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An extension of transfer entropy, called partial transfer entropy (PTE), is proposed to detect
causal effects among observed interacting systems, and particularly to distinguish direct from
indirect causal effects. PTE is compared to a linear direct causality measure, the Partial Directed
Coherence (PDC), on known linear stochastic systems and nonlinear deterministic systems. PTE
performs equally well as PDC on the linear systems and better than PDC on the nonlinear
systems, both being dependent on the selection of the measure specific parameters. PTE and
PDC are applied to electroencephalograms of epileptic patients during the preictal, ictal and
postictal states, and PTE turns out to detect better changes of the strength of the direct causality
at specific pairs of electrodes and for the different states.
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1. Introduction

The identification of the information structure and
the hidden dependencies among the observed com-
ponents of complex dynamical systems is a diffi-
cult and challenging task. An even more difficult
task is to distinguish between direct and indirect
dependence or information flow. This problem is
met in many applications and is of particular rel-
evance for brain dynamics. Mapping the brain con-
nectivity could be a major step in understanding the
functions of the brain, and changes of the effective
connectivity can possibly be taken as markers of

emerging pathological states, as in epilepsy [Schel-
ter et al., 2006a].

In the last decade, many nonlinear measures
have been developed to estimate the strength and
direction of coupling (also referred to as Granger
causality or information flow) from an observed
variable (or system) X to another observed vari-
able Y . Among these measures, information-based
measures, and transfer entropy (TE) [Schreiber,
2000] in particular, are found to be very effec-
tive in detecting the direction of information flow
[Papana & Kugiumtzis, 2008]. For direct Granger
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causality accounting for the presence of other vari-
ables, the existing measures are mostly linear, based
on linear prediction models (conditioned or par-
tial Granger causality index [Guo et al., 2008]) and
coherence (partial directed coherence, PDC [Bac-
cala & Sameshima, 2001], and directed transfer
function, dDTF [Blinowska et al., 2004]).

Here, we extend TE and account for the pres-
ence of other variables in order to detect only
direct information flow from X to Y , called Partial
Transfer Entropy (PTE) (recently also developed in
[Vakorin et al., 2009]). We compare PTE to PDC,
extensively used in brain connectivity, on time series
from known stochastic and deterministic coupled
systems. This study helps us interpret the results of
the measures applied to epileptic electroencephalo-
graphic (EEG) records covering the preictal period
(up to 3 h prior to seizure onset), as well as the
ictal (seizure) and postictal periods (minutes after
the seizure). For example, we expect that the brain
activity at the ictal state is different from before
and after the seizure, which can be used for diag-
nostic purposes. Further, changes in brain connec-
tivity at the preictal state can be used to form
a seizure prediction tool. Another clinical use of
causality measures can be the localization of the
epileptic focus.

2. Methods

Transfer entropy (TE) quantifies the amount of
information explained in Y at h time steps ahead
from the state of X accounting for the concurrent
state of Y . Given a bivariate time series {xt, yt}

n
t=1

from the two systems, the states of X and Y at
times t = (m − 1)τ + 1, . . . , n − h are defined by
the state space reconstructed vectors xt = (xt,

xt−τ , . . . , xt−(m−1)τ )′ and yt = (yt, yt−τ , . . . ,

yt−(m−1)τ )′, respectively, where τ is the delay time
and m is the embedding dimension. Then TE from
X to Y is defined as

TEX→Y = −H(yt+h |xt,yt) + H(yt+h |yt)

= −H(yt+h,xt,yt) + H(xt,yt)

+ H(yt+h,yt) − H(yt), (1)

where H(x) is the Shannon entropy of the vari-
able X.

Partial Transfer Entropy (PTE) extends TE to
account for the presence of other interacting sys-
tems, collected in Z. Thus conditioning on zt, that

contains the state space reconstructed vectors of all
observed variables of Z, only the direct causal effect
of X to Y is measured by PTE, defined as

PTEX→Y |Z = −H(yt+h |xt,yt, zt)

+ H(yt+h |yt, zt). (2)

The estimation of TE and PTE relies on the estima-
tion of the joint probability density functions in the
expression of the entropies. For large dimension, the
estimation of density functions can be problematic.
For PTE and p observed variables, i.e. p−2 observed
variables of Z, the largest dimension for a joint
distribution is mp + 1, which can be prohibitively
high for many probability density estimates. Thus,
histogram-based estimates (discretizing the state
space to equidistant or equiprobable intervals at
each axis) are likely to fail even for small m, p and
large n. We found that also estimates of kernel type
making use of fixed bandwidths, such as the cor-
relation sums, cannot provide reliable estimations
for large dimensions [Papana & Kugiumtzis, 2009].
The latter estimate has been used to compute PTE
in [Vakorin et al., 2009], but dealing with small m

and p. Here, we use the nearest neighbor estimate of
the entropies [Kraskov et al., 2004], which is found
capable of handling best high dimension of the vari-
ables in the entropy terms [Vlachos & Kugiumtzis,
2010].

Linear measures of Granger causality are less
sensitive to the dimension of the state variables.
For model-based linear measures, the equivalent
of the embedding dimension m is the order P of
the autoregressive (AR) or Vector Autoregressive
(VAR) model (assuming τ = 1). In this study,
we compare PTE to Partial Directed Coherence
(PDC), defined in terms of the Fourier transform
of the coefficients of VAR regarding all p observed
variables [Baccala & Sameshima, 2001]. Assuming
for each variable vector at lag r the matrix of VAR
coefficients Φ(r), the Fourier transform is A(f) =

I−
∑P

r=1 Φ(r)e−2iπfr (I is the p×p identity matrix),
and PDC for the direct effect of variable (or com-
ponent process) j to i at frequency f is defined as

PDCj→i(f) =
|Aij(f)|

√

√

√

√

p
∑

l=1

|Alj(f)|2

. (3)

The final measure PDCj→i(P ) is then defined as the
average of PDCj→i(f) for all frequencies in a band
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of interest, for the selected P . PDCj→i(P ) measures
the directed linear influence of variable j on variable
i conditioned on the rest of the variables.

3. Application

3.1. Simulated data

In all simulations we have three time series
{xt, yt, zt}

n
t=1 of variables from each of the three

coupled systems X, Y and Z (p = 3). We con-
sider the three following interacting systems, each
with the same interacting structure, X driving Y

(X → Y ) and Y driving Z (Y → Z).

S1. Three coupled autoregressive AR(1) models
[Chen et al., 2006]

xt = θt,

yt = xt−1 + ηt,

zt = 0.5zt−1 + yt−1 + ǫt

where θt, ηt, ǫt are Gaussian white noise with
zero mean and standard deviations 1, 0.2 and 0.3,
respectively.

S2. Three coupled Henon maps

xt+1 = 1.4 − x2
t + 0.3xt−1,

yt+1 = 1.4 − cxtyt − (1 − c)y2
t + 0.3yt−1,

zt+1 = 1.4 − cytzt − (1 − c)z2
t + 0.3zt−1

with equal coupling strength c for X → Y and Y →
Z, and c = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5.

S3. Three coupled Lorenz systems

ẋ1 = 10(y1 − x1)

ẏ1 = 28x1 − y1 − x1z1

ż1 = x1y1 −
8

3
z1,

ẋ2 = 10(y2 − x2) + c(x1 − y1)

ẏ2 = 28x2 − y2 − x2z2

ż2 = x2y2 −
8

3
z2,

ẋ3 = 10(y3 − x3) + c(x2 − y2)

ẏ3 = 28x3 − y3 − x3z3

ż3 = x3y3 −
8

3
z3

with equal coupling strength c for X → Y and Y →
Z, and c = 0, 1, 2, 3, 4, 5. The second variable of each
interacting system is observed.

For each system, and each c for systems S2 and
S3, the direct causality measures PTE and PDC
are computed for each ordered pair of the observed
variables (six combinations) on 100 independent
realizations to different initial conditions, and for
n = 512, 1024, 2048, 4096, 8192. PTE is estimated
for different number of neighbors k and embedding
dimensions m, whereas PDC is estimated for differ-
ent VAR orders P and for a range of frequencies in
[0, 0.5].

For the linear system S1, the simulation results
showed that PTE performs equally well as PDC,
both being positive for X → Y and Y → Z and
zero for all other directed pairs. As Fig. 1 shows, the
positive PDC values for the two direct causal effects
are the same for P = 1 and P = 2, whereas the PTE
values for these two cases decrease when either the
number of nearest neighbors k or the embedding
dimension m increases, but only for small n. For
small n, the PDC for some of the other pairs rises
from the zero level when P changes from 1 to 2.
However, in any case, a formal parametric signif-
icance test for PDC (see [Takahashi et al., 2007;
Schelter et al., 2006b]) would only suggest the cor-
rect direct interaction, and the same is expected
for PTE using surrogate data testing (e.g. see [Vla-
chos & Kugiumtzis, 2010]), as the variance of the
measures is small. However, for larger parameter
values, both measures have larger variance and the
correct direct causal effects cannot be distinguished,
especially for small n.

For the two nonlinear systems S2 and S3, PTE
outperforms PDC. For appropriate selection of k

and m, PTE gets large positive only for the two
correct direct causal effects, and this holds even for
small n and small coupling strengths c. On the other
hand, PDC could not distinguish the two direct
causal effects as the PDC values for other variable
pairs were at the same level. Indicative results for
PTE and PDC versus c are shown in Fig. 2 for
system S2 and Fig. 3 for system S3. As shown in
Figs. 3(b) and 3(c), the low performance of PDC is
not due to the selection of P , and it persists even
for large n. On the other hand, PTE performs prop-
erly even for small n, and moreover, the selection
of appropriate parameters m and k improves the
performance of PTE and increases the PTE values
for the correct direct causal effects [see Figs. 2(a)
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Fig. 1. (a) Mean estimated values and standard deviation (as error bars) of PTE versus log2n from 100 realizations of
system S1, for m = 1 and k = 2. In (b) and (c), as in (a) but for m = 1, k = 10, and m = 2, k = 2, respectively. In (d) and
(e), as in (a) but for PDC using P = 1 and P = 2, respectively.

and 2(b)]. However, for the nonlinear flow of system
S3, a larger time series is required to obtain signif-
icantly positive PTE values for the correct direct
causal effects and relatively small variance across
the 100 realizations.

3.2. Physiological data

We apply PTE and PDC to six extracranial EEG
recordings from six epileptic patients to assess the
information flow among brain areas during the

propagation of the epileptic activity, i.e. at the
preictal, ictal and postictal states. The five EEG
records are from generalized tonic clonic seizures
(denoted as A to E), whereas the other EEG record,
denoted F, is from left posterior temporal lobe
seizure. Each EEG record covers at least 3 h prior to
seizure onset and extends into the postictal period.
The EEG data were high-pass filtered at 0.3 Hz and
low-pass filtered at 40 Hz and were further down-
sampled to 100 Hz (initially recorded at 256 Hz).
To attain better source derivation at small cortical
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Fig. 2. (a) Mean estimated values and standard deviation (as error bars) of PTE versus c from 100 realizations of system S2,
for n = 512, m = 2 and k = 2. (b) As in (a) but for k = 10. (c) As in (a) but for PDC, n = 8192 and P = 2.
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Fig. 3. (a) Mean estimated values and standard deviation (as error bars) of PTE versus c from 100 realizations of system
S3, for n = 8192, m = 3 and k = 10. (b) and (c) are as in (a) but for PDC and for P = 3 and P = 6, respectively.

regions, for each EEG channel, the mean EEG of
the four neighboring channels is subtracted. In this
study, we consider four channels (montage system
10–20) from the following brain areas: left frontal
(F3), right frontal (F4), left temporal (T7) and right
temporal (T8). We restrict the analysis to only four
channels in order to keep the dimension low.

The measures are calculated on nonoverlapping
consecutive EEG segments of 30 sec for all chan-
nel pair combinations. PDC is the average for fre-
quencies from 1 to 30 Hz with step 1 Hz. For the
order in PDC, we tested for P = 5, 6, 10, 20 on one
patient and found only a slight increase of PDC
with P , which does not affect the detected direc-
tion of causal effects among the pairs of channels.
On the other hand, PTE turns out to be more sen-
sitive on the choice of m. Setting h = 5, τ = 5
and m = 3, 5, 10, we found that PTE tends to
decrease with the increase of m, and for m = 3 the

causal effects between the pairs of channels at the
two directions differed most, while for larger m the
PTE decreased in both directions down to about
the same level. We set k to 10 and 20 neighbors
and found no significant effect on PTE, which is in
agreement with the results of the simulation study.
We tested for a range of m and P values as the
simulation study showed that both PTE and PDC
are sensitive to m and P , respectively. However, we
found that the estimation of PTE for m = 10 is
unstable, which sets an upper bound for m in this
data setting.

We made the calculations to all patients using
m = 3 and 5 for PTE (k = 10) and P = 6 and 20
for PDC. In all cases, PTE indicated the increase
of information flow during the ictal and postictal
states [see Figs. 4(a)–4(c) for patient A, B, C and
m = 3], while PDC does not produce this feature
[see Figs. 4(d)–4(f) for P = 6]. Also, in the preictal
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Fig. 4. (a)–(c) Estimated values of PTE for the first three records (A–C) for m = 3 and k = 10. (d)–(f) Estimated values of
PDC for the same records (A–C) for P = 6. The dotted vertical line indicates the seizure onset.
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Fig. 4. (Continued)

state PTE and PDC do not indicate the same causal
effects; e.g. for record A, PDC indicates driving of
T7 and T8 on F3 and F4, respectively, and bidi-
rectional interaction among all pairs of channels
while PTE indicates weak bidirectional causal effect
for F3 versus F4, F3 versus T7 and T7 versus T8
[see Figs. 4(a) and 4(d)]. Both measures vary much
across the episodes and channels, and they are pos-
itive (at larger or smaller scales), suggesting the
existence of bidirectional causal effects among the
different brain areas. This, however, remains to be
verified rigorously by statistical significance test-
ing and inclusion of other causality measures. Both
measures seem to be insufficient in detecting a pre-
cursor of the seizure onset, as no changes in the
information flow are detected.

4. Discussion

In this study, the identification of the interdepen-
dencies of coupled systems represented by observed
time series was addressed. A nonlinear causality
measure, partial transfer entropy, has been pre-
sented and was compared to a standard linear one,
partial directed coherence. Simulations on a lin-
ear coupled system showed that PTE can detect
causal effects as good as PDC even for small data
sizes, whereas for nonlinear coupled systems PTE
performs properly while PDC generally fails. How-
ever, PTE seems to be more sensitive to the embed-
ding dimension m than PDC is to the model
order P because a large m implies the estimation
of high-dimensional distributions, which requires
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larger data sets. The results of the simulations sug-
gest that the parameter k is not crucial in the imple-
mentation of PTE, which is in agreement with other
works [Kraskov et al., 2004; Papana & Kugiumtzis,
2009].

The situation of having to use a large m in
conjunction with limited data size may give rise
to unreliable estimation of PTE, whereas this is
not the case for PDC and a large P . This actu-
ally is the problem of estimating joint entropies
and joint distributions at a high-dimensional state
space. Recently, in [Vakorin et al., 2009], PTE was
introduced to derive directed connections between
nodes (time series) of a network. They estimated
the entropies in PTE with correlation sums and
used only very small m. In our approach, we esti-
mated the entropy terms using nearest neighbors
and obtained better estimates at moderate to high
dimensions, so that we can trade better system com-
plexity and dimensionality.

For the application to six epileptic EEG
records, we could obtain robust estimation of PTE
for m = 5 and four variables (the left/right tem-
poral and frontal channels). Though there were
variations in PTE with m, PTE was always at a
higher level during ictal and postictal state for all
six patients and channel combinations. We could
not obtain this feature with PDC regardless of the
magnitude of P . For the preictal state, both mea-
sures varied with patient and channel pairs, so the
results were inconclusive as to the information flow
hours to minutes before the seizure onset. To assess
the effectiveness of the measures in detecting direct
information flow, further investigation is needed on
the parameter setting, in particular for PTE, as
well as the model mis-specification, as only selected
brain areas have been used in this study. Recent
studies have given evidence that nonlinear measures
have larger discriminating power in EEG analysis
[Andrzejak et al., 2011], and that brain connectiv-
ity mapping should be formed based only on direct
causal effects [Gourevitch et al., 2006]. Thus, the
development of nonlinear direct causality measures,
as the measure of PTE proposed here, may have a
positive impact in EEG analysis (e.g. seizure predic-
tion and epileptic focus localization) and complex
system analysis in general.
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