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Abstract

In the present paper it is shown that differential item functioning can be evaluated

using the Lagrange multiplier test or Rao's efficient score test. The test is

presented in the framework of a number of IRT models such as the Rasch model,

the OPLM, the 2-parameter logistic model, the generalized partial credit model and

the nominal response model. However, the paradigm for detection of differential

item functioning presented here also applies to other IRT models. Two examples

are given, one using simulated data and one using real data.

Key words Item response theory, model fit, DIF, Rasch model, OPLM, 2-parameter

logistic model, generalized partial credit model, nominal response model, Lagrange

multiplier test, Rao's efficient score test.
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Introduction

When a new test is constructed, it is important to find empirical evidence that

contributes to the construct validity of the test (AERA, APA & NCME, 1985). Part

of this process may be to show that the test fits a unidimensional item response

theory (IRT) model, which means that the observed responses can be attributed to

item and person parameters that are related to some unidimensional latent

dimension. Construct validity is supported if the construct to be measured is also

unidimensional and if the ordering of item difficulties imposed by the construct is

reflected in the ordering of item parameters on the latent scale. Further, if it can be

shown that the latent ability is unidimensional, a meaningful unidimerisional

variable for measuring the underlying construct can be created, either a minimal

sufficient statistic or some other function of the observed responses, and the

respondent can be assigned a value on the latent ability scale. So the IRT model

validates the scoring rule of the test. Construct validity implies that the construct to

be measured is the same for all respondents of the population the test is aimed at.

This is where the problem of differential item functioning (DIF) or item bias arises.

For reasons of semantic clarity, many authors prefer the terminology "DIF" to the

older term "item bias" (see, for instance, Angoff, 1993 or Cole, 1993), in the

present paper this practice is complied with. Studies of DIF deal with the question

how item scores are affected by external variables that do not belong to the

construct to be measured. Usually, the external variable imposes a division into a

small number of sub-populations, where a sub-population refers to a set of

persons that have the same value on the external variable. If the external variable

is dichotomous, one usually speaks of the reference population, say the majority

group or an advantaged group, and the focal population, say the minority or a
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disadvantaged group. In DIF studies, the null-hypothesis is that the external

variable does not moderate the effect of ability on the item scores. So the

responses to a dichotomous item are subject to DIF if, conditional on ability level,

the probability of a correct response differs over the samples from the'various sub-

populations (Mellenbergh, 1982, 1983). The generalization to polytomous items is

straightforward. The responses to a polytomous item are subject to DIF if the set

of probabilities of scoring in the various response categories of the item,

conditional on ability, differs between the samples from different sub-populations.

Another, equivalent definition of DIF is that the expected scores on the item,

conditional on ability, are different for the sub-populations under consideration

(Chang & Mazzeo, 1994).

The essential problem in DIF studies is whether the response behavior of the

samples of all sub-populations can be properly described by an IRT model. An

additional problem is that the possible presence of DIF will influence the parameter

estimates of all items, and this may confound model fitting. In the example section

of this paper it will be shown that detection of DIF can be accomplished by an

iterative process of model fitting, testing for DIF and modeling the responses to

affected items, until a fitting model for all items and all samples of respondents is

found.

Several techniques for detecting DIF have been proposed: Most of them are

based on evaluating differences in response probabilities between groups,

conditional on some measure of ability. The most generally used technique is

based on the Mantel-Haenszel statistic (Holland & Thayer, 1988), others are based

on log-linear models (Kok, Mellenbergh & van der Flier, 1985), on IRT models

(Hambleton & Rogers, 1989), or on log-linear IRT models (Kelderman, 1989). In

the Mantel-Haenszel, log-linear and log-linear IRT approaches, the difficulty level

7
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of the item is evaluated conditionally on the respondents' unweighted sum scores.

However, adopting the.assumption that the unweighted sum score is a sufficient

statistic for ability (together with some technical assumptions, which will seldom be

inappropriate) necessarily leads to the adoption of the Rasch model (Fischer,

1974, 1993, 1995). However, with the exception of the log-linear IRT approach, the

validity of the Rasch model is rarely explicitly tested. Therefore, Glas and Verhelst

(1995) suggested a procedure consisting of two steps:

(1) searching for an IRT model for fitting the data of the sample from the reference

population, and, as far as possible, the sample from the focal population;

(2) evaluating the differences in response probabilities between the two samples in

homogeneous ability groups.

In this paper, an alternative approach is investigated that has a strong

resemblance to the above method. In the first step, Glas and Verhelst (1995) use

a generalized version of the Rasch model where discrimination indices are imputed

for dealing with differences in discrimination between the items. This model, known

as the one parameter logistic model (OPLM), will be returned to below. These

authors propose an iterative _process of adjusting the discrimination indices using

so-called generalized Pearson statistics, until an acceptable model fit is achieved.

Evaluating the differences in response probabilities between the samples from the

reference and focal population in homogeneous ability groups is also done using

generalized Pearson statistics. The alternative approach oi the present paper is

not only applicable in the framework of the Rasch model and the OPLM, it can

also be used in the context of the two-parameter logistic model and the nominal

response model. These last two models are more flexible than the former models,

but the tests for evaluating the fit to these models are less sophisticated, in fact,

the asymptotic distribution of the statistics for these tests is unknown (see, for
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instance, Mislevy & Bock, 1990). On the other hand, the generalized Pearson tests

for the Rasch model and the OPLM completely rely on the existence of sufficient

statistics (see Glas & Verhelst, 1995), so these tests cannot be used for

performing the second step of the above approach for the two-parameter logistic

and nominal response model. Therefore, in the present paper it will be shown that

the second step can be performed using Lagrange multiplier (LM) tests.

The remainder of this paper is organized as follows: (1) the relevant IRT

models will be discussed, (2) an estimation procedure will be described, (3) the LM

tests will be presented, and (4) two examples will be given, one using simulated

data and one using real data.

Choosing an IRT model

In IRT models, the influence of items and persons on the observed responses are

modelled by different sets of parameters. Since DIF is defined as the occurrence

of differences in expected scores conditional on ability, IRT modelling seems

especially fit for dealing with this problem. However, first the question must be

answered which IRT models are appropriate in this context. Before considering

some significant models for studying DIF, the following definitions must be

introduced. Consider items where the possible responses can be coded by the

integers 0, 1, 2, 3, ..., mi. Let item i have mi+ 1 response categories, indexed

h = 0 , 1, , mi. Notice that dichotomous items are the special case where

mi = 1. The response to an item will be represented by a vector

( where Xjh is a realization of the random variable X di

defined by

9
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(1)

In this section, two classes of models will be considered. The first class comprises

of exponential family IRT models, such . as the unidimensional Rasch model

(UPRM) by Rasch (1960, 1961), the partial credit model (PCM) by Masters (1982),

the one-parameter logistic model (OPLM) by Verhelst and Glas (1995) and the

generalized PCM (GPCM) by Wilson and Masters (1993). The second class

comprises of generalizations of the first class of models outside the exponential

family, such as the two-parameter logistic model (2-PL) by Birnbaum (1968) and

the nominal response model by Bock (1972). The motivation for making this

distinction is that there are many statistical testing procedures based on statistics

with knoWn (asymptotical) distributions for the first class of models and hardly any

such procedures for the latter class of models, this point will be returned to in the

sequel.

In the framework of polytomous items, Rasch (1960, 1961, see also, Andersen,

1972, 1973b, 1977 and Fischer, 1974) has introduced several exponential family

IRT models. In the model most suited for ability measurement, the UPRM, the

probability of scoring in category h of item i is given by

Pr( Xih = 1 I AO
exp ( hOn pm)

m

1 + E exp(kOn
k= 1

where On is the unidimensional ability parameter of person n, . and

(2)

h = 1,...,m1 are the parameters of item i . For mi = 1, equation (2) defines

the item response function of the well-known Rasch model for dichotomous items.

One of the reasons for considering this model is that it can be derived from a set

1 0
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of assumptions which will often apply in the context of ability measurement.

Andersen (1977) has shown that the UPRM can be derived form the assumption

that Rn = Ejh h Xih is a minimal sufficient statistic for a unidimensional ability

parameter 0, local stochastic independence and some technical assumptions.

Masters (1982) develops a completely equivalent model ,from an entirely different

perspective. Masters' version, the PCM, can be derived from the assumption that

every category h, h > 0, can be seen as a step that is either passed or failed.

The final score on the item is determined by the number of steps that the

respondent has successfully taken. Further, it is assumed that the probability of

scoring in category h, rather than in category h 1, is described by a Rasch

model for a dichotomous item with item parameter rim Glas and Verhelst (1989)

have pointed out that the PCM is a reparametrization of the UPRM, that is, the

parameters of the UPRM are obtained by the reparametrization
,h

Pih= 1-g=11lig
One of the attractive features of the UPRM is the possibility of using a

conditional maximum likelihood method (CML) for obtaining consistent estimates of

the item parameters (see Fischer, 1974, Molenaar, 1995). By conditioning on the

minimal sufficient statistics Rn a likelihood function is obtained that does not

depend on the person parameters. This has the important advantage that

computation of CML estimates does not need any assumption concerning the

distribution of ability in the population. Further, these consistent estimates can, in

principle, be obtained using any arbitrary sample of persons where the model

holds. The less attractive feature of the model is that the possible form of the item

response curve is rather restricted, for instance, for the dichotomous case the item

response curves must be parallel in the sense that they are shifted along the latent

continuum. Fortunately, many statistical tools are available for evaluating the fit of

11
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the Rasch model. The assumption that the unweighted sum score is a minimal

sufficient statistic for the person parameter and the assumption concerning the

form of the item response curves are the focus of Martin Lot's (1973) T-test, the

R 1-test (Glas, 1988, Glas & Verhelst, 1989), the U1 -test (Molenaar, 1983) and the

S.- and M-tests (Verhelst & Glas, 1995, Verhelst, Glas & Verstralen, 1995). The

property that the item parameters can be consistently estimated on every subgroup

of the population is tested by Andersen's likelihood ratio test (Andersen, 1973a)

and the Fischer-Scheiblechner test (Fischer, 1974). Finally, the assumption of

unidimensionality and local stochastic independence are the focus of the likelihood

ratio test of Martin UM (1973, 1974) and the R2-test of Glas (1988).

The combination of the axiomatic foundation of the model and the tradition in

social research and educational measurement of working with unweighted sum

scores make the model an, attractive starting point for statistical analyses.

However, the restrictive character of the model will often obstruct model fit. There

are several aspects of the Rasch model that may lead to rejection of the model.

These violations can be accounted for by defining specific generalizations of the

Rasch model. In this paper, the focus will be on models where the assumption of

the form of the item response curves is relaxed. This can be done by introducing

discrimination indices or discrimination parameters am, h=1,...,mi, so that

equation (2) generalizes to

lifiMen) = Pr(XIh = 1 I ema i)
exp ( amen pm)

Mi

1 + E exp(aikOn pik)

(3)

k= 1

If the discrimination indices are viewed as known constants, this model can be

derived from the assumption that Rn = E1=1 ainXnin is a sufficient statistic for

12
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ability, local independence, and some technical assumptions (Andersen, 1977). In

the framework of known discrimination indices, Verhelst and Glas (1995) have

developed a CML estimation procedure and a procedure for evaluating model fit,

for the so-called OPLM, where the item categories are assumed to have score

weights ajh = h ai. Recently, Glas (1997) has generalized this procedure to the

more general GPCM by Wilson and Masters (1993), where item categories are

given scoring weights aih.

The discrimination indices can also be treated as unknown item parameters to

be estimated, in the framework of dichotomous items this approach is known as

the two-parameter logistic model (2-PL) by Birnbaum (1968). The nominal

response model by Bock (1972) can be viewed as a generalization of the 2-PL to

polytomous items. There are several considerations with respect to the choice

between the two approaches. The OPLM and GPCM allow for CML estimation and

have theoretically well-founded tools for testing model fit, in fact, most of the

procedures mentioned above can easily be generalized to model (3) (Verhelst &

Glas, 1995, Glas, 1997). On the other hand, the nominal response model is more

flexible with respect to possible item response curves. This flexibility is bought at

the expense of needing an MML estimation procedure for obtaining consistent

estimates of the item parameters. This introduces assumptions with reSpect to the

distribution of ability, which, of course, introduce another source of possible model

violations that needs to be accounted for. However, attempting to generalize the

complete catalogue of tests of model fit for exponential family IRT to non-

exponential family IRT is far beyond the scope of the present paper; here only an

alternative for the DIF tests of exponential family IRT will be studied.

13
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Estimation

In the present section, the well-known theory of MML estimation for IRT models

will be re-iterated. In this presentation the formalism of Glas (1992) will be used,

which, as will become apparent in the sequel, is especially suited for introducing

LM tests for DIF. Consider the case of two sub-populations. A background variable

will be defined by

yn =
1 if person n belongs to the focal population ,

0 if person n belongs to the reference population.
(4)

The absence of DIF entails that respondents of equal ability of different sub-

populations have the same expected item scores. This, of course, does not mean

that the expected item scores in the different sub-populations are the same,

because it may well be the case that the ability distributions of the sub-populations

are different. Let g(On; A,An)) be the density of the ability distribution of sub-

population y , with parameters Xy(n), where y(n) = yn is the index of the sub-

population of person n. Further, if = (a p /,x/) is the vector of all item and

population parameters, the log-likelihood can be written as

InL(t;X) = EnInPr(xn;t). (5)

To derive the MML estimation equations, it proves convenient to introduce the

vector of derivatives

bn,,..kinp,(xn,en;t).,[ In Pr(xn I , + On I X.An)) J. (6)

14
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Glas (1992) adopts an identity due to Louis (1982) to write the first order

derivatives of (5) with respect to as

___InL(E ;X) = En E(b n(4)Ix n,4) (7)

This identity greatly simplifies the derivation of the likelihood equations. For

instance, using the short-hand notation Wnih On), it can be easily verified

that

b n(ocih) = On( x Wnih)

and

b n(Pih) = lIJfljhXfljh,

so the likelihood equations are given by

EriPenxnih I x nA) = Enqen nih I x 04)

and

(8)

(9)

(10)

En, Y = EnE(xli nih I xn,4). (11)

The choice of a distribution of ability is not essential to the theory presented here;

the test for DIF will both apply to the parametric MML framework (see Bock &

Aitkin, 1982) non-parametric MML framework (see De Leeuw & Verhelst, 1986,
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Follmann, 1988). As an example of the parametric context, one might assume that

the ability distribution is normal with parameters 1.ty and ay. Then

bn(1-ty0)) = (en Ily(n))ay42n) (12)

and

bn(a(n)) = C5)41n) + en gy(n) )2 ay(3n) , (13)

so the likelihood equations are

ty = AiEnlyE(en IfTP) (14)

and

2 1 2 2
ay = -TEn iyRen (15)

where the right-hand summations are over the respondents in the sample from

sub-population y , Ny is the number of respondents in this sample. Below, this

framework will be used for introducing a LM test for DIF, but first the principle of

LM tests will be described.

6
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Lagrange multiplier tests

Applications of LM tests to the framework of IRT have been described by Glas and

Verhelst (1995). The principle of the LM test (Aitchison & Si Ivey, 1958), and the

equivalent efficient-score test (Rao, 1948) can be summarized as follows. The

arrangement of the LM test is the same as the arrangement of the likelihood-ratio

test and the Wald test; all these three tests are used for testing a special model

against a more general alternative. Consider a null-hypothesis about a model with

parameters 00. This model is a special case of a general model with parameters

ri) . In the present case the special model is derived from the general model by

fixing one or more parameters to known constants. Let 00 be partitioned as

4) 01 021 = (4 , C ) , where c is a vector of postulated constants. Let

h(0) be the partial derivatives of the log-likelihood of the general model, so

h(0) = (a/a 0)In L(0) . This vector of partial derivatives gauges the change of the

log-likelihood as a function of local changes in 4) . Let H(0,0) be defined as
2 /a ao 5 1nl (0 ) . Then the LM statistic is given by

1
LM = h (4 )0)1 H(4)0, 0 0)- h(00). (16)

If (16) is evaluated using the ML estimate of 4) oi and the postulated values of c ,

it has an asymptotic chi-square _distribution with degrees of freedom equal to the

number of parameters fixed.

An important computational aspect of the procedure is that at the point.of the

ML estimates (-1) oi the free parameters have a partial derivative equal to zero.

Therefore, (16) can be computed as

17
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LM(c) = h(c)1 W-1 h(c) (17)

with

- -1 -W = H(c, c) H(c, 01) H(0011001) H(4)01, (18)

Notice that H($01 , ) also plays a role in the Newton-Raphson procedure for

solving the estimation equations and in computation of the observed information

matrix, so its inverse will generally by available at the end of the estimation

procedure anyway. Further, if the validity of the model of the null-hypothesis is

tested against various alternative models, the computational task is relieved

because the inverse of H($01, Citoi ) is already available and the order of W is

equal to the number of parameters fixed, which must be small to keep the

interpretation of the outcome tractable.

The interpretation of the outcome of the test is supported by observing that the

value of (17) depends on the magnitude of h(c), that is, on the first order

derivatives with respect to the parameters 02 evaluated in c . If the absolute

values of these derivatives are large, the fixed parameters are bound to change

once they are set free, and the test is significant, that is, the special model is

rejected. If the absolute values of these derivatives are small, the fixed parameters

will probably show little change should they be set free, that is, the values at which

these parameters are fixed in the special model are adequate and the test is not

significant, that is, the special model is not rejected.

The rationale of using LM tests rather than likelihood ratio tests and Wald tests

is based on the fact that LM tests only need ML estimates of the parameters of the

special model. In many instances, the parameters of the general model will be
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quite complicated to estimate. But even if this is not the case, this procedure still

has the advantage that many alternatives can be considered without needing

repeated estimation of all these alternatives. In the sequel it will be shown that the

hypothesis of DIF can be tested for one item at a time. If this was done using a

Wald or likelihood ratio test, it would require computing new estimates for every

test. Further, DIF is just one of the many possible violations that may be of

interest. Scanning the whole spectrum of violations of a non-exponential family IRT

model without repeated estimation presents a promising direction for further

research, but this is beyond the scope of the present paper.

Lagrange Multiplier tests for DIF

In section 3 the case of two sub-populations labeled y = 0, 1 , was considered. As

a generalization of the model defined by (3) consider

Pr(Xih=1 lyn,Oh,cc 43 b)'
exp(ccih0h-Bih+yh(yihOh-oih))

m
1 + E exp(otiken-Pik+yn(yiken-4))

k=1

(1.9)

This model implies that the responses of the reference population are properly

described by (3), but that the responses of the focus population need additional

location parameters Sih, additional discrimination parameters yih, or both. In the

dichotomous case, the first instance covers so-called uniform DIF, that is, a shift of

the item response curve for the focal population, while the latter two cases are

often labelled non-uniform DIF, that is, the item response curve for the fodal

population is not only shifted, but it also intersects the item response curve of the

19
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reference population (Mellenbergh, 1982, 1983). Application of the LM test boils

down to postulating a special model where yih and Sih are equal to zero and

testing against the alternative that either ym, h=1,...,mi, Sih, h = 1,...,m1 or

both sets of parameters are non-zero.

The rest of this section will be devoted to the derivation and the interpretation

of the expressions for the LM statistic. As with the derivation of the estimation

equations, also for the derivation of the matrix of second order derivatives the

theory by Louis (1982) can be used. Using Glas (1992), it follows that the matrix of

second order derivatives for the special model,

Mt,4)
InL(;X)

evaluated using MML estimates, is given by

P.(,4) = En [ Bn(4,) I x rpt) E( ng)b n(4) x rp4)l,
where

B
a2InPt(xn,917;4 )

a4 a41

Notice that the expressions for the second of the two right-hand terms of (21) can

be directly derived from (8) and (9). The resulting expressions for some item i are

listed in Table 1. The expressions for Bn(t,4) involving two different items i and

j are all equal to zero.

(20)

(21)

(22)

Insert Table 1 about here

20
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Inserting these structural zero's and the expressions of Table 1 into (21) gives the

expression for 1-(,t) as far as the free item parameters are concerned. Further,

from (6) it follows that for any population parameter Xy, y 0, 1,

Bn(ain,A,y ) = Bn(pin,Xy ) = 0. Continuing the example of a normal ability
-2

distribution with parameters 1.11, and ay, it follows that Bn(gygy) = a ,

-2 2 -4 -3
Bn(ayay) = ay 3(On gy) ay , and Bn(gy,cry) = -2 (en gy)ay .

This concludes the derivation of the expressions for H(4,4) for the free

parameters in E.

The fixed parameters emerge from a general model, where it is assumed that

for the focal population additional location Siti and discrimination parametersyin

have to be postulated. Under the null-hypothesis, these additional parameters are

fixed at zero. For these fixed parameters, it can easily be shown that

bn(yih) = ynen(xnih Wnih)

and

bn(8ih) = yn(Wnih xnih),

so the entries of the vector h(c) of the general LM statistic (17) are given by

ti(Yih) = Enynxnih Ren 1( EnynE(enWnih

and

h(80 = EnY nE(W nih I x at) Enynxnih.

21

(23)

(24)

(25)

(26)
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Notice that the right-hand side of (26) is the difference between the expected and

observed number of persons in the focal group scoring in category h of item i

So for dichotomous items the right-hand side of (26) is the difference between the

observed number correct in the focal group and its expectation computed using

parameter estimates obtained in both groups simultaneously. Since a test based

on (26) is aimed at the hypothesis that there is no specific additional difficulty8th

present, it should be sensitive to uniform DIF, that is, a shift of the item response

curve for the focal population. As a result of this shift, the observed number correct

score for item i in the focal group will not be properly predicted if item parameter

estimates obtained on both groups simultaneously will be used. This inconsistency

between the observed and the predicted number correct score for item i in the

focal group is exactly what is reflected in the difference in the right hand side of

(26). If this difference is too large, the entry h(Sih) of h(c) will be large and the

test will be significant. Also (25) is a difference between the expected and

observed number of persons in the focal group scoring in category h of item i ,

but here the individual observations and expectations are weighted with the

expectation of 0 given the observed individual response pattern. Therefore

differences in the extremes of the ability range carry more weight than differences

in the middle of the ability range. This is in accordance with the fact that the

differences on the right-hand side of (25) arise when a test is derived for the

hypothesis that the slope of the regression of the responses on 9 is the same for

all groups.

For computation of the LM statistic the matrix of second order derivatives with

respect to the fixed and free parameters must be evaluated. Using equation (19)

the reader can easily verify that for the fixed parameters

Bn(yihyig) = ynBn(aihaig), Bn(yih,Sig) = ynBn(aihflig) and

22
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Bn(Sin,Sig). yriBn(13#1,134). In the same manner, it can also be derived that the

second order derivatives with respect to fixed and free parameters are equal to

Bn(yin,ccig) = ynBn(ain,aig), Bn(yinAg) = ynBn(ocin,Pig),

Bn(öitpaig)= jI.pajg)a , and Bn(8in, 13 ig) = ynBn(Pin, ig) .

Again, inserting these expressions into (23) gives the desired expressions for the

elements of H().

Some examples

In this section, various examples of LM tests for DIF will be presented. These

examples must be viewed as an illustration of the technique, not as an exhaustive

power study. The first example concerns data simulated with the Rasch model for

dichotomous items. The second example concerns a data set that was recently

analyzed using the OPLM, CML estimates and generalized Pearson tests (Glas &

Verhelst, 1995). It will be re-analyzed here using MML estimates and LM tests,

both for the OPLM and the nominal response model.

Insert Table 2 about here

To illustrate the possibilities of the technique, a number of simulation studies

were carried out using data simulated for a test of 10 dichotomous Rasch items.

The data for each replication consisted of 1000 response patterns for the

reference group and 1000 response patterns for the focal group. The responses of

23
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the reference group were generated according to a Rasch model, the item

parameters used are given in the second and fourth column of Table 2. For the

focal group, the items 1 through 6 and 10 were generated using the same Rasch

model as for the reference group, but the responses for the items 7, 8 and 9 were

generated using (19); the additional discrimination parameter yi and difficulty 5i

are given in the third and fifth column of Table 2. The response patterns in the

study were generated using normal ability distributions. To keep the illustration

realistic, it was assumed that the means of the ability distribution of the reference

group and the ability distribution of the focal group differed: the actual values used

for generating the data are shown in the second column of the last four rows of

Table 2. The remaining columns of this table give results of analyses averaged

over 100 replications. For each replication, MML. estimates and their standard

errors were computed. The means of the estimates of the item parameters are

shown in the sixth and seventh column, the means of the estimates of the

population parameters are shown in the last two columns of the four bottom lines

of Table 2. In each replication, for each item three LM statistics were computed:

LM (11) to test whether yi departed from zero, LM (8i) to test whether 8,

departed from zero, and LM(y1161) to perform the test whether yi and Si

simultaneously departed from zero. The results are given in the last nine columns

of Table 2. The columns labeled "LM (yi)", U LM (45i)° and "LM (y1,6i)" contain the

means of the test statistics, the columns labels °Pr° contain the mean probability

levels of the statistics and the columns labeled "Nr" contain the number of times

that the test was significant at the 5%-level. From the first columns of this table it

can be seen that the responses to item 7 are subject to uniform DIF only, that is,

8i 0, item 8 is subject to non-uniform DIF only, that is, yi 0, and item 9 both

shows uniform and non-uniform DIF, so here both Si 0 and yi 0. The results
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show that the LM tests are indeed sensitive to the various forms of DIF imposed.

For the items 8 and 9, the mean significance probabilities of LM (y i) are below

0.022 and 0.033, respectively. Further, the test is significant at the 5%-level in 87

and 76 replications. The LM (6i) test for the items 7 and 9 has a probability level

below 0.001 and 0.004 and the hypothesis of no uniform DIF is rejected at the 5%-

level in 100 and 97 percent of the cases. Finally, for all three items, LM (y 6i) is

significant at the 5%-level in 99, 91 and 100 percent of the replications, the mean

significance probabilities are below 0.003, 0.024 and 0.001, respectively. The DIF

imposed on the three items does, of course, result in some bias in the parameter

estimates of the other items, which, in turn, results in an augmentation of the

number of erroneously significant LM tests. However, the consequences of this

effect must not be exaggerated: it can be seen that the mean outcome and

probability levels of the tests for the items not affected by DIF are substantially

different from the same indices for the items where the responses are subject to

DIF. Therefore, it is a advisable to adopt a procedure where the items with the

most extreme outcomes are handled first, either by removing them or by modelling

the responses to these items further, an example will be given below. For the

present example, removing the items with DIF resulted in rejection rates of the

hypothesis of no DIF for the other items at the proper chance level.

The second example entails a data set recently analyzed by Glas and Verhelst

(1995) using the OPLM and generalized Pearson statistics. The objective of the

present analysis is to investigate whether the DIF detected by these two authors

will also be detected if LM tests are used, first in combination with the OPLM and

then using the nominal response model. The example comprises of a part of an

examination of the business curriculum for the Dutch higher secondary education,

the HAVO level. The example was part of a larger study of gender based DIF in
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examinations in secondary education. Since the objective, both here and in the

Glas and Verhelst (1995) paper, is to illustrate the statistical procedures rather

than to give an account of the findings with respect to gender based DIF, no actual

examples of items with DIF will be shown. For a detailed report of the findings one

is referred to Bagel and Glas (1992). The analyses were carried out using a

sample of 1000 boys and 1000 girls from the complete examination population. For

convenience of presentation the example is limited to 10 items. The items are

open ended questions, the number of score points that could be obtained ranged

from mi= 2 to. mi= 3; the exact

Insert Table 3 about here

distnbution of score points over the items can be seen in the second column of

Table 3.

In the first analysis, the OPLM was used. Glas and Verhelst (1995) have fitted

an OPLM to the data used here, the discrimination indices that proved adequate

are shown in the third column of Table 3. These indices were also used in the

present analyses. MML estimates were computed under the assumption of

different normal ability distributions for the boys and the girls. The results of this

MML estimation procedure are given in the columns marked "1 ih", "Se( P ih) ",

"la y", "Se( fl y) "1 " y" and "Se(er y) and under the heading "Analysis 1°. Glas

and Verhelst (1995) have pointed out that the adequacy of the chosen scoring

weights can be evaluated using a LM statistic for testing whether the value at

which ai is fixed is acceptable. This test, denoted LM(am), was computed for
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every category within an item, that is, for every category h of item i it was tested

whether the hypothesis cciti = h ai had to be rejected. The results of this test are

displayed in the columns marked "LM(ath )" and "Prob". It can be seen that the

items 3 and 9 do not fit the model. However, at this point it is unclear whether this

lack of fit is due to DIF, since it might well be the case that the chosen

discrimination index was inappropriate for boys and girls alike. Therefore, the LM

statistics proposed in this paper were computed for testing whether non-zero shift

parameters 8ih, h = 1,...,mi, had to be added for the girls. The test was

performed per item for all item category parameters simultaneously, therefore the

test is labeled LM( The results are shown in the columns marked "LM( 8

and 'Nob" of Table 4. It can be seen that the test is highly significant for the items

3 and 9.

Insert Table 4 about here

However, the test is also significant at a 5% level for the items 1 and 10.

Interestingly, these results are similar to the results of the Glas grid Verhelst

(1995) analysis: also there the items 3 and 9 were highly significant and the items

1 and 10 moderately significant. As already noted above, the presence of DIF can

bias the estimates of the parameters of items that are not influenced by DIF.

Therefore, it is a advisable to try to model DIF for the highly significant items

before drawing conclusions for the other items. The following additional analyses

were carried out. First, item 9 was entered into the analysis as a different item for

the boys and the girls, that is, it was assumed that the item parameters pit, were
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different for these two groups. However, from computation of the LM(aih)

statistics it had to be concluded that the scoring weights ai also differed across

the two groups, this result was also encountered in the Glas and Verhelst (1995)

analysis. Changing this weight from 4 to 2 resulted in non-significant LM(aih)

tests. In this analysis, also the LM(81) statistics were computed, the results are

shown under the headings "Analysis 2" in Table 4. The LM( Si) statistic could not

be computed for item 9 since it was split into two so-called conceptual items.

Notice that the test for item 1 is no longer significant at 5% level. Next, this

procedure was repeated with item 3 split up into two conceptual items and both

the items 3 and 9 split up, respectively. The results are displayed under the

heading "Analysis 3" and "Analysis 4" in Table 4. It can be seen that in the last

analysis all LM(81) statistics are non-significant. In Table 3, the parameter

estimates and the LM(aih) statistics for the last analysis are shown. Inspection

shows that also these last statistics are no longer significant at the 5% level. So

after splitting up the items 3 and 9 into different conceptual items for the two

groups, an OPLM could be fitted to the data. This result is consistent with the

results of the Glas and Verhelst (1995) analyses.

Insert Table 5 about here'

Finally, it was investigated how the procedure would perform if the nominal

response model was used instead of the OPLM. From the previous analyses it is

already apparent that the OPLM fits the data quite well, so the nominal response

model should give results close to the previous results. In Table 5 the parameter

28



Differential Item Functioning

27

estimates are shown for two analyses with the same arrangement as the analysis

labeled "Analysis 1" and "Analysis 4° in Table 3. It can be seen that the estimates

of the scoring weights am are in accordance with the weights ai postulated for

the OPLM. Also the estimates of 131h differ little.

In Table 6 the values of the LM(y 8 i) statistics are shown for four analyses

comparable to the four analysis of Table 4. The LM(y jo5 i) statistic is used to

test the simultaneous

Insert Table 6 about here

hypotheses that the parameters ym and öih, h = 1,...,m1 are all equal to zero. It

can be seen that also in the present case the items 3 and 9 show DIF. However,

in this case the tests for the items 4 and 10 were also significant in the first

analysis. As with the previous analyses, this significant result vanished when the

items 3 and 9 were split into conceptual items for boys and girls. Again, this shows

that it is important to investigate the items one at a time, starting with the items

that seem to show the most serious DIF, because DIF in one item may affect the

estimates of the parameters of the other items in such a way that the LM tests

produce spurious results.
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Discussion

In the present paper a method for detection of DIF is proposed that is based on a

test statistic with a known asymptotical distribution. In the simulated example, it is

shown that the method cannot only be used to detect DIF, it can also be used to

distinguish between uniform and non-uniform DIF. The validity of the procedure is

further supported with a real data example, where the results obtained are in

agreement with the results obtained using the OPLM, in combination with CML

estimates and generalized Pearson statistics. However, a choice between the two

methods is not straight forward. The LM procedure can handle a wider array of

IRT models than the procedure based on generalized Pearson statistics, which can

only be applied in the framework of exponential family IRT models. On the other

hand, the latter procedure can be embedded in a procedure where various

sources of model violations can be systematically evaluated, whereas evaluation

*methods of model fit for non-exponential family IRT are still rather unsophisticated.

This is the more serious because estimation in non-exponential family IRT relies

on assumptions about the ability distribution. These assumptions are an integral

part of the model and should be tested also. In summary, there is no clear answer

to the question which method is to be preferred.

In the present paper the LM method for detection of DIF is worked out in detail,

implemented end evaluated for the OPLM and the nominal response model with

normal ability diStributions. However, the procedure does not only apply to the

models discussed here, it also applies to other unidimensional IRT models, such

as for instance the models proposed by Samejima (1969, 1972) and to multidimen-

sional models such as the model proposed by Glas (1992). Further, the

assumption of one or more normal ability distributions can be replaced with the
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assumption of the non-parametdc MML method that the distribution of ability can

be represented by one or more step-functions (De Leeuw & Verhelst, 1986,

Follmann, 1988). Elaboration, implementation and evaluation of these applications

is a topic for further research.
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Table 3
Parameter Estimates and Model fit for the OPLM

Analysis 1 Analysis 4

i h ai An Se (f3in) LM(crin) Prob Ai, Se(gih) LM(ctih) Prob

1 1 2 .27 .059 1.51 .219 .23 .060 .34 .554

2 .49 .072 .00 .977 .43 .074 .00 .957

2 1 3 -1.25 .069 .09 .758 -1.34 .069 1.10 .293

2 -.35 .098 2.01 .156 -.49 .100 2.11 .146

3 .24 .121 1.91 .167 .10 .124 1.77 .183

3 1 9 -.70 .072. 1.42 .232 -1.48 .103 .01 .892

2 -.18 .105 6.96 .008 -1.14 .139 2.99 .083

4 1 2 .63 .066 2.48 .115 .59 .067 1.20 .273

2 .39 .073 .14 .708 .32 .074 .66 .414

3 1.86 .107 .00 .973 1.79 .109 .00 .977

5 1 2 -.38 .073 .68 .406 -.44 .073 .00 .949

2 .36 .101 .65 .418 .26. .102 .82 .363

3 -1.12 .090 2.24 .139 -1.24 .092 1.64 .199

6 1 3 .00 .067 .02 .880 -.07 .068 .67 .412

2 .08 .087 .03 .854 -.02 .090 .07 .791

7 1 3 .60 .066 .81 .366 .54 .067 2.11 .146

2 .98 .089 1.96 .161 .90 .092 1.39 .237

8 1 3 -.58 .077 .41 .520 -.67 .078 .00 .976

2 1.01 .094 .44 .505 -1.16 .096 .44 .507

3 -.55 .118 .19 .660 -.73 .122 .04 .839

9 1 4 .35 .074 8.47 .004 .04 .101 .73 .390

2 .49 .104 5.94 .015 -.01 .134 .31 .577

10 1 4 .33 .094 .72 .394 .21 .095 .17 .679

2 -.06 .121 .08 .771 -.27 .124 .18 .666

3 -1.00 .143 .66 .415 -1.25 .149 .81 .367

3* 1 4 -.22 .093 2.11 .146.

2 .42 .129 1.33 .249

9* 1 2 .68 .088 2.92 .087

2 .54 .092 3.16 .075

Y ily Se(ity ) ey Se(iry) fly Se(i y) iry Se(&y)

0 .25 .015 0.35 .011 -0.08 .017 .34 .011

1 .00 .000 0.34 .012 0.00 .000 .35 .011
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Tabk 5
Parameter Estimates for the Nominal Response Model

Analysis 1 Analysis 4

i h Se(aiih) h Se(Ah eta Se(ciih) fiih Se(An)

1 1 1.99 .184 .26 .056 1.99 .177 .22 .056

2 4.21 .201 .51 .060 4.10 .199 .44 .061

2 1 2.77 .191 -1.23 .065 2.79 .182 -1.31 .065

2 6.27 .234 -.29 .082 6.28 .231 -.42 .082

3 8.95 .235 .26 .088 8.83 .237 .10 .089

3 1 3.53 .205 -.66 .060 3.61 .267 -1.41 .093

2 8.26 .263 -.06 .073 7.95 .384 -1.05 .109

4 1 1.99 .227 .63 .063 1.99 .218 .59 .063

2 3.94 .190 .38 .060 3.87 .186 .31 .060

3 6.23 .228 1.93 .087 6.16 .224 1.85 .088

5 1 1.71 .219 -.34 .070 1.7.7 .205 -.40 .071

2 4.25 .326 .37 .093 4.28 .316 .27 .094

3 6.19 .245 -1.10 .070 6.01 .242 -1.23 .070

1 2.96 .207 .00 .060 2.95 .200 -.66 .060

2 5.96 .241 .08 .064 5.82 .243 -.02 .064

7 1 3.27 .216 .62 .060 3.22 .211 .55 .060

2 5.83 .237 .93 .064 5.73 .240 .84 .065

8 1 2.91 .240 -.57 .073 2.96 .224 -.68 .073

2 6.12 .214 -1.02 .074 6.12 .210 -1.17 .075

3 9.11 .237 -.55 .082 8.99 .240 -.74 .083

9 1 3.43 .255 .39 .062 3.82 .352 .04 .090

2 7.33 .297 .49 .066 8.32 .434 .02 .097

10 1 3.75 .388 .35 .087 3.77 .357 .24 .087

2 8.10 .402 -.09 .089 8.16 .398 -.29 .090

3 12.30 .405 -1.00 .080 12.15 .414 -1.26 .081

3* 1 3.70 .292 -.21 .084

2 8.41 .362 .54 .104

9* 1 1.53 .274 .68 .084

2 4.42 .278 .62 .085

Se(ily) gry Se(ery) Se(ily) ix, Se(irg)

0 .23 .015 0.32 .010 -0.10 .016 .33 .010

1 .00 .000 0.33 .010 0.00 .000 .35 .011
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