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Abstract

This study was sought to investigate the feasibility of using smartphone-based breathing

sounds within a deep learning framework to discriminate between COVID-19, including

asymptomatic, and healthy subjects. A total of 480 breathing sounds (240 shallow and 240

deep) were obtained from a publicly available database named Coswara. These sounds

were recorded by 120 COVID-19 and 120 healthy subjects via a smartphone microphone

through a website application. A deep learning framework was proposed herein that relies

on hand-crafted features extracted from the original recordings and from the mel-frequency

cepstral coefficients (MFCC) as well as deep-activated features learned by a combination of

convolutional neural network and bi-directional long short-term memory units (CNN-

BiLSTM). The statistical analysis of patient profiles has shown a significant difference (p-

value: 0.041) for ischemic heart disease between COVID-19 and healthy subjects. The

Analysis of the normal distribution of the combined MFCC values showed that COVID-19

subjects tended to have a distribution that is skewed more towards the right side of the zero

mean (shallow: 0.59±1.74, deep: 0.65±4.35, p-value: <0.001). In addition, the proposed

deep learning approach had an overall discrimination accuracy of 94.58% and 92.08%

using shallow and deep recordings, respectively. Furthermore, it detected COVID-19 sub-

jects successfully with a maximum sensitivity of 94.21%, specificity of 94.96%, and area

under the receiver operating characteristic (AUROC) curves of 0.90. Among the 120

COVID-19 participants, asymptomatic subjects (18 subjects) were successfully detected

with 100.00% accuracy using shallow recordings and 88.89% using deep recordings. This

study paves the way towards utilizing smartphone-based breathing sounds for the purpose

of COVID-19 detection. The observations found in this study were promising to suggest

deep learning and smartphone-based breathing sounds as an effective pre-screening tool

for COVID-19 alongside the current reverse-transcription polymerase chain reaction (RT-

PCR) assay. It can be considered as an early, rapid, easily distributed, time-efficient, and

almost no-cost diagnosis technique complying with social distancing restrictions during

COVID-19 pandemic.
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Editor: Robertas Damaševičius, Politechnika

Slaska, POLAND

Received: September 14, 2021

Accepted: December 24, 2021

Published: January 13, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0262448

Copyright: © 2022 Alkhodari, Khandoker. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Project Coswara

COVID-19 dataset is publicly available at https://

github.com/iiscleap/Coswara-Data. The shallow

and deep breathing datasets included in this study

(COVID-19 and healthy subjects) are provided in.

https://orcid.org/0000-0002-5248-6327
https://doi.org/10.1371/journal.pone.0262448
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262448&domain=pdf&date_stamp=2022-01-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262448&domain=pdf&date_stamp=2022-01-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262448&domain=pdf&date_stamp=2022-01-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262448&domain=pdf&date_stamp=2022-01-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262448&domain=pdf&date_stamp=2022-01-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262448&domain=pdf&date_stamp=2022-01-13
https://doi.org/10.1371/journal.pone.0262448
https://doi.org/10.1371/journal.pone.0262448
https://doi.org/10.1371/journal.pone.0262448
http://creativecommons.org/licenses/by/4.0/
https://github.com/iiscleap/Coswara-Data
https://github.com/iiscleap/Coswara-Data


Introduction

Corona virus 2019 (COVID-19), which is a novel pathogen of the severe acute respiratory syn-

drome coronavirus 2 (SARS-Cov-2), appeared first in late November 2019 and ever since, it

has caused a global epidemic problem by spreading all over the world [1]. According to the

world heath organization (WHO) April 2021 report [2], there have been nearly 150 million

confirmed cases and over 3 million deaths since the pandemic broke out in 2019. Additionally,

the United States (US) have reported the highest number of cumulative cases and deaths with

over 32.5 million and 500,000, respectively. These huge numbers have caused many healthcare

services to be severely burdened especially with the ability of the virus to develop more geno-

mic variants and spread more readily among people. India, which is one of the world’s biggest

suppliers of vaccines, is now severely suffering from the pandemic after the explosion of cases

due to a new variant of COVID-19. It has reached more than 17.5 million confirmed cases, set-

ting it behind the US as the second worst hit country [2, 3].

COVID-19 patients usually range from being asymptomatic to developing pneumonia and

in severe cases, death. In most reported cases, the virus remains incubation for a period of 1 to

14 days before the symptoms of an infection start arising [4]. Patients carrying COVID-19 have

exhibited common signs and symptoms including cough, shortness of breath, fever, fatigue,

and other acute respiratory distress syndromes (ARDS) [5, 6]. Most infected people suffer from

mild to moderate viral symptoms, however, they end up by being recovered. On the other hand,

patients who develop severe symptoms such as severe pneumonia are mostly people over 60

years of age with conditions such as diabetes, cardiovascular diseases (CVD), hypertension, and

cancer [4, 5]. On most cases, the early diagnosis of COVID-19 helps in preventing its spreading

and development to severe infection stages. This is usually done by following steps of early

patient isolation and contact tracing. Furthermore, timely medication and efficient treatment

reduces symptoms and results in lowering the mortality rate of this pandemic [7].

The current gold standard in diagnosing COVID-19 is the reverse-transcription polymerase

chain reaction (RT-PCR) assay [8, 9]. It is the most commonly used technique worldwide to suc-

cessfully confirm the existence of this viral infection. Additionally, examinations of the ribonu-

cleic acid (RNA) in patients carrying the virus provide further information about the infection,

however, it requires longer time for diagnosis and is not considered as accurate as other diagnos-

tic techniques [10]. The integration of computed tomography (CT) screening (X-ray radiations)

is another effective diagnostic tool (sensitivity�90%) that often provides supplemental informa-

tion about the severity and progression of COVID-19 in lungs [11, 12]. CT imaging is not rec-

ommended for patients at the early stages of the infection, i.e., showing asymptomatic to mild

symptoms. It provides useful details about the lungs in patients with moderate to severe stages

due to the disturbances in pulmonary tissues and its corresponding functions [13].

Most recently, several studies have utilized the new emerging algorithms in artificial intelli-

gence (AI) to detect and classify COVID-19 in CT and X-ray images [14]. Machine and deep

learning algorithms were implemented in several studies (taking CT images as inputs) with a

discrimination accuracy reaching over 95% between healthy and infected subjects [15–20].

The major contribution of these studies is the ability of trained models including support vec-

tor machine (SVM) and convolutional neural networks (CNN) in detecting COVID-19 in CT

images with minimal pre-processing steps. Moreover, several studies have utilized deep learn-

ing with extra feature fusion techniques and entropy-controlled optimization [21], rank-based

average pooling [22], pseudo-Zernike moment (PZM) [23], and internet-of-things [24] to

detect COVID-19 in CT images. In addition, there has been extensive research carried out for

COVID-19 assessment using X-ray images and machine learning [25–27]. Majority of the cur-

rent state-of-art approaches rely on two-dimensional (2D) X-ray images of the lungs to train
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neural networks on extracting features and thus identifying subjects carrying the viral infec-

tion. Despite of the high levels of accuracy achieved in most of the studies, CT and X-ray imag-

ing use ionizing radiations that make them not feasible for frequent testing. In addition, these

imaging modalities may not be available in all public healthcare services, especially for coun-

tries who are swamped with the pandemic, due to their costs and additional maintenance

requirements. Most recently, researchers have utilized a safer and simpler imaging approach

based on ultrasound to screen lungs for COVID-19 [28] and achieved high levels of perfor-

mance (accuracy > 89%). Therefore, finding promising alternatives that are simple, fast, and

cost-effective is an ultimate goal to researchers when it comes to integrating these techniques

with machine learning.

Biological respiratory signals, such as coughing and breathing sounds, could be another

promising tool to indicate the existence of the viral infection [29], as these signals have a direct

connection with lungs. Respiratory auscultation is considered as a safe and non-invasive tech-

nique to diagnose the respiratory system and its associated organs. This technique is usually

done by clinicians using an electronic stethoscope to hear and record the air sound moving

inside and outside lungs while breathing or coughing. Thus, an indication of any pulmonary

anomalies could be detected and identified [30–32]. Due to the simplicity in recording respira-

tory signals, lung sounds could carry useful information about the viral infection, and thus,

could set an early alert to the patient before moving on with further and extensive medication

procedures. In addition, combining the simple respiratory signals with AI algorithms could be

a key to enhance the sensitivity of detection for positive cases due to its ability to generalize

over a wide set of data with less computational complexity [33].

Many studies have investigated the information carried by respiratory sounds in patients

tested positive for COVID-19 [34–36]. Furthermore, it has been found that vocal patterns

extracted from COVID-19 patients’ speech recordings carry indicative biomarkers for the exis-

tence of the viral infection [37]. In addition, a telemedicine approach was also explored to

observe evidences on the sequential changes in respiratory sounds as a result of COVID-19 infec-

tion [38]. Most recently, AI was utilized in one study to recognize COVID-19 in cough signals

[39] and in another to evaluate the severity of patients’ illness, sleep quality, fatigue, and anxiety

through speech recordings [40]. Despite of the high levels of performance achieved in the afore-

mentioned AI-based studies, further investigations on the capability of respiratory sounds in car-

rying useful information about COVID-19 are still required, especially when embedded within

the framework of sophisticated AI-based algorithms. Furthermore, due to the explosion in the

number of confirmed positive COVID-19 cases all over the world, it is essential to ensure provid-

ing a system capable of recognizing the disease in signals recording through portable devices,

such as computers or smartphones, instead of regular clinic-based electronic stethoscopes.

Motivated by the aforementioned, a complete deep learning approach is proposed in this

paper for a successful detection of COVID-19 using only breathing sounds recorded through a

microphone of a smartphone device (Fig 1). The proposed approach serves as a rapid, no-cost,

and easily distributed pre-screening tool for COVID-19, especially for countries who are in a

complete lockdown due to the wide spread of the pandemic. Although the current gold stan-

dard, RT-PCR, provides high success rates in detecting the viral infection, it has various limita-

tions including the high expenses involved with equipment and chemical agents, requirement

of expert nurses and doctors for diagnosis, violation of social distancing, and the long testing

time required to obtain results (2-3 days). Thus, the development of a deep learning model

overcomes most of these limitations and allows for a better revival in the healthcare and eco-

nomic sectors in several countries.

Furthermore, the novelty of this work lies in utilizing smartphone-based breathing record-

ings within this deep learning model, which, when compared to conventional respiratory
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auscultation devices, i.e., electronic stethoscopes, are more preferable due to their higher acces-

sibility by wider population. This plays an important factor in obtaining medical information

about COVID-19 patients in a timely manner while at the same time maintaining an isolated

behaviour between people. Additionally, this study covers patients who are mostly from India,

which is severely suffering from a new genomic variant (first reported in December 2020) of

COVID-19 capable of escaping the immune system and most of the available vaccines [2, 42].

Thus, it gives an insight on the ability of AI algorithms in detecting this viral infection in

patients carrying this new variant, including asymptomatic.

Lastly, the study presented herein investigates signal characteristics contaminated within

shallow and deep breathing sounds of COVID-19 and healthy subjects through deep-activated

attributes (neural network activations) of the original signals as well as wide attributes (hand-

crafted features) of the signals and their corresponding mel-frequency cepstrum (MFC). The

utilization of one-dimensional (1D) signals within a successful deep learning framework allows

for a simple, yet effective, AI design that does not require heavy memory requirements. This

serves as a suitable solution for further development of telemedicine and smartphone applica-

tions for COVID-19 (or other pandemics) that can provide real-time results and communica-

tions between patients and clinicians in an efficient and timely manner. Therefore, as a pre-

screening tool for COVID-19, this allows for a better and faster isolation and contact tracing

than currently available techniques.

Materials and methods

Dataset collection and subjects information

The dataset used in this study was obtained from Coswara [41], which is a project aiming

towards providing an open-access database for respiratory sounds of healthy and unhealthy

individuals, including those suffering from COVID-19. The project is a worldwide respiratory

data collection effort that was first initiated in August, 7th 2020. Ever since, it has collected

data from more than 1,600 participants (Male: 1185, Female: 415) from allover the world

(mostly Indian population). The database was approved by the Indian institute of science

(IISc), human ethics committee, Bangalore, India, and conforms to the ethical principles out-

lined in the declaration of Helsinki. No personally identifiable information about participants

was collected and the participants’ data was fully anonymized during storage in the database.

Fig 1. A graphical abstract of the complete procedure followed in this study. The input data includes breathing

sounds collected from an open-access database for respiratory sounds (Coswara [41]) recorded via smartphone

microphone. The data includes a total of 240 participants, out of which 120 subjects were suffering from COVID-19,

while the remaining 120 were healthy (control group). A deep learning framework was then utilized based on hand-

crafted features extracted by feature engineering techniques, as well as deep-activated features extracted by a

combination of convolutional and recurrent neural network. The performance was then evaluated and further

discussed on the use of artificial intelligence (AI) as a successful pre-screening tool for COVID-19.

https://doi.org/10.1371/journal.pone.0262448.g001
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The database includes breath, cough, and voice sounds acquired via crowdsourcing using

an interactive website application that was built for smartphone devices [43]. The average

interaction time with the application was 5-7 minutes. All sounds were recorded using the

microphone of a smartphone and sampled with a sampling frequency of 48 kHz. The partici-

pants had the freedom to select any device for recording their respiratory sounds, which

reduces device-specific bias in the data. The audio samples (stored in. WAV format) for all

participants were manually curated through a web interface that allows multiple annotators to

go through each audio file and verify the quality as well as the correctness of labeling. All par-

ticipants were requested to keep a 10 cm distance between the face and the device before start-

ing the recording.

So far, the database had a COVID-19 participants’ count of 120, which is almost 1-10 ratio

to healthy (control) participants. In this study, all COVID-19 participants’ data was used, and

the same number of samples from the control participants’ data was randomly selected to

ensure a balanced dataset. Therefore, the dataset used in this study had a total of 240 subjects

(COVID-19: 120, Control: 120). Furthermore, only breathing sounds of two types, namely

shallow and deep, were obtained from every subject and used for further analysis. Figs 2 and 3

show examples from the shallow and deep breathing datasets, respectively, with their corre-

sponding spectrogram representation. To ensure the inclusion of maximum information from

each breathing recording as well as to cover at least 2-4 breathing cycles (inhale and exhale), a

total of 16 seconds were considered, as the normal breathing pattern in adults ranges between

12 to 18 breaths per minute [44]. All recordings less than 16 seconds were padded with zeros.

Furthermore, the final signals were resampled with a sampling frequency of 4 kHz.

The demographic and clinical information of the selected subjects is provided in Table 1.

All values are provided as range and mean±std (age), numbers (sex), and yes/no (1/0). To

check for most significant variables, a linear regression fitting algorithm [45] was applied. An

Fig 2. Examples from the shallow breathing sounds recorded via smartphone microphone along with their corresponding

spectrograms. Showing: (a-c) COVID-19 subjects (asymptomatic, mild, moderate), (d-f) healthy subjects.

https://doi.org/10.1371/journal.pone.0262448.g002
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Fig 3. Examples from the deep breathing sounds recorded via smartphone microphone along with their corresponding

spectrograms. Showing: (a-c) COVID-19 subjects (asymptomatic, mild, moderate), (d-f) healthy subjects.

https://doi.org/10.1371/journal.pone.0262448.g003

Table 1. The demographic and clinical information of COVID-19 and healthy (control) subjects included in the study.

Category COVID-19 Healthy (Control) p-value

Asymptomatic Mild Moderate Overall

Demographic information

Number of subjects 20 90 10 120 120 -

Age (Mean±Std) 20-77 (32.65±13.69) 15-70 (33.43±12.99) 23-65 (43.33±15.46) 15-77 (34.04±13.45) 15-70 (36.02±13.06) 0.149

Sex (Male / Female) 10 / 10 65 / 25 7 / 3 82 / 38 85/35 0.612

Comorbidities

Diabetes 1 7 1 9 11 0.629

Hypertension 0 6 1 7 6 0.788

Chronic lung disease 1 1 0 2 0 0.159

Ischemic heart disease 1 3 0 4 0 0.041

Pneumonia 0 3 0 3 0 0.083

Health conditions

Fever 0 39 6 45 1 <0.001

Cold 0 37 4 41 6 <0.001

Cough 0 44 4 48 13 <0.001

Muscle pain 2 15 5 22 1 <0.001

Loss of smell 0 15 3 18 0 <0.001

Sore throat 0 26 3 29 2 <0.001

Fatigue 1 18 3 22 1 <0.001

Breathing Difficulties 1 7 6 14 0 <0.001

Diarrhoea 0 1 0 1 0 0.159

https://doi.org/10.1371/journal.pone.0262448.t001
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indication of a significant difference between COVID-19 and healthy subjects was obtained

whenever the p-value was less than 0.05 (bold).

Deep learning framework

The deep learning framework proposed in this study (Fig 4) includes a combination of hand-

crafted features as well as deep-activated features learned through model’s training and

reflected as time-activations of the input. To extract hand-crafted features, various algorithm

and functions were used to obtain signal attributes from the original breathing recording and

from its corresponding mel-frequency cepstral coefficients (MFCC). In addition, deep-acti-

vated learned features were obtained from the original breathing recording through a com-

bined neural network that consists of convolutional and recurrent neural networks. Each part

of this framework is briefly described in the following subsections and illustrated as a pseudo-

code in 1.

Algorithm 1 Training Deep Learning Model for COVID-19 Prediction
Input: 120 COVID-19 / 120 healthy breathing recordings (shallow or

deep)
Output: Trained model to predict COVID-19 or healthy
1: for Every breathing recording do
2: Calculate kurtosis k (Eq 1) and skewness s (Eq 2)
3: Calculate eample entropy SampEn (Eq 3) and spectral entropy SE

(Eq 4)
4: Calculate fractal dimensions—Higuchi HFD (Eq 5) and Katz KFD (Eq

6)
5: Calculate zero-crossing rate ZCR (Eq 7)
6: Extract 13 Mel-frequency cepstral coefficients (MFCC)

Fig 4. The framework of deep learning followed in this study. The framework includes a combination of hand-crafted features and deep-activated features.

Deep features were obtained through a combined convolutional and recurrent neural network (CNN-BiLSTM), and the final classification layer uses both

features sets to discriminate between COVID-19 and healthy subjects.

https://doi.org/10.1371/journal.pone.0262448.g004
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7: for Every MFCC signal do
8: Extract all aforementioned hand-crafted features
9: end for
10: end for
11: χ2-test: All features plus age and sex, select best 20 features
12: for Every breathing recording do
13: Apply volume control and time shift augmentation (24 augmented
signals)
14: end for
15: Train CNN-BiLSTM network to extract deep-activated features from
breathing recordings
16: Update the trained model using the 20 best hand-crafted features

Hand-crafted features. These features refer to signal attributes that are extracted manu-

ally through various algorithms and functions in a process called feature engineering [46]. The

advantage of following such process is that it can extract internal and hidden information

within input data, i.e., sounds, and represent it as single or multiple values [47]. Thus, addi-

tional knowledge about the input data can be obtained and used for further analysis and evalu-

ation. Hand-crafted features were initially extracted from the original breathing recordings,

then, they were also extracted from the MFCC transformation of the signals. The features

included in this study are,

Kurtosis and skewness: In statistics, kurtosis is a quantification measure for the degree of

extremity included within the tails of a distribution relative to the tails of a normal distribution.

The more the distribution is outlier-prone, the higher the kurtosis values, and vice-versa. A

kurtosis of 3 indicates that the values follow a normal distribution. On the other hand, skew-

ness is a measure for the asymmetry of the data that deviates it from the mean of the normal

distribution. If the skewness is negative, then the data are more spread towards the left side of

the mean, while a positive skewness indicates data spreading towards the right side of the

mean [48]. A skewness of zero indicates that the values follow a normal distribution. Kurtosis

(k) and skewness (s) can be calculated as,

k ¼ E
ðX � mÞ4

s4

" #

ð1Þ

s ¼ E
ðX � mÞ3

s3

� �

ð2Þ

where X included input values, μ and σ are the mean and standard deviation values of the

input, respectively, and E is an expectation operator.

Sample entropy: In physiological signals, the sample entropy (SampEn) provides a measure

for complexity contaminated within time sequences. This feature represent the randomness

contaminated within a signal by embedding it into a phase space to estimate the increment

rate in the number of phase space patterns. It can be calculated though the negative natural

logarithm of a probability that segments of length m match their consecutive segments under a

value of tolerance (r) [49] as follows,

SampEn ¼ � log
segmentA
segmentAþ1

� �

ð3Þ

where segmentA is the first segment in the time sequence and segmentA+ 1 is the consecutive

segment.
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Spectral entropy: To measure time series irregularity, spectral entropy (SE) provides a fre-

quency domain entropy measure as a sum of the normalize signal spectral power [50]. It differs

from the aforementioned SampEN in analyzing the frequency spectrum of signals rather than

time sequences and phase. Based on Shannon’s entropy, the SE can be calculated as,

SE ¼ �
XN

n¼1

PðnÞ � logðPðnÞÞ ð4Þ

where N is the total number of frequency points and P(n) is the probability distribution of the

power spectrum.

Fractal dimension. Higuchi and Katz [51, 52] provided two methods to measure statistically

the complexity in a time series. More specifically, fractal dimension measures provide an index

for characterizing how much a time series is self-similar over some region of space. Higuchi

(HFD) and Katz (KFD) fractal dimensions can be calculated as,

HFD ¼
logðLðrÞÞ
logð1=rÞ

ð5Þ

KFD ¼
logðNÞ

logðNÞ þ logðd=LðrÞÞ
ð6Þ

where L(k) is the length of the fractal curve, r is the selected time interval, N is the length of the

signal, and d is the maximum distance between an initial point to other points.

Zero-crossing rate. To measure the number of times a signal has passed through the zero

point, a zero-crossing rate (ZCR) measure is provided. In other words, ZCR refers to the rate

of sign-changes in the signals’ data points. It can be calculated as follows,

ZCR ¼
1

T

XT

t¼1

ðjxt � xtþ1jÞ ð7Þ

where xt = 1 if the signal has a positive value at time step t and a value of 0 otherwise.

Mel-frequency cepstral coefficients (MFCC). To better represent speech and voice signals,

MFCC provides a set of coefficients of the discrete cosine transformed (DCT) logarithm of a

signal’s spectrum (mel-frequency cepstrum (MFC)). It is considered as an overall representa-

tion of the information contaminated within signals regarding the changes in its different

spectrum bands [53, 54]. Briefly, to obtain the coefficients, the signals goes through several

steps, namely windowing the signal, applying discrete Fourier transform (DFT), calculating

the log energy of the magnitude, transforming the frequencies to the Mel-scale, and applying

inverse DCT.

In this work, 13 coefficients (MFCC-1 to MFCC-13) were obtained from each breathing

sound signal. For every coefficient, the aforementioned features were extracted and stored as

an additional MFCC hand-crafted features alongside the original breathing signals features.

Deep-activated features. These features refer to attributes extracted from signals through

a deep learning process and not by manual feature engineering techniques. The utilization of

deep learning allows for the acquisition of optimized features extracted through deep convolu-

tional layers about the structural information contaminated within signals. Furthermore, it has

the ability to acquire the temporal (time changes) information carried through time sequences

[55–57]. Such optimized features can be considered as a complete representation of the input

data generated iteratively through an automated learning process. To achieve this, we used an
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advanced neural network based on a combination of convolutional neural network and bi-

directional long short-term memory (CNN-BiLSTM).

Neural network architecture. The structure of the network starts by 1D convolutional layers.

In deep learning, convolutions refer to a multiple number of dot products applied to 1D sig-

nals on pre-defined segments. By applying consecutive convolutions, the network extracts

deep attributes (activations) to form an overall feature map for the input data [56]. A single

convolution on an input x0
i ¼ ½x1; x2; :::; xn�, where n is the total number of points, is usually

calculated as,

clji ¼ hðbj þ
XM

m¼1

wj
mx

j
iþm� 1Þ ð8Þ

where l is the layer index, h is the activation function, b is the bias of the jth feature map, M is

the kernel size, wj
m is the weight of the jth feature map and mth filter index.

In this work, three convolutional layers were used to form the first stage of the deep neural

network. The kernel sizes of each layer are [9, 1], [5, 1], and [3, 1], respectively. Furthermore,

the number of filters increases as the network becomes deeper, that is 16, 32, and 64, respec-

tively. Each convolutional layer was followed by a max-pooling layer to reduce the dimension-

ality as well as the complexity in the model. The max-pooling kernel size decreases as the

network gets deeper with a [8, 1], [4, 1], and [2, 1] kernels for the three max-pooling layers,

respectively. It is worth noting that each max-pooling layer was followed by a batch normaliza-

tion (BN) layer to normalize all filters as well as by a rectified linear unit (ReLU) layer to set all

values less than zero in the feature map to zero. The complete structure is illustrated in Fig 4.

The network continues with additional extraction of temporal features through bi-direc-

tional LSTM units. In recurrent neural networks, LSTM units allows for the detection of long

short-term dependencies between time sequence data points. Thus, it overcomes the issues of

exploding and vanishing gradients in chain-like structures during training [55, 58]. An LSTM

block includes a collection of gates, namely input (i), output (o), and forget (f) gates. These

gates handle the flow of data as well as the processing of the input and output activations

within the network’s memory. The information of the main cell (Ct) at any instance (t) within

the block can be calculated as,

Ct ¼ ftCt� 1 þ itct ð9Þ

where ct is the input to the main cell and Ct−1 includes the information at the previous time

instance.

In addition, the network performs hidden units (ht) activations on the output and main cell

input using a sigmoid function as follows,

ht ¼ otsðctÞ ð10Þ

Furthermore, a bi-drectional functionality (BiLSTM) allows the network to process data in

both the forward and backward direction as follows,

yt ¼W
h
!

y
hN
�!
þW

h
 

y
hN
 �
þ by ð11Þ

where hN
�!

and hN
 �

are the outputs of the hidden layers in the forward and backward direc-

tions, respectively, for all N levels of stack and by is a bias vector.
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In this work, a BiLSTM hidden units functionality was selected with a total number of hid-

den units of 256. Thus, the resulting output is a 512 vector (both directions) of the extracted

hidden units of every input.

BiLSTM activations. To be able to utilize the parameters that the BiLSTM units have

learned, the activations that correspond to each hidden unit were extracted from the network

for each input signal. Recurrent neural network activations of a pre-trained network are vec-

tors that carry the final learned attributes about different time steps within the input [59, 60].

In this work, these activations were the final signal attributes extracted from each input signal.

Such attributes are referred to as deep-activated features in this work (Fig 4). To compute

these activations, we use function activations() in MATLAB inputting the trained network, the
selected data (breathing recording), and the chosen features layer (BiLSTM). Furthermore, they

were concatenated with the hand-crafted features alongside age and sex information and used

for the final predictions by the network.

Network configuration and training scheme. Prior to deep learning model training, sev-

eral data preparation and network fine-tuning steps were followed including data augmenta-

tion, best features selection, deciding the training and testing scheme, and network parameters

configuration.

Data augmentation. Due to the small sample size available, it is critical for deep learning

applications to include augmented data. Instead of training the model on the existing dataset

only, data augmentation allows for the generation of new modified copies of the original sam-

ples. These new copies have similar characteristics of the original data, however, they are

slightly adjusted as if they are coming from a new source (subject). Such procedure is essential

to expose the deep learning model to more variations in the training data. Thus, making it

robust and less biased when attempting to generalize the parameters on new data [61]. Fur-

thermore, it was essential to prevent the model from over-fitting, where the model learns

exactly the input data only with a very minimal generalization capabilities for unseen data

[62].

In this study, 3,000 samples per class were generated using two 1D data augmentation tech-

niques as follows,

• Volume control: Adjusts the strength of signals in decibels (dB) for the generated data [63]

with a probability of 0.8 and gain ranging between -5 and 5 dB.

• Time shift: Modifies time steps of the signals to illustrate shifting in time for the generated

data [64] with a shifting range of [-0.005 to 0.005] seconds.

Best features selection. To ensure the inclusion of the most important hand-crafted features

within the trained model, a statistical univariate chi-square test (χ2-test) was applied. In this

test, a feature is decided to be important if the observed statistical analysis using this feature

matches with the expected one, i.e., label [65]. Furthermore, an important feature indicates

that it is considered significant in discriminating between two categories with a p-

value < 0.05. The lower the p-value, the more the feature is dependent on the category label.

The importance score can then be calculated as,

score ¼ � logðpÞ ð12Þ

In this work, hand-crafted features extracted from the original breathing signals and from

the MFCC alongside the age and sex information were selected for this test. The best 20 fea-

tures were included in the final best features vector within the final fully-connected layer

(along with the deep-activated features) for predictions.
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Training configuration. To ensure the inclusion of the whole available data, a leave-one-out

training and testing scheme was followed. In this scheme, a total of 240 iterations (number of

input samples) were applied, where in each iteration, an ith subject was used as the testing sub-

ject, and the remaining subjects were used for model’s training. This scheme was essential to

be followed to provide a prediction for each subject in the dataset.

Furthermore, the network was optimized using adaptive moment estimation (ADAM)

solver [66] and with a learning rate of 0.001. The L2-regularization was set to 106 and the

mini-batch size to 32.

Performance evaluation

The performance of the proposed deep learning model in discriminating COVID-19 from

healthy subjects was evaluated using traditional evaluation metrics including accuracy, sensi-

tivity, specificity, precision, and F1-score. Additionally, the area under the receiver operating

characteristic (AUROC) curves was analysed for each category to show the true positive rate

(TPR) versus the false positive rate (FPR) [67].

Results

Patient clinical information

COVID-19 subjects included in this study had an average age of 34.04 years (± 13.45), while

healthy subjects were slightly higher with an average of 36.02 years(±13.06). However, no sig-

nificant difference was obtained for this variable across subjects (p = 0.149). It is worth noting

that COVID-19 subjects with moderate conditions had a higher average age of 43.33 years.

The distribution of male/female subjects across the two categories was close to 2:1 ratio with a

majority of male subjects. Sex was not significantly different between COVID-19 and healthy

subjects (p = 0.612).

Comorbidities including diabetes, hypertension, chronic lung disease, and pneumonia

were not found significantly different between COVID-19 and healthy subjects. However, the

majority of COVID-19 subjects suffering from these diseases were in the mild group. The only

important variable was the ischemic heart disease with a p-value of 0.041. Only 4 subjects were

suffering from disease while having COVID-19, while no healthy subjects were recorded with

this disease. All health conditions were found significantly different (p< 0.001) between

COVID-19 and healthy subjects except for diarrhoea (p = 0.159). Significant health conditions

included in this dataset were fever, cold, cough, muscle pain, loss of smell, sore throat, fatigue,

and breathing difficulties. It is worth noting that only 4 subjects in the asymptomatic COVID-

19 group were suffering from muscle pain, fatigue, and breathing difficulties.

Analysis of MFCC

Examples of the 13 MFCC extracted from the original shallow and deep breathing signals are

illustrated in Figs 5 and 6, respectively, for COVID-19 and healthy subjects. Furthermore, the

figures show MFCC values (after summing all coefficients) distributed as a normal distribu-

tion. From the figure, the normal distribution of COVID-19 subjects was slightly skewed to

the right side of the mean, while the normal distribution of the healthy subjects was more

towards the zero mean, indicating that it is better in representing a normal distribution. It is

worth noting that the MFCC values of shallow breathing were lower than deep breathing in

both COVID-19 and healthy subjects.

Tables 2 and 3 show the values of the combined MFCC values, kurtosis, and skewness

among all COVID-19 and healthy subjects (mean±std) for the shallow and deep breathing
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datasets, respectively. In both datasets, the kurtosis and skewness values for COVID-19 sub-

jects were slightly higher than healthy subjects. Furthermore, the average combined MFCC

values for COVID-19 were less than those for the healthy subjects. More specifically, in the

shallow breathing dataset, a kurtosis and skewness of 4.65±15.97 and 0.59±1.74 was observed

for COVID-19 subjects relative to 4.47±20.66 and 00.19±1.75 for healthy subjects. On the

other hand, using the deep breathing dataset, COVID-19 subjects had a kurtosis and skewness

of 20.82±152.99 and 0.65±4.35 compared to lower values of 3.23±6.06 and -0.36±1.08 for

healthy subjects. In addition, a statstically significant difference (using the linear regression fit-

ting algorithm) of<0.001 was obtained between COVID-19 and healthy subjects for the com-

bined MFCC values of the shallow and deep breathing recordings. Furthermore, the skewness

of the deep breathing recordings was found significantly different with a p-value of 0.014. It is

worth noting that the skewness of the shallow breathing recordings was 0.095. Moreover, the

kurtosis was not significant using both datasets’ recordings.

Deep learning performance

The overall performance of the proposed deep learning model is shown in Fig 7. From the fig-

ure, the model correctly predicted 113 and 114 COVID-19 and healthy subjects, respectively,

using the shallow breathing dataset out of the 120 total subjects (Fig 7(a)). In addition, only 7

COVID-19 subjects were miss-classified as healthy, whereas only 6 subjects were wrongly

Fig 5. Examples of the mel-frequency cepstral coefficients (MFCC) extracted from the shallow breathing dataset and illustrated as a

normal distribution of summed coefficients. Showing: (a-c) COVID-19 subjects (asymptomatic, mild, moderate), (d-f) healthy subjects.

https://doi.org/10.1371/journal.pone.0262448.g005
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classified as carrying COVID-19. The correct predictions number was slightly lower using the

deep breathing dataset with a 109 and 112 for COVID-19 and healthy subjects, respectively. In

addition, wrong predictions were also slightly higher with 11 COVID-19 and 8 healthy sub-

jects. Therefore, the confusion matrices show percentages of proportion of 94.20% and 90.80%

for COVID-19 subjects using the shallow and deep datasets, respectively. On the other hand,

healthy subjects had percentages of 95.00% and 93.30% for both datasets, respectively.

The evaluation metrics (Fig 7(b)) calculated from these confusion matrices returned an

accuracy measure of 94.58% and 92.08% for the shallow and deep datasets, respectively.

Fig 6. Examples of the mel-frequency cepstral coefficients (MFCC) extracted from the deep breathing dataset and illustrated as a

normal distribution of summed coefficients. Showing: (a-c) COVID-19 subjects (asymptomatic, mild, moderate), (d-f) healthy subjects.

https://doi.org/10.1371/journal.pone.0262448.g006

Table 2. Normal distribution analysis (mean±std) of the combined mel-frequency cepstral coefficients (MFCCs) using the shallow breathing dataset.

Category Normal distribution analysis

Combined MFCC values Kurtosis Skewness

COVID-19 Asymp. -0.29±0.78 1.92±0.94 0.45±0.78

Mild -0.24±0.70 5.46±18.22 0.61±1.95

Moderate -0.26±0.70 2.26±1.85 0.60±0.83

Overall -0.25±0.72 4.65±15.97 0.59±1.74

Healthy -0.11±0.75 4.47±20.66 0.19±1.75

p-value <0.001 0.941 0.095

https://doi.org/10.1371/journal.pone.0262448.t002
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Table 3. Normal distribution analysis (mean±std) of the combined mel-frequency cepstral coefficients (MFCCs) using the deep breathing dataset.

Category Normal distribution analysis

Combined MFCC values Kurtosis Skewness

COVID-19 Asymp. -0.05±0.69 2.61±2.12 -0.17±0.97

Mild -0.15±0.63 6.63±6.51 0.91±4.95

Moderate 0.04±0.58 2.54±1.12 -0.15±0.96

Overall -0.12±0.64 5.82±5.99 0.65±4.35

Healthy 0.12±0.60 3.23±6.06 -0.36±1.08

p-value <0.001 0.941 0.014

https://doi.org/10.1371/journal.pone.0262448.t003

Fig 7. The performance of the deep learning model in predicting COVID-19 and healthy subjects using shallow and deep breathing datasets.

Showing: (a) model’s predictions for both datasets and he corresponding confusion matrices, (b) evaluation metrics including accuracy, sensitivity,

specificity, precision, and F1-score, (c) receiver operating characteristic (ROC) curves and corresponding area under the curve (AUROC) for COVID-19

and healthy subjects using both datasets.

https://doi.org/10.1371/journal.pone.0262448.g007
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Furthermore, the model had a sensitivity and specificity measures of 94.21%/94.96% for the

shallow dataset and 93.16%/91.06% for the deep dataset. The precision was the highest mea-

sure obtained for the shallow dataset (95.00%), where as the deep dataset had the lowest value

in the precision with a 90.83%. Lastly, the F1-score measures returned 94.61% and 91.98% for

both datasets, respectively.

To analyze the AUROC, Fig 7(c) shows the ROC curves of predictions using both the shal-

low and deep datasets. The shallow breathing dataset had an overall AUROC of 0.90 in predict-

ing COVID-19 and healthy subjects, whereas the deep breathing dataset had a 0.86 AUROC,

which is slightly lower performance in the prediction process. Additionally, the model had

high accuracy measures in predicting asymptomatic COVID-19 subjects (Fig 8). Using the

shallow breathing dataset, the model had a 100.00% accuracy by predicting all subjects cor-

rectly. On the other hand, using the deep breathing dataset, the model achieved an accuracy of

88.89% by missing two asymptomatic subjects. It is worth noting that few subjects had close

scores (probabilities) to 0.5 using both datasets, however, the model correctly discriminated

them from healthy subjects.

Neural network activations

Fig 9 shows the extracted neural network activations (deep-activated features) from the last

layer (BiLSTM) for five examples from the COVID-19 and healthy subjects. These activations

were obtained after applying the BiLSTM hidden units calculations on the flattened feature

vector obtained from the CNN. The 512 hidden units are considered as the final deep-activated

feature vector used to classify subjects into COVID-19 or healthy. By inspecting both COVID-

19 (left column) and healthy (right column) subjects, it can be seen that the network learned

successfully features that best maximize the margin between the two classes. For COVID-19,

the activations were more spread all over the hidden units in a randomized manner, which

Fig 8. Asymptomatic COVID-19 subjects’ predictions based on the proposed deep learning model. The model had

a decision boundary of 0.5 to discriminate between COVID-19 and healthy subjects. The values represent a

normalized probability regrading the confidence in predicting these subjects as carrying COVID-19.

https://doi.org/10.1371/journal.pone.0262448.g008
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Fig 9. Bi-directional long short-term memory (BiLSTM) network activations extracted for five examples from

COVID-19 and healthy subjects using shallow breathing recordings. The activations were extracted from the last layer

(applied on the flattened convolutional neural network (CNN) features vector) of the deep learning network (BiLSTM) for

five examples from COVID-19 (a-f) and healthy (g-l) subjects.

https://doi.org/10.1371/journal.pone.0262448.g009
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could be due to the irregular breathing patterns seen in the original breathing sounds for

COVID-19 subjects (Figs 2 and 3). On the other hand, healthy subjects had a close-to-regular

patterns with higher power over the 60-128 and 200-350 hidden units. Similarly, this could be

due to the normal breathing patterns observed in the healthy subjects breathing recordings.

The ability of the neural network to acquire such differences in both classes suggest the poten-

tial of deep learning in the discrimination through 1D breathing sounds.

Performance relative to current state-of-art

To represent the performance of the proposed deep learning model relative to the current

state-of-art studies, Table 4 shows the recent works on COVID-19 detection using machine

learning and breathing/coughing recordings. The majority of studies have used coughing

sounds to train deep learning networks. In addition, only two studies have utilized breathing

sounds as input to the trained models [68, 69]. The only limitation in [69] is the heavy unbal-

ance in favor of the normal subjects against COVID-19 subjects, which could have been the

reason behind the high performance metrics achieved. In addition, authors in [68] use only 5

COVID-19 subjects, which does not ensure a generalized performance of deep learning net-

works. In contrary, the proposed study utilized a more balanced dataset with 120 COVID-19

subjects and the performance was higher than most of other studies. It is worth noting that

most studies use web-based source for COVID-19 recordings, while in the proposed study

breathing recordings were obtained from a smartphone app. In [69, 70], authors have used a

Table 4. Summary table of the current state-of-art works in COVID-19 detection using machine learning and breathing/coughing recordings.

Study Year Recordings

Source

Respiratory

Sound

Number of

Subjects

Number of

Recordings

Pre-processing Steps Trained Model Performance

Bagad et al
[70]

2020 Smartphone

app

Cough 2001

COVID-19

1620

healthy

3621 Short-term magnitude

spectrogram

Convolutional neural

network (ResNet-18)

Accuracy: Not

applicable

AUC: 0.72

Laguarta

et al. [39]

2020 Web-based Cough 2660

COVID-19

2660

healthy

5320 Mel-frequency cepstral

coefficients (MFCC)

Convolutional neural

network (ResNet-50)

Accuracy: 97.10%

Mohammed

et al. [71]

2021 Web-based Cough 114

COVID-19

1388

healthy

1502 Spectrogram Mel spectrum,

power spectrum Tonal

spectrum, chroma spectrum

Raw signals Mel-frequency

cepstral coefficients (MFCC)

Ensemble convolutional

neural network

Accuracy: 77.00%

Lella et al.
[69]

2021 Web-based

smartphone

app

Cough voice

breathing

5000-6000

Subjects

300

COVID-19

6000 De-noising auto encoder

(DAE)

Gamm-atone frequency

cepstral coefficients (GFCC)

Improved Mel-frequency

cepstral coefficients

(IMFCC)

Convolutional neural

network

Accuracy: 95.45%

Sait et al. [68] 2021 Electronic

stethoscope

Breathing 5 COVID-

19 5 healthy

10 Two-dimensional (2D)

Fourier transformation

Convolutional neural

network (Inception-v3)

Accuracy: 80.00%

Manshouri

et al. [72]

2021 Web-based Cough 7 COVID-

19 9

Healthy

16 Mel-frequency cepstral

coefficients (MFCC) Single-

time Fourier transformation

Support vector machine

(SVM)

Accuracy: 94.21%

This study 2021 Smartphone

app

Shallow/deep

breathing

120

COVID-19

120 healthy

Total: 480

Shallow: 240

Deep: 240

Raw signals Mel-frequency

cepstral coefficients

(MFCC)

Convolutional neural

network Bi-directional

long short-term memory

(CNN-BiLSTM) + Hand-

crafted features

Accuracy:

Shallow = 94.58%

Accuracy:

Deep = 92.08%

https://doi.org/10.1371/journal.pone.0262448.t004
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smartphone app to acquire the recordings, however, they rely on coughing sounds, which

makes it even more challenging to rely only on breathing sounds (as in the proposed study)

and still achieve high performance. Additionally, the proposed study uses raw breathing sig-

nals (shallow and deep) to train deep learning models with the inclusion of best 20 features

extracted from the raw signals and MFCC transformations, which was not the case in any

study found in literature (majority require signal transformation to 2D images).

Discussion

This study demonstrated the importance of using deep learning for the detection of COVID-

19 subjects, especially those who are asymptomatic. Furthermore, it elaborated on the signifi-

cance of biological signals, such as breathing sounds, in acquiring useful information about

the viral infection. Unlike the conventional lung auscultation techniques, i.e., electronic stetho-

scopes, to record breathing sounds, the study proposed herein utilized breathing sounds

recorded via a smartphone microphone. The observations found in this study (highest accu-

racy: 94.58%) strongly suggest deep learning as a pre-screening tool for COVID-19 as well as

an early detection technique prior to the gold standard RT-PCR assay.

Smartphone-based breathing recordings

Although current lung auscultation techniques provide high accuracy measures in detecting

respiratory diseases [73–75], it requires subjects to be present at hospitals for equipment setup

and testing preparation prior to data acquisition. Furthermore, it requires the availability of an

experienced person, i.e., clinician or nurse, to take data from patients and store it in a database.

Therefore, utilizing a smartphone device to acquire such data allows for a faster data acquisi-

tion process from subjects or patients while at the same time, provides highly comparable and

acceptable diagnostic performance. In addition, smartphone-based lung auscultation ensures a

better social distancing behaviour during lock downs due to pandemics such as COVID-19,

thus, it allows for a rapid and time-efficient detection of diseases despite of strong restrictions.

By visually inspecting COVID-19 and healthy subjects’ breathing recordings (Figs 2 and 3),

an abnormal nature was usually observed by COVID-19 subjects, while healthy subjects had a

more regular pattern during breathing. This could be related to the hidden characteristics of

COVID-19 contaminated within lungs and exhibited during lung inhale and exhale [35, 38,

76]. Additionally, the MFCC transformation of COVID-19 and healthy subjects’ recordings

returned similar observations. By quantitatively evaluating these coefficients when combined,

COVID-19 subjects had a unique distribution (positively skewed) that can be easily distin-

guished from the one of healthy subjects. This gives an indication about the importance of fur-

ther extracting the internal attributes carried not only by the recordings themselves, but rather

by the additional MFC transformation of such recordings. Additionally, the asymptomatic

subjects had a distribution of values that was close in shape to the distribution of healthy sub-

jects, however, it was skewed towards the right side of the zero mean. This may be considered

as a strong attribute when analyzing COVID-19 patients who do not exhibit any symptoms

and thus, discriminating them easily from healthy subjects.

Diagnosis of COVID-19 using deep learning

It is essential to be able to gain the benefit of the recent advances in AI and computerized algo-

rithms, especially during these hard times of COVID-19 spread worldwide. Deep learning not

only provides high levels of performance, it also reduces the dependency on experts, i.e., clini-

cians and nurses, who are now suffering in handling the pandemic due to the huge and rapidly

increasing number of infected patients [77–79]. Recently, the detection of COVID-19 using
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deep learning has reached high levels of accuracy through two-dimensional (2D) lung CT

images [80–82]. Despite of such performance in discriminating and detecting COVID-19 sub-

jects, CT imaging is considered high in cost and requires extra time to acquire testing data and

results. Furthermore, it utilizes excessive amount of ionizing radiations (X-ray) that are usually

harmful to the human body, especially for severely affected lungs. Therefore, the integration of

biological sounds, as in breathing recordings, within a deep learning framework overcomes

the aforementioned limitations, while at the same time provides acceptable levels of

performance.

The proposed deep learning framework had high levels of accuracy (94.58%) in discrimi-

nating between COVID-19 and healthy subjects. The structure of the framework was built to

ensure a simple architecture, while at the same time to provide advanced features extraction

and learning mechanisms. The combination between hand-crafted features and deep-activated

features allowed for maximized performance capabilities within the model, as it learns through

hidden and internal attributes as well as deep structural and temporal characteristics of record-

ings. The high sensitivity and specificity measures (94.21% and 94.96%, respectively) obtained

in this study prove the efficiency of deep learning in distinguishing COVID-19 subjects

(AUROC: 0.90). Additionally, it supports the field of deep learning research on the use of

respiratory signals for COVID-19 diagnostics [39, 83]. Alongside the high performance levels,

it was interesting to observe a 100.00% accuracy in predicting asymptomatic COVID-19 sub-

jects. This could enhance the detection of this viral infection at a very early stage and thus, pre-

venting it from developing to mild and moderate conditions or spreading to other people.

Furthermore, this high performance levels were achieved through 1D signals instead of 2D

images, which allowed the model to be simple and not memory exhausting. In addition, due to

its simplicity and effective performance, it can be easily embedded within smartphone applica-

tions and internet-of-things tools to allow real-time and direct connectivity between the sub-

ject and family for care or healthcare authorities for services.

Clinical relevance

The statistical observations found in this study suggested that there is a significant difference

between COVID-19 and healthy subjects for the ischemic heart disease comorbidity. This

matches with the current discussions in literature about the correlation between COVID-19

and cardiac dysfunctionalities [84–86]. It was found in [84] that COVID-19 could induce myo-

cardial injury, cardiac arrhythmia, and acute coronary syndrome. In addition, several health

conditions related to the respiratory system were found significant in discriminating between

COVID-19 and healthy subjects including fever, cold, and cough, which are the regular symp-

toms observed in most COVID-19 subjects. However, it was interesting to observe that muscle

pain was significant, which matches with the previous WHO reports that states a percentage of

14.8% among COVID-19 subjects studied in China [87]. It is worth noting that diarrhoea was

not significant in this study, which could show no correlation between COVID-19 and its exis-

tence in subjects.

The utilization of smartphone-based breathing recordings within a deep learning frame-

work may have the potential to provide a non-invasive, zero-cost, rapid pre-screening tool for

COVID-19 in low-infected as well as servery-infected countries. Furthermore, it may be useful

for countries who are not able of providing the RT-PCR test to everyone due to healthcare,

economic, and political difficulties. Furthermore, instead of performing RT-PCR tests on daily

or weekly basis, the proposed framework allows for easier, cost effective, and faster large-scale

detection, especially for counties/areas who are putting high expenses on such tests due to

logistical complications. Alongside the rapid nature of this approach, many healthcare service
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could be revived significantly by decreasing the demand on clinicians or nurses. In addition,

due to the ability of successfully detecting asymptomatic subjects, it can decrease the need for

extra equipment and costs associated with further medication after the development of the

viral infection in patients.

Clinically, it is better to have a faster connection between COVID-19 subjects and medical

practitioners or health authorities to ensure continues monitoring for such cases and at the

same time maintain successful contact tracing and social distancing. By embedding such

approach within a smartphone applications or cloud-based networks, monitoring subjects,

including those who are healthy or suspected to be carrying the virus, does not require the

presence at clinics or testing points. Instead, it can be performed real-time through a direct

connectivity with a medical practitioners. In addition, it can be completely done by the subject

himself to self-test his condition prior to taking further steps towards the RT-PCR assay.

Therefore, such approach could set an early alert to people, especially those who interacted

with COVID-19 subjects or are asymptomatic, to go and further diagnose their case. Consider-

ing such mechanism in detecting COVID-19 could provide a better and well-organized

approach that results in less demand for clinics and medical tests, and thus, enhances back the

healthcare and economic sectors in various countries worldwide.

Conclusion

This study suggests smartphone-based breathing sounds as a promising indicator for COVID-

19 cases. It further recommends the utilization of deep learning as a pre-screening tool for

such cases prior to the gold standard RT-PCR tests. The overall performance found in this

study (accuracy 94.58%) in discriminating between COVID-19 and healthy subjects shows the

potential of such approach. This study paves the way towards implementing deep learning in

COVID-19 diagnostics by suggesting it as a rapid, time-efficient, and no-cost technique that

does not violate social distancing restrictions during pandemics such as COVID-19.
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