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Abstract

The COVID-19 pandemia due to the SARS-CoV-2 coronavirus, in its first 4 months since its outbreak, has to date reached

more than 200 countries worldwide with more than 2 million confirmed cases (probably a much higher number of infected),

and almost 200,000 deaths. Amplification of viral RNA by (real time) reverse transcription polymerase chain reaction

(rRT-PCR) is the current gold standard test for confirmation of infection, although it presents known shortcomings: long

turnaround times (3-4 hours to generate results), potential shortage of reagents, false-negative rates as large as 15-20%,

the need for certified laboratories, expensive equipment and trained personnel. Thus there is a need for alternative, faster,

less expensive and more accessible tests. We developed two machine learning classification models using hematochemical

values from routine blood exams (namely: white blood cells counts, and the platelets, CRP, AST, ALT, GGT, ALP, LDH

plasma levels) drawn from 279 patients who, after being admitted to the San Raffaele Hospital (Milan, Italy) emergency-

room with COVID-19 symptoms, were screened with the rRT-PCR test performed on respiratory tract specimens. Of these

patients, 177 resulted positive, whereas 102 received a negative response. We have developed two machine learning models,

to discriminate between patients who are either positive or negative to the SARS-CoV-2: their accuracy ranges between 82%

and 86%, and sensitivity between 92% e 95%, so comparably well with respect to the gold standard. We also developed an

interpretable Decision Tree model as a simple decision aid for clinician interpreting blood tests (even off-line) for COVID-

19 suspect cases. This study demonstrated the feasibility and clinical soundness of using blood tests analysis and machine

learning as an alternative to rRT-PCR for identifying COVID-19 positive patients. This is especially useful in those countries,

like developing ones, suffering from shortages of rRT-PCR reagents and specialized laboratories. We made available a

Web-based tool for clinical reference and evaluation (This tool is available at https://covid19-blood-ml.herokuapp.com/).
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Introduction

The pandemic disease caused by the SARS-CoV-2 virus

named COVID-19 is requiring unprecedented responses of

exceptional intensity and scope to more than 200 states

around the world, after having infected, in the first 4 months

since its outbreak, a number of people between 2 and 20

million with at least 200,000 deaths. To cope with the spread

of the COVID-19 infection, governments all over the world

has taken drastic measures like the quarantine of hundreds

of millions of residents worldwide.

However, because of the COVID-19 symptomatology,

which showed a large number of asymptomatics [12], these

efforts are limited by the problem of differentiating between
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COVID-19 positive and negative individuals. Thus, tests to

identify the SARS–CoV-2 virus are believed to be crucial

to identify positive cases to this infection and thus curb the

pandemic.

To this aim, the current test of choice is the reverse tran-

scriptase Polymerase Chain Reaction (rt-PCR)-based assays

performed in the laboratory on respiratory specimens. Taking

this as a gold standard, machine learning techniques have been

employed to detect COVID-19 from lung CT-scans with

90% sensitivity, and high AUROC ( 0.95) [19, 27]. Although

chest CTs have been found associated with high sensitiv-

ity for the diagnosis of COVID-19 [1], this kind of exam

can hardly be employed for screening tasks, for the radia-

tion doses, the relative low number of devices available, and

the related operation costs. A similar attempt was recently

performed on chest x-rays [4], which is a low-dose and less

expensive test, with promising statistical performance (e.g.,

sensitivity 97%). However, since almost 60% of chest x-rays

taken in patients with confirmed and symptomatic COVID-

19 have been found to be normal [45], systems based on this

exam need to be thoroughly validated in real-world settings

[6]. Further, despite these promising results, some concerns

have been raised on these and other works, most of which

have not yet undergone peer review: a recent critical survey

[46] reported that all of the surveyed studies were possibly

subject to high bias and risk of over-fitting, and showed little

compliance to reporting and replication standards

The public health emergency requires an unprecedented

global effort to increase testing capacity [33]. The large

demand for rRT-PCR tests (also commonly known as

nasopharyngeal swab tests) due to the worldwide extension

of the virus is highlighting the limitations of this type of

diagnosis on a large-scale such as: the long turnaround

times (on average over 2 to 3 hours to generate results); the

need of certified laboratories; trained personnel; expensive

equipment and reagents for which demand can easily

overcome supply [28]. For instance in Italy, the scarcity of

reagents and specialized laboratories forced the government

to limit the swab testing to those people who clearly showed

symptoms of severe respiratory syndrome, thus leading to

a number of infected people and a contagion rate that were

largely underestimated [39].

For this reason, and also in light of the predictable wide

adoption of mobile apps for contact tracing [15], which will

likely increase the demand for population screening, there

is an urgent need for alternative (or complementary) testing

methods by which to quickly identify infected COVID-

19 patients to mitigate virus transmission and guarantee a

prompt patients treatment.

On a previous work published in the laboratory medicine

literature [14], we showed how simple blood tests might

help identifying false positive/negative rRT-PCR tests. This

work and the considerations made above strongly motivated

Table 1 Features of the dataset considered in the present study

Feature Data Type

Gender Categorical

Age Numerical (discrete)

Leukocytes (WBC) Numerical (continuous)

Platelets Numerical (continuous)

C-reactive Protein (CRP) Numerical (continuous)

Transaminases (AST) Numerical (continuous)

Transaminases (ALT) Numerical (continuous)

Gamma Glutamil Transferasi (GGT) Numerical (continuous)

Lactate dehydrogenase (LDH) Numerical (continuous)

Neutrophils Numerical (continuous)

Lymphocytes Numerical (continuous)

Monocytes Numerical (continuous)

Eosinophils Numerical (continuous)

Basophils Numerical (continuous)

Swab Categorical

us to apply machine learning methods to routine, low-cost1

blood exams, and to evaluate the feasibility of predictive

models in this important task for the mass-screening of

potential COVID-19 infected individuals. A comprehensive

literature review has been recently published on the use

of machine learning [46] for COVID-19 screening and

diagnosis; after searching on PubMed, Scopus and Web

of Science search engines, we confirm the findings of the

above literature review: that no machine learning solution

to date is applied to blood counts and other comprehensive

routine blood tests for COVID-19 screening and diagnosis.

The only study, available so far in the peer-reviewed

literature, that applied this approach, although in combina-

tion with CT-based diagnosis, was proposed in [32], but it

was limited to white blood cell count. In what follows, we

report the study that proves the feasibility of our approach.

Methods

The aim of this work is to develop a predictive model, based

on Machine Learning techniques, to predict the positivity

or negativity for COVID-19. In the rest of this Section we

report on the dataset used for model training and on the data

analysis pipeline adopted.

Data description

The dataset used for this study was made available by

the IRCCS Ospedale San Raffaele2 and it consisted of

1A qualitative estimation of the cost of the exams used for this study is

15 euros per test, approximately five times cheaper than rt-PCR testing.
2IRCCS is the Italian acronym for Scientific Institute for Research,

Hospitalization and Healthcare
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Table 2 Descriptive statistics for the features considered in the present study

Feature Mean Std Median Kurtosis Skewness

Age 61.3 18.5 64 -0.1 -0.5

Leukocytes (WBC) 8.5 4.8 7.2 2.3 1.5

Platelets 226.5 100.8 205 1.8 1.1

C-reactive Protein (CRP) 91.1 93.5 57.2 1.9 1.4

Transaminases (AST) 54.2 57.4 37 28.8 4.6

Transaminases (ALT) 46.6 47.1 33 11.8 3.1

Gamma Glutamil Transferasi (GGT) 82 128.8 48 14.8 2.6

Lactate dehydrogenase (LDH) 378 212.9 328 12.6 0.7

Neutrophils 6.6 4.36 5.3 3 1.6

Lymphocytes 1.2 0.7 1.1 16.1 2.7

Monocytes 0.6 0.4 0.5 8.2 2

Eosinophils 0.05 0.1 0 48.7 5.5

Basophils 0.01 0.03 0 14.2 3

279 cases, randomly extracted from patients admitted to

that hospital from the end of February 2020 to mid of

March 2020. Each case included the patient’s age, gender,

values from routine blood tests extracted as in [13], and

the result of the RT-PCR test for COVID-19, performed

by nasopharyngeal swab. The parameters collected by the

blood test are reported in Table 1.

The dependent variable “Swab” is binary and it is equal

to 0 in the absence of COVID-19 infection (negative swab

test), and it is equal to 1 in the case of COVID-19 infection

(positive to the swab test). The number of occurrences for

the negative and positive class was respectively 102 (37%)

and 177 (63%), thus the dataset was slightly imbalanced

towards positive cases.

Table 2 summarizes the descriptive statistics of the

continuous features considered in this work. In Fig. 1 we

report the violin plots that show the feature distribution of

the most predictive features employed to build the machine

learning models of this case study.

Figure 2 shows the pairwise correlation of the features

used for this study, while Fig. 3 focuses on variables “Age”,

“WBC”, “CRP”, “AST” and “Lymphocytes”.

Datamanipulation

First of all, the categorical feature Gender has been

transformed into two binary features by one-hot encoding.

Fig. 1 Violin plots for selected features in the training dataset (chosen for their predictive importance)
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Fig. 2 Pairwise Pearson

correlation of the features taken

into account for this case study

Fig. 3 Distribution plots and

pairwise scatter plots of selected

features. Red points and red

distributions represent positive

patients to Covid19, while blue

points represent negative

patients
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Table 3 Features and missing values in the dataset

Feature N◦ of missing % of missing on

the total

C-reactive protein (CRP) 6 2.1

Aspartate Aminotransferase (AST) 2 0.7

Alanine Amino Transferase (ALT) 13 4.6

Gamma Glutamil Transferasi (GGT) 143 51.2

Lactate Dehydrogenase (LDH) 85 30.4

Leukocyte Count (WBC) 2 0.7

Platelets 2 0.7

Neutrophils 70 25

Lymphocytes 70 25

Monocytes 70 25

Eosinophils 70 25

Basophils 71 25.4

Further, we notice that the dataset was affected by missing

values in most of its features (see Table 3).

To address data incompleteness, we performed missing

data imputation by means of the Multivariate Imputation by

Chained Equation (MICE) [5] method. MICE is a multiple

imputation method that works in an iterative fashion: in

each imputation round, one feature with missing values

is selected and is modeled as a function of all the other

features; the estimated values are then used to impute the

missing values and re-used in the subsequent imputation

rounds.

We chose this method because multiple imputation

techniques are known to be more robust and better capable

to account for uncertainty, especially when the proportion

of missing values on some features may be large, compared

with single imputation ones [38] (as they employ the joint

distribution of the available features). Further, in order to

avoid data leakage and control the bias due to imputation,

we performed the missing data imputation during the nested

cross-validation (described in the following section), by

using for the imputation only the data in each training folds:

this allows to quantify the influence of the data imputation

on the results by observing the variance of the results across

the folds.

Model training, selection and evaluation

We compared different classes of Machine Learning

classifiers. In particular, we considered the following

classifier models:

– Decision Tree [40] (DT);

– Extremely Randomized Trees [17] (ET);

– K-nearest neighbors [2] (KNN);

– Logistic Regression [21] (LR);

– Naı̈ve Bayes [25] (NB);

– Random Forest [23] (RF);

– Support Vector Machines [41] (SVM).

We also considered a modification of the Random Forest

algorithm, called three-way Random Forest classifier [7]

(TWRF), which allows the model to abstain on instances

for which it can express low confidence; in so doing,

a TWFR achieves higher accuracy on the effectively

classified instances at expense of coverage (i.e., the number

of instances on which it makes a prediction). We decided

to consider also this class of models as they could provide

more reliable predictions in a large part of cases, while

exposing the uncertainty regarding other cases so as to

suggest further (and more expensive) tests on them.

From a technical point of view, Random Forest is an

ensemble algorithm that relies on a collection of Decision

Trees (i.e. a forest, hence the name of the algorithm) that

are trained on mutually independent subsets of the original

data in order to obtain a classifier with lower variance and/or

lower bias. The independent datasets, on which the Decision

Trees in the forest are trained, are obtained from an original

dataset by both sampling with replacement the instance and

selecting a random subset of the features (see [20] for more

details about the Random Forest algorithm). As Random

Forest are a class of probability scoring classifiers (that

is, for each instance the model assigns a probability score

for every possible class), the abstention is performed on

the basis of two thresholds α, β ∈ [0, 1]: if we denote

with 1 the positive class and 0 the negative class, then

each instance is classified as positive if score(1) > α

and score(1) > score(0), negative if score(0) > β and

score(0) > score(1) and, otherwise, the model abstains.

In these models the performance is usually evaluated only

on the non-abstained instances [16], and the coverage is a

further performance element to be considered.

The models mentioned above have been trained, and

evaluated, through a nested cross validation [9, 20] proce-

dure. This procedure allows for an unbiased generalization

error estimation while the hyperparameter search (includ-

ing feature selection) is performed: an inner cross-validation

loop is executed to find the optimal hyperparameters via

grid search and an outer loop evaluates the model perfor-

mance on five folds.

Models were evaluated in terms of accuracy, balanced

accuracy 3, Positive Predictive Value (PPV)4, sensitivity,

specificity and, except for the three-way Random Forest, the

area under the ROC curve (AUC). After discussing this with

3We recall that balanced accuracy is defined as the average

of sensitivity and specificity. If accuracy and balanced accuracy

significantly differ, the data could be interpreted as unbalanced with

respect to class prevalence.
4We recall here that PPV represents the probability that subjects with

a positive screening test truly have the disease.
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Table 4 The models’ performance: 95% C.I. of model accuracy on 5-folds nested CV

DT ET KNN LR NB RF SVM TWRF

A (all features) [0.70, 0.78] [0.68, 0.79] [0.66, 0.76] [0.70, 0.81] [0.64, 0.81] [0.74, 0.80] [0.69, 0.80] [0.83, 0.89]

B (without Gender) [0.62, 0.75] [0.74, 0.82] [0.66, 0.76] [0.670, 0.79] [0.65, 0.76] [0.71, 0.86] [0.66, 0.79] [0.83, 0.89]

the clinicians involved in this study, we considered accuracy

and sensitivity to be the main quality metrics, since false

negatives (that is, patients positive to COVID-10 which are,

however, classified as negative, and possibly let go home)

are more harmful than false positives in this screening task.

Results

For all the preprocessing steps and tested classifiers, we

employed the standard Python data analysis ecosystem,

comprising pandas [31] (for data loading and pre-

processing), scikit-learn [35] (for both pre-processing and

the classifiers implementations) and matplotlib [22] (for

visualization purposes). The experiments were executed on

a PC with an Intel i7 processor (6 cores, 3.2 GHz clock

frequency) and 12 GB RAM: the model selection required

around 2 minutes of computation time, while both the

model fitting on the training set and the predictions on the

test/validation sets required around 1 second of computation

time.

Tables 4 and 5 show the 95% confidence intervals

of, respectively, average accuracy and average balanced

accuracy (that is, the average of sensitivity and specificity)

of the models (on the nested cross-validation) trained on the

two best-performing sets of features: the first one, dataset

A, includes all the variables, while the second one, dataset

B, excludes the “Gender” variable, as this was found of

negligible predictive value.

Figure 4 shows the performance of the traditional models

(i.e., the TWRF model was excluded) on the nested cross-

validation.

To further validate the above findings, the entire dataset

has been splitted into training and test/validation sets,

respectively the 80% and the 20% of the total instances. The

performance of the models, with optimal hyper-parameters

as selected through nested cross-validation, is shown in

Fig. 5, which depicts the ROC curves for all the models. Two

models, Logistic Regression and Random Forest, exhibited

comparable performance (difference less than 1%) in terms

of AUC (LR = 85%, RF = 84 %) and sensitivity (LR = 93%,

RF = 92%), but Random Forest reported higher performance

in terms of accuracy (LR = 78%, RF = 82%) and much

higher specificity (LR = 50%, RF = 65%): thus, Random

Forest was selected as reference best performing model. The

best performing model, i.e. the Random Forest classifier,

trained on dataset B, achieved the following results on the

test/validation set: accuracy = 82% , sensitivity = 92%, PPV

= 83%, specificity = 65%, AUC = 84%. Figure 6 shows the

performance of this model in the precision/recall space.

The optimal hyperparameters found are shown in Table 6.

Similarly, for the best three-way Random Forest classi-

fier on the validation set we observed: accuracy = 86%,

sensitivity = 95%, PPV = 86%, specificity = 75%, coverage

= 70% (that is, for 30% of the validation instances the model

abstained).

The feature importance assessed for the the best

performing model (Random Forest on dataset B), are shown

in Fig. 7. The feature importances were computed by

estimating, for each feature, the total normalized reduction,

across the Decision Trees in the trained Random Forest, to

the variance of the target feature (hence, greater importance

values denote a greater contribution to explaining the target

variance): this computation was performed via the reference

Random Forest implementation provided in the scikit-learn

library.

Finally, it is worth noting that while the best performing

model obtained good predictive performance, Random

Forest is known to be a black-box model, that is a model that

is not directly able to provide interpretable insight into how

its predictions are made, as these predictions are obtained

from the averaging of the Decision Trees in the forest. In

order to provide an interpretable overview (in the sense

of eXplainable AI[18]) of this predictive model, we also

developed a Decision Tree model, which is shown in Fig. 8,

to approximate the decision-making steps implemented by

Table 5 The models’ performance: 95% C.I. of model balanced accuracy on 5-folds nested CV

DT ET KNN LR NB RF SVM TWRF

A (all features) [0.64, 0.71] [0.67, 0.81] [0.60, 0.74] [0.65, 0.79] [0.63, 0.77] [0.70, 0.82] [0.69, 0.76] [0.83, 0.87]

B (without Gender) [0.63, 0.73] [0.67, 0.84] [0.61, 0.74] [0.64, 0.74] [0.63, 0.76] [0.70, 0.80] [0.65, 0.77] [0.83, 0.87]
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Fig. 4 Violin plots of the

accuracy distributions reached

by each models on five folds (on

dataset B)

the Random Forest model. Although the depicted decision

tree is associated with a lower discriminative performance

than the two former (inscrutable) models, such a tree can be

used as a simple decision aid by clinicians interested in the

use of blood values to assess COVID-19 suspect cases.

Discussion

We have developed two machine learning models to

discriminate between patients who are either positive or

negative to the SARS-CoV-2, which is the coronavirus

causing the COVID-19 pandemia. In this task, patients

are represented in terms of few basic demographic

Fig. 5 The sensitivity and specificity curve (i.e., sensitivity /positive

predictive value curve or, equivalently true positive rate / false positive

rate as depicted in the Figure) of the evaluated models. The best

performing algorithm, Random Forest, is highlighted

characteristics (gender, age) and a small array of routine

blood tests, chosen for their convenience, low cost and

because they are usually available within 30 minutes from

the blood draw in regular emergency department. The

ground truth was established through RT-PCR swab tests.

We presented the best traditional model, as it is common

practice, and a three-way model, which guarantees best

sensitivity and positive predictive value: the former is the

proportion of infected (and contagious) people who will

have a positive result and therefore it is useful to clinicians

when deciding which test to use. On the other hand, PPV

is useful for patients as it tells the odds of one having

COVID-19 if they have a positive result.

The performance achieved by these two best models

(sensitivity between 92% and 95%, accuracy between 82%

Fig. 6 The precision/recall (i.e., positive predictive value / sensitivity)

curve, and the area under this curve
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Table 6 Optimal hyperparameters for the Random Forest classifier.

For the sake of reproducibility, also the random seed is reported

Hyperparameters Value

Max Depth -

Criterion Gini

N◦ estimators 100

Random seed for reproducibility 123

and 86%) provides proof that this kind of data, and computa-

tional models, can be used to discriminate among potential

COVID-19 infectious patients with sufficient reliability, and

similar sensitivity to the current Gold Standard. This is the

most important contribution of our study.

Also from the clinical point of view, the feature selection

was considered valid by the clinicians involved. Indeed,

the specialist literature has found that COVID-19 positivity

is associated with lymphopenia (that is, abnormally low

level of white blood cells in the blood), damage to liver

and muscle tissue [44, 48], and significantly increased C-

reactive protein (CRP) levels [10]. In [29] a comprehensive

list of the most frequent abnormalities in COVID-19

patients has been reported: among the 14 conditions

considered, they report increased aspartate aminotransferase

(AST), decreased lymphocyte count (WBC), increased

lactate dehydrogenase (LDH), increased C-reactive protein

(CRP), increased white blood cell count (WBC) and

increased alanine aminotransferase (ALT).

These parameters are also the most predictive features

identified by the best classifier (Random Forest), all

together with the Age attribute. Also other studies confirm

the relevance of these features and their association with

the COVID-19 positivity [8, 34, 37, 50], compared to other

kinds of pneumonia [49]. This also gives confirmation that

our models ground on clinically relevant features and that

most of these values can be extracted from routine blood

exams.

The interpretable Decision Tree model provides a further

confirmation (see Fig. 8) of the soundness of the approach:

the clinicians (ML, GB) and the biochemist (DF) involved

in this study found reasonable that the AST would be the

first parameter to consider (i.e., mirrored by the fact that

AST was the root of the decision tree) and that it was

found to be the most important predictive feature. Indeed,

values of AST below 25 are good predictors of COVID-19

positivity (accuracy = PPV = 76%), while values below 25

are a good predictor of COVID-19 negativity (accuracy =

Negative Predictive Value = 83%). Similar observations can

also be made about CRP, Lymphocytes and general WBC

counts.

No statistically significant difference was found between

the accuracy and the balanced accuracy of the models (as

mirrored by the overlap of the 95% confidence intervals), as

a sign that the dataset was not significantly unbalanced.

Moreover, we can notice that the best performing ML

classifier (Random Forest) exhibited a very high sensitivity

(∼ 90%) but, in comparison, a limited specificity of only

65%. That gives the main motivation for the three-way

classifier: this model offers a trade-off between increased

specificity (a 10% increment compared with the best

traditional ML model) and reduced coverage, as the three-

way approach abstains on uncertain instances (i.e., the

cases that cannot be classified with high confidence neither

as positive nor negative ). This means that the model

yields more robust and reliable prediction for the classified

instances (as it is mirrored by the increase in all of the

performance measures), while for the other ones it is

anyway useful in suggesting further tests, e.g., by either a

PCR-RNA swab test or a chest x-ray.

Fig. 7 Feature importance

scores for the best performing

model
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Fig. 8 An interpretable Decision

Tree, developed in order to

support the interpretation of the

predictions from the other

models. Color gradients denote

predictivity for either classes

(shades of blue correspond to

COVID-19 negativity, shades of

orange to positivity)

In regard to the specificity exhibited by our models,

we can further notice that even while these values are

relatively low compared with other tests (which are more

specific but slower and less accessible), this may not be

too much of a limitation as there is a significant disparity

between the costs of false positives and false negatives

and in fact our models favors sensitivity (thus, they avoid

false negatives). Further, the high PPV (> 80%) of our

models suggest that the large majority of cases identified as

positives by our models would likely be COVID-19 positive

cases.

That said, the study presents two main limitations:

the first, and more obvious one, regards the relatively

low number of cases considered. This was tackled by

performing nested cross-validation in order to control for

bias [43], and by employing models that are known to

be effective also with moderately sized samples [3, 36,

42]. Nonetheless, further research should be aimed at
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confirming our findings, by integrating hematochemical

data from multiple centers and increasing the number of

the cases considered. The second limitation may be less

obvious, as it regards the reliability of the ground truth

itself. Although this was built by means of the current

gold standard for COVID-19 detection, i.e., the rRt-PCR

test, a recent study observed that the accuracy of this

test may be highly affected by problems like inadequate

procedures for collection, handling, transport and storage

of the swabs, sample contamination, and presence of

interfering substances, among the others [30]. As a result,

some recent studies have reported up to 20% false-negative

results for the rRt-PCR test [24, 26, 47], and a recent

systematic review reported an average sensitivity of 92%

and cautioned that “up to 29% of patients could have

an initial RT-PCR false-negative result”. Thus, contrary to

common belief and some preliminary study (e.g., [11]), the

accuracy of this test could be less than optimal, and this

could have affected the reliability of the ground truth also in

this study (as in any other using this test for ground truthing,

unless cases are annotated after multiple tests. However,

besides being a limitation, this is also a further motivation

to pursue alternative ways to perform the diagnosis of

SARS-CoV-2 infection, such as our methods are.

Future work will be devoted to the inclusion of more

hematochemical parameters, including those from arterial

blood gas assays (ABG), to evaluate their predictiveness

with respect to COVID-19 positiveness, and the inclusion

of cases whose probability to be COVID-positive is

almost 100%, as they resulted positive to two or more

swabs or to serologic antibody tests. This would allow

to associate a higher weight with misidentifying those

cases, so as, we conjecture, improve the sensitivity

further.

Moreover, we want to investigate the interpretability of

our models further, by both having more clinicians validate

the current Decision Tree, and possibly construct a more

accurate one, so that clinicians can use it as a convenient

decision aid to interpret blood tests in regard to COVID-19

suspect cases (even off-line).

Finally, this was conceived as a feasibility study for an

alternative COVID-19 test on the basis of hematochimical

values. IN virtue of this ambitious goal, the success of

this study does not exempt us from pursuing a real-

world, ecological validation of the models [6]. To this

aim, we deployed an online Web-based tool5 by which

clinicians can test the model, by feeding it with clinical

values, and considering the sensibleness and usefulness

of the indications provided back by the model. After

this successful feasibility study, we will conceive proper

5The tool is available at the following address: https://covid19-blood-

ml.herokuapp.com/.

external validation tasks and undertake an ecological

validation to assess the cost-effectiveness and utility of these

models for the screening of COVID-19 infection in all

the real-world settings (e.g., hospitals, workplaces) where

routine blood tests are a viable test of choice.

Code and data availability

Availability of data andmaterial

The developed web tool is available at the follow-

ing address: https://covid19-blood-ml.herokuapp.com/ The

complete dataset will be made available on the Zenodo

platform as soon as the work gets accepted for publication.

Code availability

The complete code will be made available on the Zenodo

platform as soon as the work gets accepted for publication.
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