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Abstract: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOne approach to the detection of curves 
at subpixel accuracy involves the reconstruction of 
such features from subpixel edge data points. A 
new technique is presented for reconstructing and 
segmenting curves with subpixel accuracy using 
deformable models. A curve is represented as a set 
of interconnected Hermite splines forming a snake 
generated from the subpixel edge information that 
minimises the global energy functional integral 
over the set. While previous work on the mini- 
misation was mostly based on the Euler-Lagrange 
transformation, the authors use the finite element 
method to solve the energy minimisation equa- 
tion. The advantages of this approach over the 
Euler-Lagrange transformation approach are that 
the method is straightforward, leads to positive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm- 
diagonal symmetric matrices, and has the ability 
to cope with irregular geometries such as junc- 
tions and corners. The energy functional integral 
solved using this method can also be used to 
segment the features by searching for the location 
of the maxima of the first derivative of the energy 
over the elementary curve set. 

1 Introduction 

While there has been substantial work performed on the 
detection of one-dimensional features such as edges at 
subpixel accuracy, little has been done on the subpixel 
detection of two-dimensional features such as curves and 
conic sections. The main problem of extracting such fea- 
tures from digital images arises because images are noisy, 
and so the detected edge points are incomplete and, for a 
given segment, the points are unequally spaced. Further- 
more, since the variance of edge data points is generally 
high, a simple curve fit through all the points will not 
reconstruct the correct shape even at pixel accuracy. In 
this paper we outline a new two-dimensional curve 
extraction and segmentation algorithm based on deform- 
able models. Our technique assumes that the edge infor- 
mation is reliable and accurate but not equally spaced zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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nor complete, which means that the least-squares method 
is inappropriate. We use a reliable subpixel edge detector 
[I, 21 to obtain reliable and accurate edge information. 

The use of deformable models for curve detection has 
drawn attention recently [3, 41. The approach by Zucker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
et al. [4] represents a curve as a cover set of elementary 
dynamic deformable curves. This method provides better 
results and is more straightforward than the previous 
work based on statistical curve fitting. The deformable 
model works by dividing the domain curve into a set of 
elementary curves called subdomains and then minimises 
the energy integral over the set using the Euler-Lagrange 
integral transformation. This discrete representation 
allows the use of an alternative mathematical approach 
based on finite elements [SI. 

Our technique follows that of Karaolani et al. [SI in 
the use of the finite element model to solve the energy 
minimisation problem. However, our method differs in 
that we model the elementary curves as simple one- 
dimensional cubic Hermite splines. This simplification 
allows the application of one-dimensional finite element 
techniques which can be solved easily using standard 
finite element methods and allows us to deal with irregu- 
lar features such as sharp corners by removing the 
problem of corner smoothing in two-dimensional finite 
elements. We minimise the energy over all subdomains 
instead of each subdomain, which thus makes sirnultan- 
eous extraction and segmentation of the global curve 
possible. 

2 Principles of deformable models zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. I Lagrangian energy minimisation 
Let c(s) represents a normalised deformable curve, where 
s E Cl = [ - 1, 11 is its spatial parameter. The potential 
energy functional L (see Fig. 1) of curve c is defined as the 
functional 

(1) 

where a(s)(dc/ds( is the tension of the curve that rep- 
resents the axial loads, p(s) I d2c/ds2 ( represents lateral 
forces, Z(c) is the energy from the tangent field that con- 
trols the curvature and S(c) is the gravitational force 
between neighbouring curves that glues adjacent com- 
ponents. 

The minimal energy principle requires that the curve c 
must minimise the functional to have a stable system. 
The value of the curve that minimises the functional (eqn. 
1) is called the extrernal of the functional. Thus to 
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compute the curve equation one needs to minimise the 
functional. There are two approaches to solving the mini- 
misation problem. The first method is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEuler- 
Lagrange method that transforms the energy integral into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 ' J  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 1 Deformed element c(s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis its length and i and J are its nodal points 

a set of differential equations. From the calculus of varia- 
tions it is known that any minimum of the Lagrangian 
equation must satisfy the Euler conditions [SI. Zucker et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
al. [4] have developed an algorithm that solves the 
problem of energy minimisation by applying the Euler- 
Lagrange method to the energy functional integral. The 
second method is based on the finite element method as 
proposed by Karaolani et al. [SI. This method divides 
the global energy domain into several small subdomains 
and minimises the energy integral over each subdomain 
independently. The global curve is approximated by 
element equations of each subdomain combined at their 
joint boundaries. The external energies influencing the 
model that are independent of the free variables are rep- 
resented by the loading conditions. 

The finite element method has advantages over the 
Euler-Lagrange transformation method because the 
method is straightforward, leads to matrices that are 
positive-definite m-diagonal symmetric for which good 
numerical algorithms have been developed, and has the 
ability to represent irregular geometries as a set of inter- 
connected elements. Since the method does not transform 
the potential energy functional integral into a set of dif- 
ferential equations, the problem of boundary conditions 
[6]  will not arise. The use of the finite element method 
also makes the dealing with discontinuous geometric fea- 
tures such as corners or junctions possible. Contrast this 
with the Euler transformation method that always gener- 
ates smooth models with simple geometric properties. In 
the proposed approach, the erratic behaviour of the ele- 
ments at interelement boundaries that present difficulties 
[SI is handled by introducing the gravitational force S 
into eqn. 1, which controls the interaction between neigh- 
bouring elementary curves. 

The energy is minimised over all subdomains instead 
of within each subdomain, which makes the simultaneous 
extraction and segmentation of the global curve possible 
and allows irregular features such as sharp corners and 
junctions to be dealt with. The elementary curves are 
modelled as one-dimensional cubic Hermite splines by 
assuming that the length of each elementary curve is very 
small compared to the length of the global curve. This 
simplification allows the application of one-dimensional 
finite element techniques that are easily solved using 
standard finite element methods. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFinite element solution for the energy functional 
The global curve c that fits M edge points is modelled as 
M - 1 interconnected elementary curves ck, k = 1, . . . , 
M - 1. The elements are assumed to be connected at 
their end points called the nodal points (Fig. 1). The 
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length of each element is assumed to be small such that 
the shape of the displacement of each element can be 
approximated by a simple one-dimensional function. The 
function that models the displacement over each finite 
element is termed the displacement function. A normalised 
shapefunction that has unit value at one nodal point and 
zero value at all other nodal points is used as the basis 
for the displacement function. The state of an element is 
described as a matrix called the nodal parameter matrix. 
The elements of this matrix are termed the nodal param- 
eters. The value of ck and its derivative dck/ds, i.e. position 
and orientation of a pair of edge points, are chosen as the 
nodal parameters. The nodal parameter matrix and the 
shape function matrix together define the element equa- 
tion. 

To compute the global curve, the equations of the ele- 
ments are assembled into a system equation. The initial 
nodal point values are derived from the edge detector. By 
solving the system equation using these nodal point 
values, the curvature of the elements [7] are obtained. 
Integrating the curvature and applying boundary condi- 
tions yields new nodal point values that are used in sub- 
sequent iteration. This process is performed iteratively 
until the global energy is minimised. 

For example, consider a deformable curve c(s), 
s E C2 = [ - 1, 11, which is divided into a finite number of 
elements c k ,  k = 1, ..., M - 1, such that each element 
has two nodal points i and j .  Assuming that the system is 
isotropic, the energy functional L for element ck can be 
expressed as 

Given a shape function matrix N ,  the element equation 
for element ck can be written as 

C k ( S )  = Nak (3) 

where ak is the nodal parameters matrix for the element- 
ary curve ck. The value of ck and its slope dck/ds at each 
of the nodal points (position and orientation of a pair of 
edge points) are chosen as the nodal parameters, so the 
elementary curves have four degrees of freedom 

f ck 

(4) 

Since the elementary curve has four degrees of freedom, a 
shape function that is cubic in s is required to represent 
the displacements. If the global curve is assumed to 
be continuous and the elementary curves have first- 
order continuity with respect to variable s, the cubic 
Hermites may be used as the shape function [SI. For a 
one-dimensional element with two nodal points at 
i = - 1 and j = 1, the cubic Hermitian shape function N 
is given by 

N = { N ,  N2 N3 N 4 )  

= 0.25(2 - 3s + s3 1 - s - S' -- s3 

2 + 3s - s3 - 1 - s + s2 + s3} ( 5 )  
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Since the length of each of the elementary curves is very 
small compared to the length of the global curve, the ele- 
mentary curves can be modelled as one-dimensional 
curves. From the edge data the values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAck and dc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJds at 
the nodal points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs = i, j are known. By substituting these 
values into eqn. 3 the element equation for the element- 
ary curve c k  can then be written as 

- 6 S C k ( S )  

ck(s) = 0.25{2 - 3s + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs3 1 - s - s2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs3 

2 + 3 s - s 3  - 1 - s + s 2 +  

+ (2 + 6s) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdc, 1 ) 
s= j  ds s=, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 

s = i  

+ ( - 1  - s + s2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2)- d c k l  ds s = j  1 
The curvature IC of the curve c k  is given by: 

= 0.2+$} 

s = i  

The global curve c is the cover of all elementary curves 
c k  and each elementary curve contributes L(ck) to the 
global energy functional. Since the system is assumed to 
be isotropic, the energy functional of the global curve is 
simply a sum of the individual energy functionals derived 
for all elementary curves, i.e. 

Because the length of each elementary curve is very small 
compared to the length of the global curve, the element- 
ary curves can be assumed to be homogeneous such that 
within each element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU and P are constants and independ- 
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ent of s, and so eqn. 8 can be simplified to 

+ r ( c k )  + s ( c k )  ds 1 
Substituting eqn. 3 into eqn. 9 yields 

This integral equation forms the global energy equation 
that is minimised to reconstruct the global curve. 

2.3 Inferring the global curve 
The global curve is computed by minimising eqn. 10. The 
minimisation means picking the stationary values of the 
first variations of L, so it is required that 

where a, is the nodal parameter. Since the nodal param- 
eters are independent of each other, da, are also 
independent of each other and may have non-zero values. 
Since L is positive-definite, then eqn. 11 may hold only if 
the first variation of L is zero, i.e. 

-- aL(ck) - 0, i = 1, 2, 3, 4 
daik 

Eqn. 12 comprises a set of M - 1 equations each of 
which characterises the behaviour of an elementary curve 
with respect to its nodal parameters. Carrying out the 
minimisation of L ( c k )  with respect to its nodal parameters 
gives the equations for an element as 

This equation may be rewritten concisely as 

K k  = - F k  (14) 

and defining 
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gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 Overview of the algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.1 Tangent field potential 
Before the details of the algorithm are presented, the 
overview of the computation of the nodal force function 
follows. The nodal force function consists of the tangent 
field potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI and the gravitational force S .  The 
tangent field potential is computed from the subpixel 
edge data. The tangent field provided by the edge detec- 
tor is expressed as 

qs )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe(s) (20) 

where 0 is the subpixel edge orientation information pro- 
vided by the edge detector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI. For an elementary curve 
c k  with nodal points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi andj, the tangent field potential is 

r k ( s i j )  = T(S) ds (21) s Sij 
where the integral is taken as a line integral along zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs. 

[NINl N;N; N; Nj N;N4) 

N;N1 N;N2 N 2  N; “,NI, 
NkN; N‘,N2 Nj N 3  N ; N 4  

CBll \ 

= [p[Nrl[N’IT + f l k [ B I C B I T )  ds 

which is called the stiffness matrix for element c k  , 

is the nodal parameter matrix, and 

is the nodal force function. 

written as 
The energy contributed by the element c k  may be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ar ar ar +is, (E +aa, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+da, + aa, 

= 4 ( K k [ a k l T [ a k l  + Fk) (19) 
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3.2 lntersplines gravitational energy 
An interspline gravitational energy S is introduced to 
compensate for error generated by the covariance of the 
edge data. The gravitational energy glues neighbouring 
curves together such that the two curves are continuous. 

For example, given three adjacent elements C k - l ,  c k  

and c k +  with their corresponding nodal points ( i k -  1, 

j k . - l ) ,  ( i k ,  j k )  and ( i k f 1 ,  j k + , ) ,  for the continuity of the 
global curve c it is required that 

s = i  
c k -  l (s)  1 , = ck(s) 1 

s=3 

ck(s) I = ck+ l(s) 1 (22) 
s = i  s =  j 

The gravitational energy S is the energy needed to main- 
tain the constraints given in eqn. 22,. The gravitational 
energy S of element c k  is defined as 

s(ck) = p J [ ( c k -  l(s) - ck(s))2 + (ck(s )  - c k +  l(s))21 (23) 

where p is the relaxation parameter that controls the 
degree of influence of the gravitational energy on the 
global curve. The choice of p is a difficult and in this case, 
from experiments, it is found that the relaxation param- 
eter of an elementary curve ck is monotonically pro- 
portional to the covariance of the edge data. 

3.3 Algorithm to estimate the global curve 
Eqn. 19 gives the characteristics of a particular element- 
ary curve and it is called the element equation. To 
compute the global curve, the element equations are 
assembled into M - 1 equations that form the system 
equation. The model is initialised with the initial values 
of c k ,  i ,  c k ,  j, dck, Jds and dc,, Jds which are obtained from 
the edge detector [ l o ] ,  and thus for each element of the 
system equation only two unknown variables (the curva- 
ture at each nodal point, x k ,  and K k ,  j )  for the M - 1 
elements are to be solved from M - 1 equations. We 
assume the positions c k ,  and f&, are known accurately, 
but we only have an estimate of the orientations. This is 
because the edge detector uses a one-dimensional mask 
which is oriented to be perpendicular to the edge. The 
one-dimensional mask gives good edge location but poor 
edge orientation. Since the number of‘ unknowns is twice 
as many as the number of equations, the system equation 
is not solvable. Fortunately, since every elementary curve 
is connected to its neighbours, the curvature of an 
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element at its end point is the same as the curvature of its 
neighbouring element. In other words, a constant curva- 
ture constraint is imposed by making the curve approx- 
imation C' continuous. Therefore 

leaving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 unknowns, and thus the system equation 
can now be solved. Integrating the curvatures yields new 
nodal parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc k  and dck/ds for the next iteration. The 
process is repeated until the energy in eqn. 10 is mini- 
mised. This means that sharp features with discontin- 
uities of curvature cannot be modelled. 

The final curve that gives the minimal global energy is 
stored in a set giving the global curve function. This 
cover set is analysed to segment the global curve into its 
distinct components. The global energy information is 
used to decompose the cover set of the elementary curves 
into subsets that each represent a curve segment. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.4 Decomposition of the cover set into segment sets 
The cover set is an ordered set of elementary curves that 
represent the global curve. Each element of the cover set 
stores information about the spline parameters of an ele- 
mentary curve and its minimum energy value. This infor- 
mation can be analysed to break the curve into its 
geometric components. When a segment breaks, there is 
a curvature transition in the global curve. Since the 
stiffness matrix K is a function of curvature, then the 
stiffness matrix will change at the location where the 
segment breaks. 

The change in L(ck) is equal to the partial derivative of 
L with respect to c k  multiplied by a small incremental 
value 6ck.  Thus when 6ck + 0, if 6 L ( c k )  -+ CO then 

-- - - C O  
dL(ck)  

ack 

This expression implies that the maxima of the first deriv- 
ative of the energy correspond to the location where seg- 
ments break. Since the segmentation is based on 
curvature, geometric features that have nonconstant cur- 
vature such as ellipses will be segmented into more than 
one segment, while geometric features that have constant 
curvature such as a circle will be detected as one segment. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAResults and discussions 

4.1 Synthetic data 
The algorithm is first tested with simulated data to verify 
that it works correctly. An image consisting of two seg- 
ments, a straight line and a circle is geometrically created. 
After that the edge points are manually measured to 
simulate an ideal subpixel edge detector to get the edge 
information. The digitised edge points are spaced far 
enough apart to simulate the distance between pixels to 
subpixel positions where crosses denote the subpixel edge 
position (Fig. 2). The algorithm is then applied to the 
computed data points and the final curve giving the 
minimal energy is plotted (Fig. 3). The curve is then geo- 
metrically segmented using the method described in 
Section 3.4. The results verify that the algorithm can 
interpolate values between the detected edges and can 
segment the reconstructed curve into its geometric com- 
ponents. 

To test the performance of the algorithm with respect 
to noise, an image of a circle with a step height of 200 is 
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generated at 512 by 512 pixels resolution. The circle is 
centred at  (255.0, 255.0) with a radius of 128.0. After that 
the image is deresolved into 32 by 32 pixels, and lowpass 
filtered to remove high spatial frequencies. Additive 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Intermediate stage in curve minimisation for a synthetic image 

Fig. 3 Final curve giving the minimum energy for a synthetic image 

Gaussian noise is introduced to the resulting image to 
produce a set of images at SNR = CO, SNR = 100, 
SNR = 16, and SNR = 4 (Figs. 4-7). 

Fig. 4 Synthetic image of circle with radius of128 pixels for S N R  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco 

The subpixel edge detection [a] is applied to the 
images. Threshold is applied at a measure-of-match of 
0.68. Figs. 8-1 1 show the result of the edge detection dis- 
played at 512 by 512 resolution. Boundaries are formed 
by fitting a circle to the detected points. Table 1 shows 
the results of the fitting. 

From Table 1 it can be seen that even in an ideal con- 
dition (SNR = CO), performing a statistical circle fit still 
produces errors. This is due to the underlying assumption 
of the subpixel edge detector that the edges, within a 
neighbourhood, form a straight line. This assumption 
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may lead to incorrect results when the image consists of The curve detection algorithm is applied to the 
nonstraight boundaries. detected edge points, and the results are shown in Fig. 

12-15. The results are displayed at 512 by 512 pixels, 
overlayed with the input images magnified 16 times to 
512 by 512 pixels to visualise subpixel values. Table 2 
shows the result zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof fitting a circle to the reconstructed 
image at 512 by 512 pixels resolution. The table shows 
that after the application of the curve reconstruction 
algorithm, the reconstructed edges fit better to a circle 
than before reconstruction (Table l), ,and thus it can be 
seen that the algorithm has refined the detected edge 
point locations. The performance of the algorithm for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASynthetic image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof circle with radius of 128 pixels for 
SNR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100 

L*****-r6"" 

Fig. 8 

Fig. 9 

Result of subpixel edge detection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor  S N  R = CO 

Result of subpixel edge detection for SNR = 100 

Fig. 6 Synthetic image of circle with radius of 128 pixels for 
SNR = 16 

Fig. 7 
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Synthetic image of circle with radius of 128 pixels for SNR = 4 Fig. 10 Result of subpixel edge detection for SNR = 16 

Table 1 : Fitting a perfect circle t o  the detected points of Fig. 3. The true 
radius is 128.00 pixels 

Parameters SNR = 00 SNR = 100 SNR = 16 SNR=4 

centre (x ,  y )  255.00, 255.00 255.00, 255,OO 255.00, 255.00 255.00, 255.00 
radius 128.09 129.03 129.41 133.07 
deviation 0.09 0.63 4.27 16.28 
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low SNRs is also very good. The algorithm produces a 
standard deviation of 0.53 pixels, which is just slightly 
higher than the worst case of the uncertainty of the edge 
location. (Since the sampling interval is one pixel, the 
uncertainty of the edge location is also one pixel [ll].) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4.2 Real image 

To test the performance of the algorithm for real images, 
an image of a lens cap is generated by digitising the lens 
cap at 512 by 512 pixel resolution using a Panasonic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

* .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I .  . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA" A  

" 

. t 8  

..- 
* I  

Fig. 14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAResult of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcurve detection algorithm magnified 16 times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SNR = 15 

Fig. 11 Result of subpixel edge detection for S N R  = 4 

Fig. 15 Result of the curve detection algorithm magnified 16 times for 
S N R  = 4 

Fig. 12 Result of the curve detection algorithm magnijied 16 times for 
S N R  = CO 

Fig. 13 
S N R  = 100 

Result of the curve detection algorithm magnified I6  times for 

S-VHS camera attached to a Videopix frame-grabber on 
a Sun/Sparcstation. To visualise the subpixel reconstruc- 
tion the image is deresolved into 32 by 32 pixels using a 
local averaging method. The resulting image is then 
lowpass filtered using a Butterworth filter to remove the 
high-frequency content of the original image. The local 
energy based subpixel detector is then applied to the 
resulting image to detect the edge points at subpixel 
values and then the boundary curve is reconstructed on a 
512 by 512 grid. The detected curve is then overlaid on 
the image and magnified 16 times into a 512 by 512 
image to validate the reconstructed curve against the 
original image at subpixel accuracy (Fig. 16). The Figure 
shows that the reconstruction algorithm reconstructs the 
boundary of the image at subpixel values. The result also 
show that the algorithm produces glitches on the recon- 
structed curve. This may be due to noise that corrupts 
the input data and thus the algorithm produces incorrect 
elementary curves. 

Table 2: Fitting a circle to the reconstructed object of Fig. 5. The true 
radius is 128.00 pixels 

Parameters SNR = 00 SNR = 100 SNR = 16 SNR=4 

centre (A-, y )  255.00, 255.00 255.00, 255.00 255.00, 255.00 255.00, 255.00 
radius 128.01 128.03 128.1 1 128.27 
deviation 0.01 0.09 0.33 0.53 
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To test the algorithm with a more complicated image, 
the backlighted image of a precisely machined object is 
used. The object is digitised at 512 by 512 pixels (Fig. 17) 
and then deresolved and lowpass filtered into 32 by 32 

work by Cootes and Taylor [l2] indicates that the 
parameters can be estimated by looking at the properties 
of the input image and the algorithm is trained with 
shapes prior to application. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReconstructing boundary of a lens cap image 

pixels resolution. The local energy based subpixel detec- 
tor is applied to the resulting image, and then the bound- 
aries are reconstructed at 512 by 512 grid. The result 
shown in Fig. 17 indicates that the algorithm has recon- 
structed the boundaries at subpixel accuracy. The 
resulting boundaries are then analysed and geometrically 
segmented. Fig. 18 shows the reconstructed boundaries 
on their own for clarity. 

The problem of systematically selecting the correct 
values of the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp and p in the computation of 
energy functional has not been solved. Currently an ad zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hoc approach is used to determine the values. Recent 

Fig. 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 Reconstructing boundaries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a complicated object 

Fig. 18 Boundaries of Fig. 17 shown on their own for clarity. 

5 Conclusions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A new approach for using deformable models in the 
reconstruction and segmentation of curves from subpixel 
edge data has been described. The approach computes 
the global curve by recovering the cover set from the ele- 
mentary curves set. The global curve is computed by 
minimising the energy functional. The new approach has 
two advantages. First, the global curve can be generated 
from the cover set. Secondly, the cover set can be 
analysed and decomposed into subsets thus enabling the 
segmentation of the global curve into its components 
each represented by the decomposition subsets of the 
cover set. The results have shown that the method per- 
forms the subpixel curve extraction well at low SNRs 
without having a priori knowledge of the curve. 

6 References 

1 KISWORO, M., VENKATESH, S., and WEST, G.: ‘2-D edge 
feature extraction to subpixel accuracy using the generalised energy 
approach’. Proc. IEEE TENCON 1991 Region 10 Conf. New Dehli, 
India, 1991 

2 KISWORO, M., VENKATESH, S., and WEST, G.: ‘Subpixel preci- 
sion edge modelling using the generalised energy approach’. Proc. 
7th Scandinavian Conf. on Image Analysis, ,4alborg, Denmark, 1991 

3 KASS, M., WITKIN, A., and TERZOPOULOS, D.: ‘Snakes: active 
contour models’, Int. J .  Comput. Vis., 1988, I, pp. 321-331 

4 ZUCKER, S.W., DAVID, C., DOBBINS, A., and IVERSON, L.: 
‘The organization of curve detection: Coarse tangent fields and fine 
spline coverings’. Proc. 2nd Int. Conf. Computer Vision, Tampa, 
Florida, USA, 1988, pp. 568-577 

5 KARAOLANI, P., SULLIVAN, G., BAKER, K., and BAINES, M.: 
‘A finite element method for deformable models’. Proc. British 
Machine Vision Conf., Oxford, UK, 1990, pip. 73-78 

6 GELFAND, M., and FORMIN, S.: ‘Calculus of variations’ 
(Prentice-Hall, 1963) 

7 ZIENKIEWICZ, 0.: ‘The finite element method‘ (McGraw-Hill, 
3rd ed., 1977) 

8 HINTON, E., and OWEN, D.: ‘An introduction to finite element 
computations’ (Pineridge Press Ltd., UK, 1979) 

9 KISWORO, M.: ‘Investigations into subpixel-precision feature 

I E E  Proc.-Vis. Image Signal Process., Vol. 142, No. 5, October 1995 311 


