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Abstract

Motivation: DNA methylation is an important epigenetic modification that has essential role in

gene regulation, cell differentiation and cancer development. Bisulfite sequencing is a widely used

technique to obtain genome-wide DNA methylation profiles, and one of the key tasks of analyzing

bisulfite sequencing data is to detect differentially methylated regions (DMRs) among samples

under different treatment conditions. Although numerous tools have been proposed to detect dif-

ferentially methylated single CpG site (DMC) between samples, methods for direct DMR detection,

especially for complex study designs, are largely limited.

Results: We present a new software, GetisDMR, for direct DMR detection. We use beta-binomial regres-

sion to model the whole-genome bisulfite sequencing data, where variations in methylation levels and

confounding effects have been accounted for. We employ a region-wise test statistic, which is derived

from local Getis-Ord statistics and considers the spatial correlation between nearby CpG sites, to detect

DMRs. Unlike existing methods, that attempt to infer DMRs from DMCs based on empirical criteria, we

provide statistical inference for direct DMR detection. Through extensive simulations and an application

to two mouse datasets, we demonstrate that GetisDMR achieves better sensitivities, positive predictive

values, more exact locations and better agreement of DMRs with current biological knowledge.

Availability and Implementation: It is available at https://github.com/DMU-lilab/GetisDMR.

Contacts: y.wen@auckland.ac.nz or zhiguangli@dlmedu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is a stable epigenetic modification that plays a key

role in numerous biological processes, such as genomic imprinting,

regulation of gene expression, cell differentiation, development and

carcinogenesis (Deaton and Bird, 2011; Ehrlich, 2002; Li et al., 1993;

Santos et al., 2002; Suzuki and Bird, 2008). The presence of large scale

aberrant DNA methylation pattern, typically with site-specific hyper-

methylation in tumor suppressor genes and global hypo-methylation

in oncogenes compared to normal tissue, is a hallmark feature of vari-

ous types of cancers (Ehrlich, 2002; Sharma et al., 2010).

The whole-genome bisulfite sequencing (WGBS), which com-

bines the bisulfite treatment with next generation sequencing, be-

comes the state-of-the-art technology in investigating DNA

methylation pattern at single base resolution with relatively high

coverage across multiple samples. The bisulfite treatment converts

un-methylated cytosines to uracils, while leaving the methylated

cytosines unchanged. Thus, it allows for the discrimination between

methylated and unmethylated CpG sites (Clark et al., 2006).

Methylation proportion at each CpG site is usually defined as the
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proportion of molecules with cytosine methylated ( C
CþT) and is used

to summarize the pattern of DNA methylation (Akalin et al., 2012;

Dolzhenko and Smith, 2014; Schultz et al., 2012).

Over the past few years, a number of approaches have been pro-

posed for assessing differentially methylated regions (DMRs) from

WGBS data. One of the most straightforward method is to use the

Fisher’s Exact Test to compare the methylation proportions among

different treatment groups at each CpG site (Lister et al., 2009).

Recently, Saito et al. developed the ComMet, which is built based

on hidden Markov models and designed to detect DMRs between a

pair of samples (Saito et al., 2014). Though these methods are easy

to implement and can compare a pair of samples obtained either dir-

ectly from the experiment or by pooling together samples under the

same experimental condition, these methods do not take the be-

tween sample variations into account and cannot adjust for con-

founding effects when replicates are available (Hansen et al., 2012;

Jaffe et al., 2012).

Converging evidences suggest that close-by CpG sites tend to

have similar methylation proportions (Hansen et al., 2012;

Hebestreit et al., 2013). With the assumption that methylation pro-

portions change smoothly along the genome and the adjacent CpG

sites have similar methylation proportions, various smoothing based

methods have been proposed to detect DMRs (Hansen et al., 2012).

Although the smoothing procedures adopted by these methods may

differ in details, all of them employ local averaging to improve the

precision of the methylation proportion estimates, especially for

CpG sites with low coverage. For example, the BSmooth method

first estimates the methylation proportions with a local-likelihood

smoother, and then performs the statistical test using a signal-to-

noise statistic (Hansen et al., 2012). A DMR is claimed when groups

of consecutive CpGs with the signal-to-noise statistics larger than a

cutoff selected based on its marginal distribution. BiSeq first em-

ploys a local smoothing technique and then detects DMRs based on

the smoothed methylation proportion estimates (Hebestreit et al.,

2013). The key difference between BiSeq and BSmooth is that BiSeq

adopts a hierarchical testing procedure to detect DMRs and takes

the spatial correlations among P-values of adjacent CpG sites into

account. The BiSeq requires the specification of a set of candidate re-

gions that may be differentially methylated, and thus it is only suit-

able for detecting DMRs in targeted bisulfite sequencing data.

Though smoothing based methods make use of information from

adjacent CpG sites, in most cases they require biological replicates

and thus cannot be applied to the datasets without replicates.

Currently, the WGBS is quite costly, which prohibits the obtainment

of multiple replicates for different experimental conditions given

limited budget (Hirst and Marra, 2010; Stevens et al., 2013). It is

quite common that some of the biological replicates are combined

into one sample before library generation for sequencing experi-

ments (Laurent et al., 2010; Saito et al., 2014). Moreover, there are

situations where biological replicates are hard to obtain, especially

in retrospective studies (Beyan et al., 2012).

Regression based methods have also been proposed to detect

DMRs. For example, MethylKit assumes that the number of methy-

lated reads follows a binomial distribution, and models the methy-

lated reads within the logistic regression framework (Akalin et al.,

2012). The P-values are calculated and multiple comparisons are ad-

justed using a sliding linear model method. As methylation propor-

tions vary significantly across individuals, failure to consider the

variability across individuals may result in inflated type-I error

(Hansen et al., 2012; Jaffe et al., 2012). Beta-binomial regression

has been recently introduced to model methylation proportions in

WGBS data, as it can take both the sampling and epigenetic

variations into account (Dolzhenko and Smith, 2014; Feng et al.,

2014; Park et al., 2014). For example, DSS method uses a

lognormal-beta-binomial Bayesian hierarchical model to describe

the methylated reads, and the DMR is defined as the CpG site with

P-value less than a pre-specified threshold (Feng et al., 2014). The

DSS method allows information sharing across different CpG sites

to improve precision of the test, but the correlation of P-values for

proximal sites is not explicitly modeled in the DMR detection. This

may reduce both the sensitivity and specificity of the test. The

methylSig method also models the methylated reads using a beta-

binomial distribution and the likelihood ratio test is used to detect

differentially methylated single CpG (DMC) site (Park et al., 2014).

Although the methylSig can be used to identify DMCs, it does not

have the mechanism to detect DMRs which is of more biological

relevance. RADMeth adopts a beta-binomial regression to calculate

the P-values of each CpG site and then combines the information

from P-values within 200 base pairs(bp) (Dolzhenko and Smith,

2014). Beta-binomial regression based methods can explicitly take

both the epigenetic and sampling variations into account, but they

mainly focus on detecting DMCs and have limited power of identify-

ing DMRs. They usually pre-specify a certain length for the DMR

and then combines the information within the window to infer the

significance of the detected DMRs (Akalin et al., 2012; Dolzhenko

and Smith, 2014). However, compelling evidences suggest that the

length of DMRs can range from a few base pairs to thousands of

base pairs, and a fixed length of DMR certainly contradicts with the

existing biological knowledge (Sun et al., 2014). Compared with de-

tecting DMCs, DMR detection has several advantages. First, locat-

ing the regions with multiple DMCs are one of the most basic goals

for methylation studies. Second, as pointed out by Bock, after ad-

justing for multiple comparisons for DMC detection, only the stron-

gest differences tend to remain significant (Bock, 2012). Targeting

at detecting DMR rather than single DMC can substantially reduce

the number of hypothesis being tested and thus increases the statis-

tical power (Bock, 2012; Hebestreit et al., 2013).

To overcome the current limitations, we develop GetisDMR, a

genome-wide methylation analysis tool for direct DMR detection.

GetisDMR utilizes a beta-binomial distribution (with biological repli-

cates) or binomial distribution (without biological replicates) to

model the methylated reads. When bioloigcal replicates are available,

it also adopts a regression framework to account for the potential

confounding effects. It further uses a local Getis-Ord statistic, which

is widely used in identifying statistically significant spatial clusters of

high/low values (hot spots) (Bhunia et al., 2013; Getis and Ord, 1992;

Ord and Getis, 1995, 2001), to detect DMRs. The length of detected

DMRs is determined by the data, and the statistical inference of the

detected DMRs is also provided. In the following sections, we first lay

out the details of the method, and then we compare our method with

ComMet, BSmooth and DSS through simulation studies (Feng et al.,

2014; Hansen et al., 2012; Saito et al., 2014). We further apply our

method to two public available mouse datasets (Hon et al., 2013;

Lister et al., 2013), and finally we briefly discuss our results.

2 Methods

2.1 Beta-binomial regression
We use a beta-binomial distribution to characterize the methylation

data. We assume at each CpG site, the number of methylated reads

follows a binomial distribution, Xijk � BinomialðNijk;pijkÞ, where

pijk, Xijk and Nijk represent the methylation proportion, the number

of methylated reads, and the total number of reads at the kth CpG

site of jth sample in the ith treatment group.

DMR detection with local Getis-Ord statistics 3397
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To consider the biological variability between different samples

under the same treatment condition (i.e. there are biological repli-

cates), we assume the methylation proportion follows a beta distri-

bution (i.e. pijk � Betaðaik;bikÞ). Therefore, the number of

methylated reads (Xijk) at each CpG site has a beta-binomial distri-

bution with probability mass function:

PðXijk ¼ xÞ ¼
Nijk

x

 !
Cðaik þ xÞCðbik þNijk � xÞCðaik þ bikÞ

CðNijk þ aik þ bikÞCðaikÞCðbikÞ
(1)

where CðxÞ ¼
Ð1
0 tx�1e�tdt.

The mean and variance of Xijk are Nijklik and Nijklikð1� likÞð1þ
ðNijk � 1Þ/ikÞ respectively, where lik ¼ aik

aikþbik
and /ik ¼ 1

aikþbikþ1.

We use beta-binomial regression to model the methylation pro-

portions at each CpG site given different treatment conditions and

covariates. Specifically, given the number of methylated reads at each

CpG site follows a beta-binomial distribution specified in Equation

(1), we assume lik ¼ gðZgÞ, where g is a logistic link function, Z is a

design matrix and g is a vector of regression parameters. The regres-

sion parameters (g) can be interpreted as the log odds ratio for each

additional unit increase in the explanatory variable (i.e. Z).

The beta-binomial regression model is fit for each CpG site, and

the parameters (i.e. /ik, lik and g) are estimated through maximizing

the likelihood function. The significance of the treatment effect is

tested using the likelihood ratio test.

It is noteworthy that in the case where biological replicates are

not available, we assume the number of methylated reads follows a

binomial distribution, which is a special case of beta-binomial distri-

bution(i.e /ik ¼ 0). Under this situation, a v2 test of independence

or a Fisher’s Exact Test will be conducted to test the significance of

the treatment effect at each CpG site.

2.2 Detection of differentially methylated regions
It is well known that methylation proportions are strongly spatially

correlated. Hebestreit et al. have shown that local smoothing can re-

duce the variance of methylation proportions, especially for lowly

covered CpG sites (Hebestreit et al., 2013). Although local smooth-

ing has the potential to increase the power, it is not applicable when

biological replicates are not available as the variance of methylation

proportions cannot be estimated based on smoothed methylation

proportions. What we have observed is that the spatial correlations

among near-by CpG sites are also preserved in the test statistics

(Supplementary Fig. S1). To make use of this information, we pro-

pose a local Getis-Ord statistic based method to detect DMRs. The

rationale of using such a statistic is that most of the genetic regions

are not differentially methylated, and identifying DMRs is similar to

hot-spot detection from the perspective of spatial statistics, where

local Getis-Ord statistics have been widely used. In our method, we

first transform the P-values into z-scores (zk ¼ U�1ð1� pkÞ, with

U�1 being the inverse of a standard normal distribution function),

which should approximately follow a normal distribution as most of

the CpG sites are not differentially methylated. We further use the

local Getis-Ord statistics to detect DMRs based on z-scores.

The local Getis-Ord statistic is defined as

G�k ¼

Pn
l¼1

xklzl � �z
Pn
l¼1

xkl

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n
Pn

l¼1

x2
kl
�ð
Pn

l¼1

xklÞ2 �

n�1

s (2)

where n is the total number of CpG sites, �z ¼
P

k zk=n;

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k z2
k=n� �z2

q
, and xkl is the weight parameters between kth

CpG site and the lth CpG site (Getis and Ord, 1992; Ord and Getis,

1995).

The correlation of the local Getis-Ord statistics between the kth

CpG site and the mth CpG sites is

corrðG�k;G�mÞ ¼
n
P

l xklxml �W�
kW�

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½nS1k � ðW�

kÞ
2�½nS1m � ðW�

mÞ
2�

q (3)

where W�
k ¼

P
l xkl and S1k ¼

P
l x

2
kl.

We further denote ~G�¼ ½G�1;G�2;G�3 . . . ;G�K�
0, and therefore

asymptotically ~G��MVNð~0;NÞ with Nk;l ¼ corrðG�k;G�l Þ. The

Getis-Ord statistics detect those CpG sites with values higher/lower

in magnitude than we would expect on a random basis. A high/low

value indicates that its neighborhood CpG sites also have high/low

values, and vice versa. A value near zero indicates there is no appar-

ent concentration (i.e. the neighborhood CpG sites have a range of

values, and there is no apparent hot-spots and thus no DMRs).

The weight parameters (xkl) for the local Getis-Ord statistics G�k
is determined based on the correlation between z-scores. The correl-

ations between z-scores are estimated using the empirical variogram

(corrðzk; zlÞ ¼ ðvarðzÞ � cðdÞÞ=varðzÞ, where zk and zl is d bp apart

and cðdÞ is the semivariogram). Let R represent the estimated vari-

ance covariance matrix, Rk be the covariance vector between kth

CpG site and the rest of the CpG sites, and R�k;�k be the variance-

covariance matrix between all CpG sites except the kth CpG site.

The weight parameters (xkl) is determined by RkR
�1
�k;�k.

For the whole genome sequencing data, the estimation of semi-

variogram at every possible distances between two CpG sites and

the inverse of the covariance matrix are computationally demand-

ing. However, as shown in Supplementary Figure S1, the correlation

reduces substantially as physical distance between two CpG sites in-

creases. A set of commonly used models in spatial statistics, such as

exponential model, Spherical variogram and Matern class of mod-

els, can be used to model this relationship. To reduce the computa-

tional burden, we only consider a limited range over which spline

was used to capture the relationship between the physical distance

and correlation. The correlations between CpG sites with distance

larger than dselect are set at zero, which substantially reduces the

computational cost. The correlation between z-scores of two CpG

sites is calculated as below:

corrðzk; zlÞ ¼
x ¼ 0 if d > dselect

y ¼ f ðdÞ if d � dselect

(

where d ¼ jposk � poslj, posk is the physical location of the kth

CpG site, and f(d) is a spline function which captures the relation-

ship between correlation and physical distance.

To detect DMRs, we define a region-based spatial statistics,

Gposi ;posj
¼
P

l2S
G�

l

jSj , where S is the set of CpG sites with physical loca-

tion within (posi, posj), and jSj is the total number of CpG sites in S.

To determine the boundary of methylated region to be evaluated,

we adopt a data-adaptive method. Instead of evaluating every region

with a fixed length, we only evaluate the significance of the region

given a pre-determined number of CpG sites with G�k larger than a

cut-off value. Asymptotically, Gposi ;posj
� Nð0;w2Þ, where

w2 ¼
P
ðk;lÞ2S covðG�k;G�l Þ. The significance of the test statistics

(Gposi ;posj
) can also be evaluated through permutation test.

Our test statistic explicitly makes use of correlations between

nearby CpG sites, which can improve the power of the test. This is

especially true when some CpG sites have relatively low coverage

and the z-scores are not quite accurate for such sites. Instead of test-

ing the significance of each single CpG site, we focus on detecting
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DMRs, which can substantially reduce the number of hypothesis

being tested and boost the power of DMR detection. Moreover, as

the spatial correlations between z-scores are used to increase the pre-

cision of the estimates, our method can also be directly applied to

the situation where biological replicates are not available (i.e. 1 case

versus 1 control).

3 Simulation

We evaluated the performance of the proposed GetisDMR method

with three commonly adopted methods [i.e ComMet (Saito et al.,

2014), BSmooth (Hansen et al., 2012) and DSS (Feng et al., 2014)]

under various conditions. In simulation one, we compared the per-

formance of GetisDMR with ComMet in the absence of biological

replicates. In simulation two, we compared the performance of

GetisDMR with BSmooth, ComMet and DSS when biological repli-

cates were available. In the third simulation, we compared the

GetisDMR method with the other three methods when confounders/

other covariates that also influenced the methylation proportions

were present. The performance of these methods were evaluated

based on both sensitivity (P(dectected DMRjtrue DMR)) and posi-

tive predictive value(PPV,P(true DMRjdetected DMR)). Similar to

the definition used in ComMet (Saito et al., 2014), a true positive

DMR was defined as a true DMR that overlapped with a detected

DMR in a certain proportion of their lengths. We further defined

sensitivity as the proportion of true DMRs being detected.

Specificity is usually used to evaluate the false positive rate.

However, for the whole genome dataset, a method with a high speci-

ficity may still have a large amount of false positive findings. For ex-

ample, with 99% of specificity, we may still have over thousands of

false positive findings for the WGBS analyses. Therefore, we decided

to report PPV instead of specificity to reflect the false positive rate.

The PPV was defined as the proportion of detected DMRs that over-

lapped with the true DMRs larger than a certain proportion of their

lengths. For all the below simulations, we evaluated the sensitivity

and PPV with 50% overlaps.

3.1 Scenario I
In the first set of simulations, we evaluated the performance of

GetisDMR under a variety of conditions where biological replicates

were not available. Most of the current available methods are de-

signed for the situation where there are biological replicates for each

experimental condition. However, in practice, due to budget and

other issues (Hirst and Marra, 2010; Stevens et al., 2013), biological

replicates are not always available, which makes many smoothing

based methods not applicable. Therefore, in this set of simulations

we compared the sensitivity and PPV of our method with ComMet,

which employs a hidden Markov chain model to detect DMRs. At

the time when the manuscript was written, ComMet is the only

available software that has been claimed to be able to detect DMRs

without biological replicates. To mimic the methylation proportions

and the spatial correlations between adjacent CpG sites, we used a

real dataset from a WGBS experiment (Hon et al., 2013) and placed

methylation proportion differences of various intensities.

Specifically, we chose one sample from the experiment to serve as

the control (the cortex sample), and kept the methylation proportion

of each CpG site of the control sample the same as the original data.

Another sample from the experiment (the brain sample) was served

as the case, where the methylation proportions of each CpG site

were simulated. To simplify the simulation, without loss of general-

ity we only focused on chromosome 19. In total, we put 400 DMRs

on chromosome 19 with half of the DMRs up-regulated and the other

half down-regulated. Because of the fact that the length of DMRs re-

ported in the literature usually ranges from a few hundreds to a few

thousands bps (Sun et al., 2014), the lengths of the DMRs were

sampled from a truncated Gaussian distribution (L � Nð150; 1002Þ,
with 50 < L < 4000). Within each DMR, the fraction of DMCs

were varied from 0.7 to 1, and for each DMC the differences in

methylation proportions between the case and control samples were

varied from 0.1 to 0.4. For the other CpG sites, the methylation pro-

portions in the case sample were set the same as those in the control

sample. The number of methylated reads for each CpG site in both

case and control samples were simulated from binomial distribution

with the total number of reads at each CpG site equal to the total

number of reads from each sample at the same CpG site. For each of

the simulated model, we generated 50 replicates, and we analyzed

each replicate by using the proposed GetisDMR method and the

ComMet method (Saito et al., 2014).

3.2 Scenario II
In the second set of simulations, we evaluated the performance of

GetisDMR under a variety of conditions where biological replicates

were available, and we further compared the performance of

GetisDMR with ComMet, BSmooth and DSS (Feng et al., 2014;

Hansen et al., 2012; Saito et al., 2014). Similar to Scenario I, we

used a real dataset from a WGBS experiment to mimic the methyla-

tion proportions and the spatial correlations between adjacent CpG

sites (Hon et al., 2013). We randomly chose 6 samples to serve as

control samples, and the remaining samples to serve as case samples.

The methylation proportions in control samples were set the same

as the methylation proportion in one of the randomly selected con-

trol sample. Similar to Scenario I, we put 400 DMRs on chromo-

some 19 with half of the DMRs up-regulated and the remaining

down-regulated. The lengths of the DMRs were sampled from a

truncated Gaussian distribution (L � Nð150; 1002Þ, with

50 < L < 4000). Within each DMR, we varied the fraction (rang-

ing from 0.7 to 1) of DMCs and the differences (ranging from 0.2 to

0.3) in methylation proportions between cases and controls. For

non-differentially methylated regions, the methylation proportions

in the case samples were set the same as those in the control samples.

The number of methylated reads for each CpG site in both case and

control samples were simulated from binomial distribution with the

total number of reads at each CpG site equal to the total number of

reads from each sample at the same CpG site. For each scenario con-

sidered we generated 50 replicates, and analyzed each replicate by

using the proposed method, the ComMet (Saito et al., 2014), the

BSmooth (Hansen et al., 2012) and the DSS (Feng et al., 2014).

3.3 Scenario III
In this set of simulations, we evaluated the performance of the pro-

posed method when confounders/covariates were present. Similar to

Scenario II, 6 samples were served as controls, and the remaining

samples were served as cases. The methylation proportions at each

CpG site were simulated using log
pijk

1�pijk

� �
¼ lik þXijb, where pijk is

the methylation proportion of sample j ðj ¼ 1;2; 3; ;6Þ in group i

(i¼0, control and i¼1, case) at CpG site k, and Xij is the covariate

vector for sample j in group i. For simplicity, we only simulated one

binary covariate, and we varied its effect size (log odds ratio)

ranging from 0.1 to 0.5. The l0k for control samples was set at

log p0k

1�p0k

� �
where p0k is the observed methylation proportion in one

of the randomly selected control sample from the experiment. The

l1k for DMCs in the case samples was set at log p0k

1�p0k

� �
þ d, where d
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was set at 0.2 or 0.3. The l1k for the other sites in the case samples

was set at log p0k

1�p0k

� �
(i.e. d¼0). Within each DMR, the fraction of

DMCs was set at 0.8. Similar to Scenario II, we put 400 DMRs on

the data, and the lengths of DMRs were sampled from

L � Nð150; 1002Þ, with 50 < L < 4000. For each scenario con-

sidered we generated 50 replicates, and analyzed each replicate by

using the proposed GetisDMR method, the ComMet (Saito et al.,

2014), the BSmooth (Hansen et al., 2012) and the DSS (Feng et al.,

2014).

4 Results

4.1 Scenario I
The sensitivity and PPV of Scenario I are summarized in Figure 1

(the differences in methylation proportions are 0.2 and 0.3) and

Supplementary Figure S2 (the differences in methylation proportions

are 0.1 and 0.4). As expected, with the increase in the differences of

methylation proportions between the case and control groups, the

sensitivity and PPV increased for both of the methods. For example,

with 90% DMCs in a DMR, the sensitivity of GetisDMR increased

from 0.0063 to 0.51 and the PPV increased from 0.29 to 0.92 as the

differences in methylation proportions increased from 0.1 to 0.4.

Similarly, the sensitivity of ComMet increased from 0.0022 to 0.22

and the PPV increased from 0.017 to 0.78 as the differences in

methylation proportions increased. Consistent with what we had ex-

pected, as the fraction of DMCs in a DMR increased, the sensitivity

and PPV increased as well. It is worth noting that when the differ-

ences in methylation proportions are small, the increase in the frac-

tion of DMCs within a DMR increases both the sensitivity and PPV

for GetisDMR, while it has little effect on ComMet (Supplementary

Fig. S2). This could be largely explained by the fact that when biolo-

gical replicates are not available, GetisDMR utilizes spatial correl-

ations between z-scores (calculated from the Fisher’s Exact Test)

from nearby CpG sites to stabilize the estimators (G�k) and thus

boosts the power for DMR detection. As shown in Figure 1, both

the sensitivity and PPV of the proposed GetisDMR method were sig-

nificantly higher than those of ComMet under all the situations con-

sidered in this set of simulations. We also varied the definition of a

true positive DMR to assess the performance of the proposed model.

Specifically, we evaluated and compared the sensitivity and PPV be-

tween the two methods with 10%, 25%, 75% and 90% overlaps.

The trends are similar to Figure 1 and Supplementary Figure S2 (sup

plementary Table S1).

4.2 Scenario II
The sensitivity and PPV of Scenario II are summarized in Figure 2.

Similar to the results from Scenario I, both sensitivity and PPV

increased with the increase in the fraction of DMCs and the differ-

ences of methylation proportions. As expected, given the same level

of differences in methylation proportions and DMC fractions, both

the sensitivity and PPV were higher when biological replicates were

available. We noticed that while the PPV of GetisDMR was always

significantly higher than that of ComMet, the sensitivity of

GetisDMR was slightly lower than that of ComMet when the differ-

ences of methylation proportion were relatively high. This is partly

due to the fact that when biological replicates are available, the

GetisDMR takes both the biological and sampling variations into

account. However, under the setting of Scenario II, the methylation

proportions were set the same for all the samples in each group (i.e.

no biological variability), indicating a binomial distribution should

be sufficient to model the data. However, GetisDMR assumes there

is biological variability and estimates an additional parameter to ac-

count for it, which could result in the loss of efficiency. On contrary,

ComMet assumes no biological variability and pools together sam-

ples under the same experimental condition, which boosts the power

of DMR detection under the current setting. Indeed, when there is

no biological variability, a logistic regression has higher power than

that of the beta-binomial regression. However, in most of cases we

do not know if the biological variability is present, and failing to

consider such a variation can result in false positive findings

(Scenario III). Nevertheless, as the differences in sensitivity between

the two methods are not substantial (Fig. 2), we recommend to use

the beta-binomial regression to account for the potential biological

variability. The BSmooth method attained lower sensitivity and PPV

than both of the proposed GetisDMR method and the ComMet

method among all the situations except the case when the difference

in methylation proportions was small (i.e. d¼0.1, results are shown

in Supplementary Fig. S3). While the sensitivity of the DSS method

was lower than both GetisDMR and the ComMet, the PPV of the

DSS method was higher than that of the ComMet and BSmooth

methods but lower than that of the GetisDMR method. We also var-

ied the definition of a true positive DMR and evaluated the sensitiv-

ity and PPV with 10%, 25%, 75% and 90% overlaps. The trends

are similar to Figure 2 and Supplementary Figure S3 (Supplementary

Table S2). In summary, GetisDMR has significantly lower rate of

false positive findings, and it has higher or comparable sensitivity

among all the situations considered in this set of simulations.

4.3 Scenario III
The sensitivity and PPV of Scenario III are summarized in Figure 3.

As expected, with the increase in the effects of covariates, both the

sensitivity and PPV for ComMet decreased. For example, when the

odds ratio (OR) for the binary confounding variable changed from

1.11 (log OR¼0.1) to 1.65 (log OR¼0.5), with 80% CpG sites

being differentially methylated within a DMR and the differences in

methylation proportion setting at 0.3, the sensitivity for ComMet

changed from 0.83 to 0.75 and the PPV changed from 0.32 to 0.19,

whereas under the same setting the sensitivity for GetisDMR

changed from 0.87 to 0.86 and the PPV changed from 0.81 to 0.80.

The performance of GetisDMR is largely robust against the presence
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of other confounding variables, and this could be explained by the

fact that GetisDMR adopts a beta-binomial regression in which the

covariates can be explicitly modeled. When other factors (e.g. age)

affect the methylation proportions, the treatment effect estimates

can be substantially biased when such factors are not taken into ac-

count. The ComMet method ignores the potential confounding ef-

fects, and pools the data under the same experiment condition

together into one sample. Therefore, it is subject to low power as the

confounding effects increase. Similar to Scenario II, the BSmooth

method performed worse than ComMet and GetisDMR, but its per-

formance was relative robust against confounding effects. DSS

method tended to have higher PPV than ComMet and BSmooth, but

its sensitivity was lower than those of the ComMet and the BSmooth

methods in most of the cases. Similar results hold when 100% CpG

sites are differentially methylated within a DMR region

(Supplementary Fig. S4). We also varied the definition of a true posi-

tive DMR (i.e. overlap proportions are set at 10%, 25%, 75% and

90%), and the trends are similar to Figure 3 and Supplementary

Figure S4 (Supplementary Table S3). Among all the situations con-

sidered in this set of simulations, the GetisDMR had higher sensitiv-

ity and PPV than all the other methods regardless of the effects of

confounding variables, the differences in methylation proportions

and the fraction of DMCs within a DMR.

5 Real data application

5.1 The mouse bone marrow and kidney dataset
We applied the GetisDMR method to a public available mouse data-

set (Hon et al., 2013) to investigate the methylation patterns in bone

marrow and kidney tissues of adult mice. The dataset (GEO ID:

GSE42836) includes the base-resolution methylomes of 17 mouse

adult tissues spanning all three germ layers. Hon et al. found that

most tissue-specific DMRs occur at distal cis-regulatory elements,

and some tissue-specific DMRs mark vestigial enhancers that are

dormant in adult tissues but active in embryonic development. They

estimated that more than 6.7% of the mouse genome is variably

methylated (Hon et al., 2013). In our study, we only focus on com-

paring the methylation patterns between bone marrow and kidney

tissues of adult mice. In data preprocessing, the segemhl (Otto et al.,

2012) software was used to map the single-end reads to mm9 gen-

ome, and only reads with unique mapping positions were kept for

further analyses. The hits on the positive and negative strand cyto-

sine at one CpG site were summed together to get the total number

of reads and methylated reads. In total, our GetisDMR method has

detected 116,912 DMRs. The median length of the identified DMR

is 458 bp, and the median number of CpG sites within a DMR is 8

(the details of the identified regions were summarized in supplemen

tary file 1). To investigate whether the identified DMRs are located

in the genomic regions that are relevant to the normal functioning or

development of kidney and/or bone marrow, the Genomic Regions

Enrichment of Annotations Tool (GREAT) was used to infer the

biological functions based on identified DMRs with more than 15

CpG sites harbored (n¼15 172). Two types of annotations, gene ex-

pressions at different tissues of various mouse development stages

and the mouse phenotypes that are affected upon gene malfunction-

ing, were used to explore the biological functions. We further

ranked the significance of enrichment according to the binomial

distribution-based P-values obtained from the GREAT analyses.

The details of the analyses are summarized in Supplementary file 2.

Using gene expression annotation, we found that the genes presum-

ably controlled by the detected DMRs tended to be over-expressed

in kidney or bone marrow tissues. Among the top terms, TS23_vis-

ceral organ, TS23_metanephros, TS23_renal-urinary system and

TS23_renal cortex, are related to the forming of normal kidney

structures during mouse development at Theiler stage (TS) 23.

Among the top 25 combinations of tissues and development stages

that exhibit the most significant enrichment, 60% of them are

related to kidney or bone marrow systems (Fig. 4A). About 50%

terms are directly related to kidney or bone marrow functioning

even tracing down to the 60th term (Supplementary Fig. S5A). Using

phenotype annotation, we found that genes located on or near the

detected DMRs were even more enriched in either bone marrow or

kidney systems. Among the top 25 terms, 80% of them are directly

related to the two tissues (Fig. 4B). About 80% of the terms are

related to the two tissues when we trace down to the 60th term

(Supplementary Fig. S5B).

For comparison purposes, we also analyzed this dataset using the

ComMet method. GREAT database was used to explore the biolo-

gical functions of the identified DMRs. The percentages of
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enrichment terms that are related to the two tissues are summarized

in Supplementary Figure S5. About 43% and 80% of the terms are

related to the two tissues when we trace down to the 60th highest

enrichment term using gene expression and mouse phenotype anno-

tations, respectively. The results from ComMet method are similar

to those of GetisDMR (Supplementary Fig. S5).

5.2 The mouse frontal cortex dataset
We also applied our GetisDMR method to compare methylation pat-

terns between neuron and non-neuron samples from mouse frontal

cortex in a study of methylation profiles of mammalian brain (Lister

et al., 2013). The dataset was downloaded from GEO (GEO ID:

GSE47966), and we used the same strategy as Lister et al. to obtain

the number of reads and methylated reads (Lister et al., 2013). To re-

duce the effects of confounding variables, we adjusted for age and

gender (6 week and 12 month old females, and 7 week old males) in

our analyses. Totally, 371 092 DMRs were detected with the median

width of 630 bp and median number of CpG sites of 7 (the details of

identified DMRs are summarized in Supplementary file 3). The

DMRs, comprised of more than 25 CpG sites(n¼12, 422), were used

to explore the biological functions via the GREAT database

(Supplementary file 4). We ranked the significance of enrichment ac-

cording to the binomial distribution-based P-values from GREAT

analyses using both gene expression and mouse phenotype annota-

tions. As shown in Figure 5, among the top 25 terms, 80% and 68%

of them are directly related to neural system function according to

gene expression and mouse phenotype annotations, respectively.

When we trace down to the 60th highest enrichment term, the per-

centage of terms directly related to neural systems still reaches around

73% for gene expression and 57% for mouse phenotype annotations

(Supplementary Fig. S6).

For comparison purposes, we also analyzed this dataset using

ComMet, DSS and BSmooth. We explored the biological functions

of the identified DMRs via the GREAT database. The percentages

of enrichment terms that are related to neural systems are summar-

ized in Supplementary Figure S6. When we trace down to the 60th

highest enrichment term according to the gene expression annota-

tion, the percentages of terms directly related to the neural system

for DMRs identified by ComMet, DSS and BSmooth are 42%, 58%

and 20%, respectively. When we trace down to the 60th highest en-

richment term according to the mouse phenotype annotation, the

percentages of terms directly related to the neural system for DMRs

identified by ComMet, DSS and BSmooth are 5%, 25% and 22%,

respectively. As shown in Supplementary Figure S6, the DMRs iden-

tified by the proposed method tend to have a better agreement with

biological knowledge than the other three methods.

6 Discussion

In this work, we present a novel statistical method (GetisDMR) to

detect DMRs from WGBS datasets. The proposed method utilizes

the beta-binomial regression model to account for confounding ef-

fects, as well as biological and sampling variations. It further uses a

local Getis-Ord statistic to combine information from nearby CpG

sites to detect DMRs. The region-wise overall test statistic allows

for the detection of DMRs directly, which reduces the number of hy-

pothesis being tested and increases the power of the proposed

method. Through extensive simulations, we have demonstrated the

proposed method had comparable or higher sensitivities and positive

predictive values in detecting DMRs than ComMet, BSmooth and

DSS(Feng et al., 2014; Hansen et al., 2012; Saito et al., 2014)

One strength of the proposed method is that it utilizes the beta-

binomial regression framework and models the methylation propor-

tions corresponding to experimental as well as other independent

and potential confounding factors. As found by Boks et al.

(2009)that DNA methylation proportions could be influenced by
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confounder, such as age and gender, and thus it is important to take

these confounding variables into consideration to avoid bias effect

estimates. The beta-binomial regression model can account for bio-

logical variability and therefore reduces the rate of false positives

compared with a standard logistic regression model. Compared with

the beta regression model, which is a widely used technique to

model outcomes within the range between 0 and 1, the beta-

binomial regression increases power even at moderate coverage as it

takes the coverage depth into consideration.

Another strength of our method is that the GetisDMR adopts

region-wise test statistics based on local Getis-Ord statistics to dir-

ectly detect DMRs. Currently, most of the existing methods focus

on detecting DMCs and then identify DMRs based on some pre-

specified empirical criteria. Although GetisDMR can be used to de-

tect DMCs as we performed the beta-binomial regression for each

CpG site independently, our method focuses on detecting DMRs

directly and provides statistical inference for direct DMR detection.

It has been reported by various researchers that DNA-methylation

proportions are spatially correlated along the genome (Eckhardt

et al., 2006; Irizarry et al., 2008), and our own data shows that the

P-values from the beta-binomial regression are also spatially corre-

lated. In the GetisDMR method, we first derived a z-score and then

we employed the local Getis-Ord statistics to account for the spatial

correlation in DMR detection. Detecting DMRs from WGBS data is

similar to that of hot spot detection, where local Getis-Ord statistics

have been widely used. Indeed, most of the local Getis-Ord statistics

calculated based on the z-scores are approximately normally distrib-

uted as most of the CpG sites are not DMCs. Any regions with

abnormal large or small local Getis-Ord statistics may indicate a

spatial hot spot and in our case it indicates a DMR. One of the

challenges of defining the local Getis-Ord statistics is to calibrate the

spatial correlation among z-scores. Although spatial correlations de-

crease with the increase in the distance between CpG sites, the mag-

nitude of the correlation is quite data dependent. In our method,

instead of pre-specifying a weight function to account for the

correlation, we use a kernel function to capture this relationship and

let the data to determine the magnitude of the parameters.

This makes our method robust to various datasets with different

underlying spatial correlation structures. We further showed the

asymptotic distribution of the region-wise test statistic (i.e.
~G� �MVNð~0;NÞ), and controlled the region-wise false discovery

rate. Therefore, our method can well control the false positive rate

and it provides statistical inference not only for DMCs but also for

DMRs.

It is worth mentioning that the proposed method is quite flexible

to the study designs as the DMR detection only requires P-values.

For example, for studies where replicates are not available, the

Fisher’s Exact Test could be used to calculate P-values for each CpG

site. We could then use the same procedure to detect DMRs. For

studies with more than 2 treatment groups, the likelihood ratio tests

could be performed to assess the treatment effects and the same local

Getis-Ord statistic based procedure could be used to detect DMRs.

For longitudinal studies or studies with clustered effects, robust esti-

mation of the beta-binomial model parameters can be used and the

same local Getis-Ord statistic based procedure could be employed to

infer DMRs (Pashkevich and Kharin, 2004).

In real data application, we applied the proposed method to two

public available mouse datasets (Hon et al., 2013; Lister et al.,

2013). The first dataset is designed to investigate methylation pro-

portions at different tissues of mouse, and it only has one sample per

tissue (i.e. one sample from the bone marrow tissue and one sample

from the kidney tissue) (Hon et al., 2013). In total, our method

detected 116 912 DMRs. Further analyses using the GREAT tool re-

vealed that most of genes located either on or close to the identified

DMRs are related to kidney or bone marrow systems. Using gene ex-

pression annotation, about 50% terms selected by the GREAT is

related to the two tissues. Similarly, using the phenotype annotation,

80% of terms are directly associated with the two tissues. We also

applied our method to compare methylation proportions between

neuron and non-neuron samples from mouse frontal cortex (Lister

et al., 2013), where the effects of age and gender have been con-

trolled for. In total, we have detected 371 092 DMRs and most of

them are biologically relevant. Using the GREAT, the percentages of

terms directly related to neural systems reach 73% and 57% for

gene expression and mouse phenotype annotations, respectively. In

both scenarios, the DMRs detected by the GetisDMR method

showed significant enrichment of genes in the desired tissues, as well

as the direct association with the expected mouse phenotypes.

Although further studies are needed to confirm the biological func-

tions of these detected DMRs, our findings shed light on the methyl-

ation patterns in different mouse tissues.

In conclusion, we have developed a powerful method to detect

DMRs for the analysis of WGBS datasets. The GetisDMR method

detects DMRs based on region-wise statistics, that utilize the spatial

correlations between nearby CpG sites. Our method achieves high

sensitivity and PPV, and it has the potential to be applicable for

more sophisticated study designs, and studies without biological

replicates.

Acknowledgements

The project was supported by the Faculty Research Development Funds from

the University of Auckland, the Scientific Research Foundation for the

Returned Overseas Chinese Scholars from State Education Ministry, the

National Natural Science Foundation of China (Award No. 81502887 and

81472637), and the Pandeng Scholar Program from the Department of

Education of Liaoning Province. We wish to acknowledge the contribution of

NeSI high-performance computing facilities to the results of this research. We

also want to thank the two anonymous reviewers whose comments helped im-

prove and clarify this manuscript.

Conflict of Interest: none declared.

References

Akalin,A. et al. (2012) methylkit: a comprehensive r package for the analysis

of genome-wide dna methylation profiles. Genome Biol., 13, R87.

Beyan,H. et al. (2012) Guthrie card methylomics identifies temporally

stable epialleles that are present at birth in humans. Genome Res., 22,

2138–2145.

Bhunia,G.S. et al. (2013) Spatial and temporal variation and hotspot detec-

tion of Kala-azar disease in Vaishali district (bihar), india. BMC Infect. Dis.,

13, 64.

Bock,C. (2012) Analysing and interpreting DNA methylation data. Nat. Rev.

Genet., 13, 705–719.

Boks,M.P. et al. (2009) The relationship of DNA methylation with age, gender

and genotype in twins and healthy controls. PLoS One, 4, e6767.

Clark,S.J. et al. (2006) DNA methylation: bisulphite modification and ana-

lysis. Nat. Protoc., 1, 2353–2364.

Deaton,A.M. and Bird,A. (2011) CPG islands and the regulation of transcrip-

tion. Genes Dev., 25, 1010–1022.

Dolzhenko,E. and Smith,A.D. (2014) Using beta-binomial regression for high-

precision differential methylation analysis in multifactor whole-genome

bisulfite sequencing experiments. BMC Bioinf., 15, 215.

Eckhardt,F. et al. (2006) DNA methylation profiling of human chromosomes

6, 20 and 22. Nat. Genet., 38, 1378–1385.

DMR detection with local Getis-Ord statistics 3403

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/22/3396/2525614 by U
.S. D

epartm
ent of Justice user on 16 August 2022



Ehrlich,M. (2002) DNA methylation in cancer: too much, but also too little.

Oncogene, 21, 5400–5413.

Feng,H. et al. (2014) A Bayesian hierarchical model to detect differentially

methylated loci from single nucleotide resolution sequencing data. Nucleic

Acids Res., 42, e69.

Getis,A. and Ord,J.K. (1992) The analysis of spatial association by use of dis-

tance statistics. Geograph. Anal., 24, 189–206.

Hansen,K.D. et al. (2012) BSmooth: from whole genome bisulfite sequencing

reads to differentially methylated regions. Genome Biol., 13, R83.

Hebestreit,K. et al. (2013) Detection of significantly differentially methylated re-

gions in targeted bisulfite sequencing data. Bioinformatics, 29, 1647–1653.

Hirst,M. and Marra,M.A. (2010) Next generation sequencing based

approaches to epigenomics. Brief. Funct. Genomics, 9, 455–465.

Hon,G.C. et al. (2013) Epigenetic memory at embryonic enhancers identified in

DNA methylation maps from adult mouse tissues. Nat. Genet., 45, 1198–1206.

Irizarry,R.A. et al. (2008) Comprehensive high-throughput arrays for relative

methylation (charm). Genome Res., 18, 780–790.

Jaffe,A.E. et al. (2012) Significance analysis and statistical dissection of vari-

ably methylated regions. Biostatistics, 13, 166–178.

Laurent,L. et al. (2010) Dynamic changes in the human methylome during dif-

ferentiation. Genome Res., 20, 320–331.

Li,E. et al. (1993) Role for DNA methylation in genomic imprinting. Nature,

366, 362–365.

Lister,R. et al. (2009) Human DNA methylomes at base resolution show wide-

spread epigenomic differences. Nature, 462, 315–322.

Lister,R. et al. (2013) Global epigenomic reconfiguration during mammalian

brain development. Science, 341, 1237905.

Ord,J.K. and Getis,A. (1995) Local spatial autocorrelation statistics – distribu-

tional issues and an application. Geograph. Anal., 27, 286–306.

Ord,J.K. and Getis,A. (2001) Testing for local spatial autocorrelation in the

presence of global autocorrelation. J. Regional Sci., 41, 411–432.

Otto,C. et al. (2012) Fast and sensitive mapping of bisulfite-treated sequencing

data. Bioinformatics, 28, 1698–1704.

Park,Y. et al. (2014) Methylsig: a whole genome DNA methylation analysis

pipeline. Bioinformatics, 30, 2414–2422.

Pashkevich,M.A. and Kharin,Y.S. (2004) Robust estimation and forecasting

for beta-mixed hierarchical models of grouped binary data. SORT, 28,

125–160.

Saito,Y. et al. (2014) Bisulfighter: accurate detection of methylated cytosines

and differentially methylated regions. Nucleic Acids Res., 42, e45.

Santos,F. et al. (2002) Dynamic reprogramming of Dna methylation in the

early mouse embryo. Dev. Biol., 241, 172–182.

Schultz,M.D. et al. (2012) ’leveling’ the playing field for analyses of single-

base resolution DNA methylomes. Trends Genet., 28, 583–585.

Sharma,S. et al. (2010) Epigenetics in cancer. Carcinogenesis, 31, 27–36.

Stevens,M. et al. (2013) Estimating absolute methylation levels at single-CPG

resolution from methylation enrichment and restriction enzyme sequencing

methods. Genome Res., 23, 1541–1553.

Sun,D. et al. (2014) Moabs: model based analysis of bisulfite sequencing data.

Genome Biol., 15, R38.

Suzuki,M.M. and Bird,A. (2008) DNA methylation landscapes: provocative

insights from epigenomics. Nat. Rev. Genet., 9, 465–476.

3404 Y.Wen et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/22/3396/2525614 by U
.S. D

epartm
ent of Justice user on 16 August 2022


