive instances by a model to the overall number of
positive classifications by a model. A low precision indicates
that a model suffers from a large number of false positives.

)is measure, along with recall, F1-score, and specificity, is
more capable of handling class distribution issues. Precision
can be computed using the following formula:
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Figure 16: DenseNet-201: no equalization.
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Figure 17: DenseNet-201: HE.
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Figure 18: DenseNet-201: CLAHE.
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Figure 19: ResNet-101: no equalization.
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Figure 20: ResNet-101: HE.
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Figure 21: ResNet-101: CLAHE.
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Figure 22: VGG-19: no equalization.
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Figure 24: VGG-19: CLAHE.
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Figure 25: EfficientNet-B4: no equalization.
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Figure 26: EfficientNet-B4: HE.

222

191

29

53

Predicted class

COVID negative COVID positive

C
O

V
ID

 p
o

si
ti

ve
C

O
V

ID
 n

eg
at

iv
e

A
ct

u
al

 c
la

ss
Figure 27: EfficientNet-B4: CLAHE.
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Figure 28: MobileNet-V2: no equalization.
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Figure 29: MobileNet-V2: HE.
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Figure 23: VGG-19: HE.
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precision �
TP

TP + FP
. (2)

3.5.3. Recall. Also called sensitivity, it is the ratio of all
correctly classified positive instances by a model to the
overall number of true positive instances being tested. Recall
can be computed using the following formula:

recall �
TP

TP + FN
. (3)

3.5.4. F1-Score. It is used as the harmonic mean of precision
and recall. A high F1-score is obtained when there is some
sort of balance between precision and recall. If the F1-score
is not very high, this may be an indication of one of these
metrics being improved at the expense of the other. F1-score
can be calculated using the following formula:

F1 − score �
2 × precision × recall

precision + recall
. (4)

3.5.5. Specificity. It is the ratio of correctly classified negative
instances by a model to the overall number of true negative
instances being tested. Specificity can be calculated using the
following formula:

specificity �
TN

TN + FP
. (5)

3.5.6. Area under the Receiver Operating Characteristic
Curve. )e receiver operating characteristic curve (ROC
curve) is a graph that shows the performance of a classifi-
cation model at all classification thresholds. )e curve plots
the true positive rate (recall) against the false positive rate
(1−specificity). Lowering the classification threshold clas-
sifies more items as positive, which increases both the false
positive and true positive rates. )e use of the area under the
receiver operating characteristic curve (ROC-AUC) pro-
vides an aggregate measure of performances across all
possible classification thresholds. In this task, a higher ROC-
AUC implies that a model is better at predicting true

negative lung scans as negatives, and true positive lung scans
as positives. )e ROC curves for each transfer learning
architecture, used on the original, Histogram Equalized, and
Contrast Limited Adaptive Histogram Equalized datasets,
are shown in Figures 31–35.
For the purposes of this study, the most important

metric to consider is the recall [11].
While the other metrics are also very important, a model

that shows a low recall indicates that that particular model is
susceptible to testing a patient as COVID-19 negative, when
they are actually positive. )is may result in a large number
of COVID-19 positive patients being reintroduced into
society, completely unaware of the fact that they are infected,
contributing to the spread of the virus. It may also mean that
a patient does seek medical treatment for their infection,
whichmay lead to death. Another metric also very important
is the ROC-AUC, as it gives a good overall probability of a
model being able to predict a true negative as negative, and a
true positive as positive. )e results of our experiments can
be seen in Tables 1–5.
From the results in Tables 1–5, the VGG-19 architecture

achieves the highest recalls across all three datasets. Given
that the difference in the recall is not significant enough to
show an experiment with the best results, the ROC-AUC,
accuracy, and F1-score are used to determine it. )e VGG-
19, trained and tested on a dataset that uses Contrast Limited
Adaptive Histogram Equalization, achieved the optimum
results. )is particular combination shows an accuracy,
recall, F1-score, and ROC-AUC of 95.75%, 97.13%, 95.75%,
and 99.30%, respectively.
While this model shows the highest performances on

those specific metrics, its specificity of 94.42% is not as good
the specificity of 99.60% shown by a MobileNet-V2 archi-
tecture, trained on a Histogram Equalized Dataset. Given a
different task, the consideration of choosing a model’s
specificity as themost important metric may have beenmore
appropriate. )is task, however, would not benefit as much
from a model that is more capable of classifying true neg-
atives as negative, but would benefit more from a model that
has high capability of classifying true positives as positive.
)e results of the experiment show no conclusive proof

that Histogram Equalization and Contrast Limited Adaptive
Histogram Equalization have any significant impact on the
overall performance across all models, with different models
showing varying performances when different equalization
techniques are used on their datasets.
Versaci et al. [24] proposed a fuzzy technique for

adaptive gray-level image contrast enhancement. )e pro-
posed technique enables high contrast enhancement in all
the images with performance that is fully comparable with
that obtained by three more sophisticated fuzzy techniques
and by standard Histogram Equalization. Furthermore,
Versaci and Morabito [25] presented a new fuzzy edge
detector based on both fuzzy divergence and fuzzy entropy
minimization for the thresholding substep in gray-scale
images. )e fuzziness content of each image has been
quantified by specific indices formulated in terms of fuzzy
divergence. )erefore, these are alternative techniques for
future work in this research work.

232

21727

19

Predicted class

COVID negative COVID positive

C
O

V
ID

 p
o

si
ti

ve
C

O
V

ID
 n

eg
at

iv
e

A
ct

u
al

 c
la

ss

Figure 30: MobileNet-V2: CLAHE.
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3.6. Literature Comparison. A comparative analysis of other
studies investigating the use of transfer learning in the
detection of COVID-19 in lung scans is presented in this
section. A tabular comparison of the performances shown in
the various papers is shown in Table 6.
Apostolopoulos et al. [26] reported the highest accu-

racies in detecting COVID-19 in lung CT scans when using
the MobileNet-V2 and VGG-19 architectures. )is study
was done using a dataset obtained from various sources. )e
dataset contained 224 COVID-19-positive lung scans and
504 COVID-19-negative lung scans. )e unevenly distrib-
uted dataset may have contributed to some skewing of the
accuracy.
Markris et al. [11] reported the use of a VGG-16 pro-

ducing the highest accuracies and recalls in a study that used
a publicly available dataset on Kaggle, created by Dr Joseph

Cohen [18]. )e study uses a dropout of 50%, with the
models being trained over 35 epochs.
Marques et al. [12] investigated the use of the Effi-

cientNet-B4 architecture. )e study uses a 3-layer artificial
neural network, which may have resulted in higher accu-
racies than that which may have come from using fewer
layers, as seen in other studies. A dropout of 30% is used in
this study.
Jaiswal et al. [10] investigated the use of the DenseNet-

201 architecture. )e study uses the SARS-CoV-2 CT scan
dataset [19], mentioned earlier in this paper. )e model uses
a 2-hidden-layer artificial neural network, which may
contribute to an increase in accuracy that does not reflect the
true performance of the transfer learning convolutional
base.)e only metric reported in this study is the accuracy of
the trained model.
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Figure 31: ROC graph: DenseNet-201.
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Figure 32: ROC graph: ResNet-101.
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Figure 33: ROC graph: VGG-19.
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Figure 34: ROC graph: EfficientNet-B4.
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Table 2: ResNet-101 performances.

Model Accuracy % Precision % Recall % F1-score % Specificity % ROC-AUC %

ResNet-101: no equalization 93.13 93.38 92.62 93.00 93.62 98.65
ResNet-101 +HE 93.33 91.05 95.90 93.41 90.83 97.67
ResNet-101 +CLAHE 86.86 81.85 94.26 87.61 79.68 88.91

Table 3: VGG-19 performances.

Model Accuracy % Precision % Recall % F1-score % Specificity % ROC-AUC %

VGG-19: no equalization 93.33 89.21 98.36 93.56 88.44 98.99
VGG-19 +HE 90.90 85.66 97.95 91.39 84.06 98.01
VGG-19 +CLAHE 95.75 94.42 97.13 95.75 94.42 99.30

Table 4: EfficientNet-B4 performances.

Model Accuracy % Precision % Recall % F1-score % Specificity % ROC-AUC %

EfficientNet-B4: no equalization 84.44 78.49 94.26 85.66 74.90 93.15
EfficientNet-B4 +HE 85.25 89.40 79.50 84.16 90.83 94.29
EfficientNet-B4 +CLAHE 83.43 86.81 78.27 82.32 88.44 92.58

Table 5: MobileNet-V2 performances.

Model Accuracy % Precision % Recall % F1-score % Specificity % ROC-AUC %

MobileNet-V2: no equalization 93.93 92.46 95.49 93.95 94.42 98.30
MobileNet-V2 +HE 91.31 87.64 95.90 91.58 99.60 96.45
MobileNet-V2 +CLAHE 90.70 91.94 88.93 90.41 96.01 97.63
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Figure 35: ROC graph: MobileNet-V2.

Table 1: DenseNet-201 performances.

Model Accuracy % Precision % Recall % F1-score % Specificity % ROC-AUC %

DenseNet-201: no equalization 94.34 94.26 94.26 94.26 92.43 98.39
DenseNet-201 +HE 93.93 99.53 88.11 93.47 86.85 99.02
DenseNet-201 +CLAHE 91.71 95.51 87.29 91.22 92.43 98.22

12 Computational Intelligence and Neuroscience



Islam et al. [17] investigated the use of CNN-RNN
ensemble architectures in this task. )e use of the VGG-19
architecture produces the highest accuracies and recalls. A
dataset that combines images from various sources is used.
Das et al. [27] reported the use of the XCeption archi-

tecture producing the highest accuracies in this task. )e
dataset used is obtained from a publicly available dataset,
created by Ozturk et al. [28].
Ardakani et al. [29] reported the use of the ResNet-101

architecture outperforming 9 other architectures, including
the ResNet-50. )e study uses a dataset obtained manually
from patients in a hospital in the Toshiba Medical Center in
Japan. )e study also compared the results of the experi-
ments against human experts. )e human experts are re-
ported to show accuracies and recalls of 86.27% and 89.21%,
respectively.

3.7. Conclusion and Future Work. In this paper, an inves-
tigation into 5 different transfer learning architectures is
conducted, to determine their performances when tasked
with detecting COVID-19 in lung CT scans. In addition, the
study also evaluates the impact of using standard Histogram
Equalization and Contrast Limited Adaptive Histogram
Equalization on the the lung scans. )e final results show
that the VGG-19 architecture, combined with a dataset that
uses Contrast Limited Adaptive Histogram Equalization,
showed the best overall performance, with an accuracy of
95.75%, recall of 97.13%, F1-score of 95.75, and ROC-AUC
of 99.30%. )e final results of our study do not give a de-
finitive answer on whether or not the Histogram Equal-
ization techniques used actually have an overall effect on
performance across all models, with some architectures
showing higher performances with Histogram Equalization,
and some showing higher accuracies without Histogram
Equalization.
Given the high demands on COVID-19 testing, as well as

the availability of CT scans in most medical institutions, the
use of a framework, based on a high performing architecture
like the VGG-19 described above, can pose an alternative to
the currently used testing methods and help reduce the
bottleneck on those resources.
Future work on this topic should include the investi-

gation of automatic hyperparameter optimization tech-
niques on transfer learning models, as well as the
development of transfer learning-based frameworks that
allow for the processing of 3D CT scans.
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